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1 Introduction

A brief summary of objectives for the semester.

• Laplace Equation. −∆u = f . Later: Elliptic Equation.

• Heat/Diffusion Equation. ∂tu = ∆u. Later: Parabolic.

• Wave Equation. 1
c2 ∂ttu = ∆u. Later: Hyperbolic Equation.

• Schrödinger Equation. i∂tψ = −∆ψ for ψ : Rd × R → C. Later: Dispersive Equation.

Question: Where do PDEs come from?

Example 1.1. Take a wire frame, dip into soapy water. What is the shape of the soap film that spans the
space which is interior to the wire frame? Imagine a surface of a wire frame Σu whose boundary is ∂Σu =
{(x1,0, x2,0, f(x1,0, x2,0))} in R3, with its projection to xy-plane U := {(x1, x2, 0)} open with boundary ∂U =
{(x1,0, x2,0, 0)}. In particular, one has u : U → R s.t. Σu = {(x1, x2, u(x1, x2)) | (x1, x2) ∈ U} with u|∂U = f .
The set of all possible surfaces we consider is the admissible set

Af := {u(x1, x2) : U → R | u|∂U = f, and smoothness assumptions}

Physics principle: The shape taken by the soap film is given by that surface Σu∗ where x3 = u∗(x1, x2),
u∗|∂U = f , i.e., u∗ ∈ Af , for which the surface area is minimized. Given u ∈ Af , let

E [u] := the surface area of Σu

Purpose: Minimize E [u] among u ∈ Af . This is a classical problem in the calculus of variations. We claim that

E [u] =
¨

U

√
1 + |∇u(x1, x2)|2 dx1dx2

Intuitively, the area element is the measure of the cross product of tangent vectors at the point (x1, x2, u(x1, x2)).
A priori, suppose that u∗ ∈ Af is a minimizer, one wish to derive the equation that u∗ satisfies. Claim: u∗(x)
satisfies the following boundary value problem2HΣu∗

:= ∇ ·
(

1√
1+|∇u∗(x1, x2)|2

∇u∗(x)
)

= 0 ∀ x ∈ U

u∗(x) = f(x) ∀ x ∈ ∂U
(1)

This is mean curvature equation. If |∇u∗(x1, x2)| ≪ 1, then ∆u∗ = ∇ · ∇u∗ = 0 with u∗|∂U = f gives the
Laplace Equation. In fact, one impose the smoothness criterion u ∈ C2(U) in Af .

Proof of (1). Let φ ∈ C2(U) test function s.t. φ|∂U = 0, arbitrary. Recall we’re assuming u∗ ∈ Af and by
definition of the minimizing problem

E [u∗] = min
u∈Af

E [u]

so u∗ + εφ ∈ Af for all ε > 0. Let’s study the object e : R → R s.t.

e(ε) := E [u∗ + εφ]

clearly e is smooth w.r.t. ε and it is minimized at the point ε = 0. From calculus we know e′(0) = 0. Let’s
write it out explicitly

e(ε) = E [u∗ + εφ] =

ˆ
U

(
1 + |∇u∗(x) + ε∇φ(x)|2

) 1
2 dx

=

ˆ
U

(
1 + |∇u∗|2 + 2ε∇u∗ · ∇φ+ ε2|∇φ|2

) 1
2 dx

e′(ε) =

ˆ
U

1

2

(
1 + |∇u∗|2 + 2ε∇u∗ · ∇φ+ ε2|∇φ|2

)− 1
2
(
2∇u∗ · ∇φ+ 2ε|∇φ|2

)
dx

=

ˆ
U

(
1 + |∇u∗|2 + 2ε∇u∗ · ∇φ+ ε2|∇φ|2

)− 1
2
(
∇u∗ · ∇φ+ ε|∇φ|2

)
dx

0 = e′(0) =

ˆ
U

(
1 + |∇u∗|2

)− 1
2 (∇u∗ · ∇φ) dx

Hence the minimizer u∗ ∈ Af satisfiesˆ
U

(
1 + |∇u∗|2

)− 1
2 (∇u∗ · ∇φ) dx = 0 for all φ ∈ C2(U) s.t. φ|∂U = 0 (2)

Recall an IBP lemma
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Lemma 1.1. For f, g h ∈ C2(U) smooth

∇ · (h(∇f)g) = (h∇f) · ∇g +∇ · (h∇f)g
=⇒ h∇f · ∇g = ∇ · (h∇fg)−∇ · (h∇f)g

=⇒
ˆ
U

h∇f · ∇g =

ˆ
U

(∇ · (h∇fg)−∇ · (h∇f)g) dx

=

ˆ
∂U

h
∂f

∂ν
g dS −

ˆ
U

∇ · (h∇f)g dx (3)

Apply (3) to (2) so that

0 =

ˆ
∂U

(
1 + |∇u∗|2

)− 1
2 φ

∂u∗
∂ν

dS−
ˆ
U

∇·
((

1 + |∇u∗|2
)− 1

2 ∇u∗
)
φdx for all φ ∈ C2(U) s.t. φ|∂U = 0 (4)

But the first term vanishes due to choice of φ, so one conclude from (4) that

0 =

ˆ
U

∇ ·
((

1 + |∇u∗|2
)− 1

2 ∇u∗
)
φdx for all φ ∈ C2(U) s.t. φ|∂U = 0 (5)

Lemma 1.2 (Fundamental Lemma of Calculus of Variations). Suppose f ∈ C0(U) for U ⊂ Rn open and
φ ∈ C0(U) s.t. φ|∂U = 0 and that

ˆ
U

f(x)φ(x) dx = 0 for all such φ

Then f ≡ 0 on U

Proof of Lemma1.2. Suppose there exists x0 ∈ U s.t. f(x0) ̸= 0. WLOG, let f(x0) > 0. Then due to continuity
of f , there exists r0 s.t. 0 < f(x) for all |x− x0| < r0 small enough. Let φ0(x) be a function which is positive
for |x − x0| < r0

2 and φ0(x) = 0 for |x − x0| ≥ r0. Then 0 =
´
U
f(x)φ0(x) dx by assumption, and moreover,´

U
f(x)φ0(x) dx =

´
|x−x0|<r0

f(x)φ0(x) dx > 0 which is a contradiction. An example for such φ0 is

φ0(x) :=

{
exp(− 1

r20−|x−x0|2 ) for |x− x0| < r0

0 for |x− x0| ≥ r0

Indeed such φ0 ∈ C∞
0 (Rn).

Hence apply Lemma 1.2 to (5) to obtain (1).
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2 Laplace and Poisson Equation

Lemma 2.1 (Green’s Identity). For u, v ∈ C2(Ω), for Ω ⊂ Rn open. Assume ∂Ω is smooth

u∆v = ∇ · (u∇v)−∇u · ∇v (6)

v∆u = ∇ · (v∇u)−∇v · ∇u (7)

Integrate (6) over Ω gives Green’s first identity

ˆ
Ω

u∆v dx =

ˆ
∂Ω

u
∂v

∂n
dS −

ˆ
Ω

∇u · ∇v dx (8)

(6) minus (7) gives Green’s second identity

u∆v − v∆u = ∇ · (u∇v − v∇u)ˆ
Ω

u∆v − v∆u dx =

ˆ
∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
dS (9)

2.1 Fundamental Solutions

Definition 2.1. Laplacian operator ∆u = ∆ru+ 1
r2∆Sn−1u where radial Laplacian ∆rv = v′′(r) + n−1

r v′(r) if
v = v(|x|) for r = |x| radial.

Good about the radial equation is that its ODE, with

v′′(r) +
n− 1

r
v′(r) = 0

iff (v′)′ +
n− 1

r
v′ = 0

=⇒ letting w = v′, w′ +
n− 1

r
w = 0

=⇒ w′ = −n− 1

r
w

=⇒ w′

w
= −n− 1

r
=⇒ log(|w|) = −(n− 1) log(r) + C

=⇒ w(r) = C ′r1−n

Hence v′(r) = C ′r1−n gives

v(r) =

{
c′ 1

2−nr
2−n n ̸= 2

c′ log(r) n = 2

Hence for x ̸= 0, one writes

v(x) =

{
b|x|2−n n ̸= 2
b log(|x|) n = 2

∈ C∞(R) (10)

and indeed satisfies ∆v = 0. Note for x ̸= x0 ∈ Rn, one has v(x− x0) ∈ C∞(Rn \ {x0}) and ∆v(x− x0) = 0.

Definition 2.2. Newtonian Potential Φ is

Φ(x) :=

{
− 1

(2−n)ωn
|x|2−n n ̸= 2

− 1
2π log(|x|) n = 2

for x ̸= 0 (11)

for ωn surface area of Sn−1, and Φ(x) ∈ C∞(Rn \ {0}) where ∆Φ = 0 for x ̸= 0.

We seek for solution of Poisson’s Equation −∆u(x) = f(x) for any x ∈ Rn with any f defined on Rn with some
conditions. For now say f ∈ C2(Rn) with compact support, i.e., supp(f) := {x ∈ Rn | f(x) ̸= 0} is compact.
Our aim is to construct the inverse of Laplacian (−∆)−1f .

Theorem 2.1 (Fundamental Theorem in Potential Theory). Define the fundamental solution as the convolution
of Newtonian potential with force f ∈ C2

0 (Rn)

u(x) := (Φ ∗ f)(x) =
ˆ
Rn

Φ(x− y)f(y) dy =

ˆ
Rn

Φ(y)f(x− y) dy (12)

• u ∈ C2(Rn)
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• −∆u(x) = f(x) for any x ∈ Rn

Remark 2.1. Look at Φ(z) = 1
|z|n−2 for n ≥ 3, this is actually singular. But this is weakly singular.

|
ˆ
Rn

Φ(x− y)f(y) dy| ≤ C

ˆ
Rn

|Φ(x− y)||f(y)| dy

≤ C

ˆ
|y|≤R

1

|x− y|n−2
|f(y)| dy ≤ ∥f∥∞

ˆ
|y|≤R

1

|x− y|n−2
dy

≤ C

ˆ
|z|≤R

1

|z|n−2
dz =

ˆ
Sn−1

ˆ R

0

1

rn−2
rn−1 drdθ = |Sn−1|R2 <∞

Remark 2.2. Formally −∆Φ(x) = δ(x).

Proof of Theorem 2.1. For any ε > 0

−∆u(x) =

ˆ
Rn

Φ(y)(−∆f(x− y)) dy

=

ˆ
|y|≤R

Φ(y)(−∆f(x− y)) dy

where R̃ <∞ depends on x due to compact support. So

−∆u(x) =

ˆ
|y|<ϵ

Φ(y)(−∆f(x− y)) dy +

ˆ
ε≤|y|≤R

Φ(y)(−∆f(x− y)) dy

= Iε(x) + Jε(x)

So

|Iε(x)| ≤ ∥∆f∥∞
ˆ
|y|<ϵ

|Φ(y)| dy

≤ C ∥∆f∥∞
ˆ ε

0

1

|y|n−2
|y|n−1 dy =

C

2
ε2 ∥∆f∥∞

now
−∆u(x) = −∆(Φ ∗ f)(x) = Iε(x) + Jε(x) = Jε(x) +O(ε2)

Now we compute Jε(x) using (9) with u = Φ and v = f , and that f compactly supported

Jε(x) = −
ˆ
ε≤|y|≤R

Φ(y)∆yf(x− y) dy

= −

{ˆ
ε≤|y|≤R

f(x− y)∆yΦ(y) dy +

ˆ
{|y|=ε}∪{|y|=R}

Φ(y)
∂f(x− y)

∂n
− f(x− y)

∂Φ(y)

∂n
dS(y)

}

=

ˆ
{|y|=ε}∪{|y|=R}

−Φ(y)
∂f(x− y)

∂n
+ f(x− y)

∂Φ(y)

∂n
dS(y)

=

ˆ
{|y|=ε}

−Φ(y)
∂f(x− y)

∂n
+ f(x− y)

∂Φ(y)

∂n
dS(y)

= Jε,1(x) + Jε,2(x)

Look at Jε,1(x)

|Jε,1(x)| ≤
ˆ

1

(n− 2)ωn
|y|2−n|∇yf(x− y) · n| dS(y) ≤ C ∥∇f∥∞

ˆ
|y|=ε

|y|2−n dS ≤ Cε

Hence
−∆u(x) = Jε,2(x) +O(ε2) +O(ε)

Now just compute Jε,2(x)

Jε,2(x) =

ˆ
|y|=ε

f(x− y)
∂Φ(y)

∂n
dS(y)

=

ˆ
|y|=ε

f(x− y)

[
|y|1−n

ωn

]
dS(y)

=

ˆ
|w|=1

f(x− εw)
ε1−n

ωn
εn−1 dS(w) =

1

ωn

ˆ
|w|=1

f(x− εw) dS(w) → f(x)
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Definition 2.3 (Hölder Space). 0 < α < 1, Cα(Ω) := {f ∈ C0(Ω) | |f(x)−f(y)| ≤ C|x−y|α for any x, y ∈ Ω}

Remark 2.3. We’ve done for f ∈ C2
0 . If f ∈ C1, it still holds. But what if f ∈ C0? Is Φ ∗ f ∈ C2? No. But

if f ∈ Cα for some 0 < α ≤ 1 Hölder, then still true via Schauder theory.
If f ∈ Cα, then (Φ ∗ f) ∈ C2,α and −∆ · (ϕ ∗ f) = f . What about f on C0? There are counter-examples.

2.2 Harmonic Functions

Definition 2.4. u ∈ C2(Ω), for Ω open, is harmonic if ∆u = 0 for all x ∈ Ω.

Remark 2.4. Intuition: n = 2. uxx + uyy = 0. If u(i, j) = uij, then (uxx)(i, j) ∼ ui+1,j − 2ui,j + ui−1,j and
(uyy)(i, j) ∼ ui,j−1 − 2ui,j + ui,j+1 leading to

0 = (∆u)ij = ui+1,j − 4ui,j + ui−1,j + ui,j−1 + ui,j+1 =⇒ ui,j =
1

4
(ui+1,j + ui−1,j + ui,j−1 + ui,j+1)

One wish to prove the following

• Mean Value Property: u is harmonic iff it satisfies a mean value property.

• Maximum Principle: If u harmonic on Ω but non-constant, then its maximum and minimum are attained
only on the boundary ∂Ω.

Notations: Br(x) = {y ∈ Rn | |y − x| < r}. ∂Br(x) = {y ∈ Rn | |y − x| = r}. Moreover, for ωn = |∂B1(0)|

|Br(0)| =
ωn

n
rn |∂Br(0)| = ωnr

n−1

One also introduce averages

 
A

f ≡ 1

|A|

ˆ
A

f

 
Br(x)

f(y) dy =
1

ωnrn

n

ˆ
|y−x|<r

f(y) dy

 
∂Br(x)

f(y) dy =
1

ωnrn−1

ˆ
|y−x|=r

f(y) dS(y)

Theorem 2.2 (Mean Value Property). Assume u harmonic on Ω. Let x ∈ Ω, assume r > 0 s.t. Br(x) ⊂ Ω.
Then

u(x) =

 
∂Br(x)

u =
1

ωnrn−1

ˆ
|y−x|=r

u(y) dS(y) (13)

u(x) =

 
Br(x)

u dy =
1

ωnrn

n

ˆ
|y−x|<r

u(y) dy (14)

Proof by method of spherical averages. Introduce

ϕ(r) =
1

ωnrn−1

ˆ
|y−x|=r

u(y) dS(y)

This is well-defined if r sufficiently small. Indeed, by Lebesgue Differentiation one has lim
r→0

ϕ(r) = u(x). On

the other hand, if we’re able to prove ϕ′(r) = 0, then this immediately implies ϕ is constant independent of
r. Combining with lim

r→0
ϕ(r) = u(x), one may conclude u(x) = ϕ(r) for r sufficiently small. It suffices to see

ϕ′(r) = 0. By a change of variables y = x+ rz for |z| = 1 so dS(y) = rn−1dS(z), one may use Gauss Theorem

ϕ(r) =
1

ωnrn−1

ˆ
|z|=1

u(x+ rz)rn−1 dS(z)

ϕ′(r) =
1

ωn

ˆ
|z|=1

∇u(x+ rz) · z dS(z)

=
1

ωnrn−1

ˆ
|y−x|=r

∇yu(y) ·
y − x

r
dS(y)

=
1

ωnrn−1

ˆ
|y−x|<r

∆yu(y) dy = 0 =⇒ (13)
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Now to prove (14), ˆ
|y−x|<r

u(y) dy =

ˆ r

0

ˆ
|y−x|=s

u(y) dS(y) ds

=

ˆ r

0

ωns
n−1u(x) ds = ωnu(x)

rn

n
=⇒ (14)

Theorem 2.3 (Maximum/Minimum Principle for harmonic functions). Let Ω ⊂ Rn bounded open, u harmonic
in Ω, i.e., u ∈ C2(Ω) ∩ C0(Ω) and ∆u = 0 in x ∈ Ω. Then

• maximum over Ω is attained on the boundary ∂Ω, i.e., max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

• If Ω is connected. If u attains its maximum over Ω in Ω its interior, then u is constant throughout Ω.

• Since −u is harmonic, the same holds true with max replaced by min. Note min
x∈Ω

u = −max
x∈Ω

(−u)

Recall a connected set is not a disjoint union of 2 nonempty, closed and open sets.

Proof. We start with the second item. Let Ω open connected. Assume there exists x0 ∈ Ω s.t. u(x0) = M =
max
x∈Ω

u(x). Consider the partition Ω = {x ∈ Ω | u(x) = M} ∪ {x ∈ Ω | u(x) < M}. Call the first A1 and the

second A2. A1 is nonempty as assumed. Clearly A1 is closed by continuity of u. We wish to show that A1 is
open and since A1 is nonempty, by connectedness, A2 is empty. Suppose 0 < r < dist(x0, ∂Ω). We know

M = u(x0) =

 
Br(x0)

u

M =

 
Br(x0)

M =

 
Br(x0)

u

=⇒
 
Br(x0)

(M − u(x)) dx = 0

But M − u(x) ≥ 0 on Br(x0). Hence A1 is open.

Corollary 2.1 (Instantaneous Propagation of Boundary Information throughout Ω). Ω ⊂ Rn connected. And
u ∈ C2(Ω) ∩ C0(Ω) s.t. ∆u = 0 for x ∈ Ω and u|∂Ω = g ∈ C0(Ω). Assume g ≥ 0 all along ∂Ω, and g > 0
somewhere on ∂Ω. Then u > 0 everywhere on Ω.

Remark 2.5. Contrast with simple wave phenomena.

∂

∂t
u(x, t) +

∂

∂x
u(x, t) = 0 u(x, 0) = φ(x)

here u(x, t) = φ(x− t) solves the equation. This has finite propagation speed.

Corollary 2.2 (Uniqueness to Dirichlet Problem). Ω bounded connected open. Dirichlet Problem for Poisson’s
Equation −∆u = f in Ω and u = g on ∂Ω. Then there exists at most one solution u ∈ C2(Ω) ∩ C0(Ω) to the
Dirichlet Problem.

Proof. Suppose u1 and u2 are 2 solutions to Dirichlet Problem. Define w = u1 − u2. Then ∆w = 0 in Ω and
w = 0 on ∂Ω. Hence w takes both maximum and minimum on ∂Ω. Hence w ≡ 0.

Definition 2.5 (Standard Mollifier). For ε > 0, and Ω ⊂ Rn open,

• Let Ωε := {x ∈ Ω | dist(x, ∂Ω) > ε}.

• Define

η(x) :=

{
C exp( 1

|x|2−1 ) |x| < 1

0 |x| ≥ 1

C > 0 is chosen so that
´
Rn η(x) dx =

´
|x|≤1

η(x) = 1. Notice η ∈ C∞(Rn) and supp(η) = B1(0).

• For any ε > 0, ηε(x) :=
1
εn η(

x
ε ) so supp(ηε) ⊂ Bε(0). Notice
ˆ
Rn

ηεdx =

ˆ
|x|≤ε

1

εn
η

(
|x|
ε

)
dx =

ˆ
Rn

η = 1

If fix x ∈ Ωε, then y 7→ ηε(x− y) has support in Ω

• If f ∈ L1
loc, define f

ε := (ηε ∗ f)(x) the mollification.
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Lemma 2.2. One has tools from mollification

• For f ∈ L1
loc(Ω), f

ε ∈ C∞(Ωε) for ε > 0.

• fε → f a.e. as ε→ 0 in Ω.

• If f ∈ C0(Ω), then fε → f uniformly on compact subsets of Ω.

• 1 ≤ p <∞ and f ∈ Lp
loc(Ω), then f

ε → f in Lp
loc(Ω).

One then wish to do the following

• Converse to mean value property of harmonic functions

• size estimates on harmonic functions and Liouville Theorem

• Green’s functions and BVP.

Theorem 2.4 (Converse to Mean Value Property). Suppose u ∈ C0(Ω) and u satisfies the mean value property
on Ω. Then u ∈ C∞(Ω) and ∆u = 0.

Proof. Define uε := (ηε ∗ u)(x). Strategy: To show u ∈ C∞(Ω), it suffices to show uε(x) = u(x) for x ∈ Ωε and
that uε ∈ C∞(Ωε), where the latter follows directly from DCT. To see the former,

uε(x) =

ˆ
Ω

ηε(x− y)u(y) dy =

ˆ
Ω

1

εn
η

(
|x− y|
ε

)
u(y) dy

=
1

εn

ˆ
|x−y|≤ε

η

(
|x− y|
ε

)
u(y) dy =

1

εn

ˆ ε

0

ˆ
|x−y|=r

η

(
|x− y|
ε

)
u(y) dS(y) dr

=
1

εn

ˆ ε

0

ˆ
|x−y|=r

η
(r
ε

)
u(y) dS(y) dr =

1

εn

ˆ ε

0

η
(r
ε

) ˆ
|x−y|=r

u(y) dS(y) dr

=
1

εn

ˆ ε

0

η
(r
ε

)
ωnr

n−1 u(x) dr = u(x)

ˆ
|x|≤ε

ηε(x) dx = u(x)

One needs to show ∆u = 0. By Gauss Green theorem and change of variables y = x+ rz for |z| = 1

ˆ
|x−y|<r

∆u(y) dy =

ˆ
|x−y|<r

∇ · (∇u(y)) dy =

ˆ
|x−y|=r

∂u

∂n
(y) dS(y)

=

ˆ
|x−y|=r

∇yu(y) ·
y − x

r
dS(y) =

ˆ
|z|=1

∂

∂r
u(x+ rz) dS(z)

=
∂

∂r

ˆ
|z|=1

u(x+ rz) dS(z) =
∂

∂r
(ωnu(x)) = 0

Divide the LHS by the volumne of the ball ωn

n r
n. But take r → 0 on LHS to conclude ∆u(x) = 0.

Remark 2.6.

u(x) =

ˆ
|y−x|=r

u(y)
dS(y)

ωnrn−1
=

ˆ
|y−x|=r

u(y) dµ(y)

where dµ(y) := dS(y)
ωnrn−1 is probability measure. In general this defines the harmonic measure

u(x) =

ˆ
∂Ω

u(y) dµx, ∂Ω(y)

Theorem 2.5 (Estimates on the Size of Harmonic Functions). Let u be harmonic in domain Ω ⊂ Rn open.
Let x0 ∈ Ω and Br(x0) ⊂⊂ Ω. Then

|u(x0)| ≤
n

ωn

1

rn
∥u∥L1(Br(x0))

(15)

| ∂
∂xi

u(x0)| ≤
2n+1n

rn+1

(
n

ωn

)
∥u∥L1(Br(x0))

∀ i ∈ {1, · · · , n} (16)

Proof. u(x0) =
1

ωn
n rn

´
Br(x0)

u(y) dy.

|u(x0)| ≤
1

ωn

n r
n

ˆ
Br(x0)

|u(y)| dy =⇒ (15)
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Note that u harmonic implies that u satisfies the MVP and further implies that u ∈ C∞. Hence we may take
derivatives

0 =
∂

∂xi
(∆u) = ∆(

∂

∂xi
u)

Hence ∂
∂xi

u(x) ≡ uxi(x) is harmonic.

uxi
(x0) =

1
ωn

n ( r2 )
n

ˆ
B r

2
(x0)

uyi
(y) dy

Note that
uyi

(y) = ∇y · (0, · · · , 0, u(y), 0, · · · , 0)

so ˆ
B r

2
(x0)

uyi
(y) dy =

ˆ
∂B r

2
(x0)

u(y)νi dS(y) where ν = (ν1, · · · , νn) is unit outer normal

now

uxi
(x0) =

1
ωn

n ( r2 )
n

ˆ
∂B r

2
(x0)

u(y)νi dS(y) ≤
n2n

ωnrn
ωn(

r

2
)n−1 max

|y−x0|≤ r
2

|u(y)|

=
2n

r
max

|y−x0|≤ r
2

|u(y)|

now for any y s.t. |y − x0| = r
2 , B r

2
(y) ⊂ Br(x0), so

|u(y)| ≤ n

ωn

1

( r2 )
n
∥u∥L1(B r

2
(y)) ≤

n

ωn

1

( r2 )
n
∥u∥L1(Br(x0))

Hence

|uxi(x0)| ≤
2n+1n

rn+1

(
n

ωn

)
∥u∥L1(Br(x0))

=⇒ (16)

Theorem 2.6 (Liouville Theorem). Suppose u : Rn → R, u ∈ C2 with ∆u = 0. Suppose there exists M > 0
s.t. |u(x)| ≤M for all x ∈ Rn. Then u(x) ≡ C constant.

Proof. For i = 1, · · · , n,

| ∂
∂xi

u(x)| ≤ Cn

rn+1

ˆ
|y−x|<r

|u(y)| dy ≤ Cn

rn+1
M
ωn

n
rn = C ′ 1

r
→ 0 as r → ∞

2.3 Dirichlet Boundary Value Problems

Let u, v ∈ C2(Ω).

u∆v − v∆u = ∇ · (u∇v − v∇u) =⇒
ˆ
Ω

u∆v − v∆u dx =

ˆ
∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
dS (9)

Now fix u ∈ C2(Ω), fix x ∈ Ω and let Ωε := Ω \Bε(x)

v(y) = Φ(x− y) =

{
cn|x− y|2−n n ≥ 3
1
2π log |x− y| n = 2

∈ C2(Ωε)

Hence applying (9)
ˆ
Ωε

u(y)∆yΦ(x− y) dy =

ˆ
Ωε

Φ(x− y)∆u(y) dy +

ˆ
∂Ωε

u(y)
∂

∂ny
Φ(x− y)− Φ(x− y)

∂

∂ny
u(y) dS(y) (17)

For ∂Ωε = ∂Ω ∪ {|x− y| = ε}

0 =

ˆ
Ωε

Φ(x− y)∆u(y) dy +

ˆ
∂Ω

u(y)
∂

∂ny
Φ(x− y)− Φ(x− y)

∂

∂ny
u(y) dS(y)

+

ˆ
{|x−y|=ε}

u(y)
∂

∂ny
Φ(x− y)− Φ(x− y)

∂

∂ny
u(y) dS(y)

9



Thus sending ε→ 0 one get the Layer Potential Representation of function u ∈ C2(Ω)

u(x) =

ˆ
Ω

Φ(x− y)(−∆u(y)) dy +

ˆ
∂Ω

(
−u(y) ∂

∂ny
Φ(x− y) + Φ(x− y)

∂

∂ny
u(y)

)
dS(y) (18)

where the first term is volume potential, the middle term is the double layer potential, and the last term is
single layer potential. This might suggest that we can solve the boundary value problem

−∆u = f in Ω
u|∂Ω = g on ∂Ω
∂
∂nu

∣∣
∂Ω

= h on ∂Ω

by taking u(x) = V P [f ](x) +DLP [g](x) + SLP [h](x). Recall Uniqueness Theorem to Dirichlet Problem{
−∆u = f in Ω
u|∂Ω = g on ∂Ω

(19)

has at most 1 solution. Hence in fact, the uniqueness theorem says the solution is uniquely determined by f
and g alone. In other words, h is something we can compute afterwards. Here is Green’s observation. The layer
potential representation formula (18) holds if one replace Φ(x− y) by Φ(x− y)− ϕ(y) where{

−∆yϕ(y) = 0 in Ω
ϕ ∈ C0(Ω) ∩ C2(Ω)

(20)

one hence obtain the formula

u(x) =

ˆ
Ω

[Φ(x−y)−ϕ(y)](−∆yu(y)) dy−
ˆ
∂Ω

u(y)
∂

∂ny
(Φ(x−y)−ϕ(y)) dS(y)+

ˆ
∂Ω

(Φ(x−y)−ϕ(y)) ∂u
∂ny

(y) dS(y)

(21)
for any ϕ satisfies (20).

Definition 2.6 (Corrector Function). Fix any x ∈ Ω, define the corrector function ϕ(y;x) ∈ C2
y(Ω)

ϕ(y;x) s.t.

{
∆yϕ(y;x) = 0 y ∈ Ω

ϕ(y, x) = Φ(x− y) y ∈ ∂Ω
(22)

where this is a family of Dirichlet Problems with specific family of Dirichlet Boundary conditions. This is
extremely domain dependent.

If we can solve this specific family of BVPs for −∆ on Ω, then we define

Definition 2.7 (Green’s Function).

GDir,Ω(x, y) = Φ(x− y)− ϕ(y;x,Ω) Green′s Function (23)

Define

u(x) =

ˆ
Ω

GDir,Ω(x, y)(−∆u(y)) dy −
ˆ
∂Ω

u(y)
∂GDir,Ω(x, y)

∂ny
dS(y) (24)

=

ˆ
Ω

GDir,Ω(x, y)f(y) dy −
ˆ
∂Ω

g(y)
∂GDir,Ω(x, y)

∂ny
dS(y) as solution to (19) (25)

Claim: For nice domains, GDir,Ω(x, y) can be constructed and (24) solves the Dirichlet Problem (19).

Theorem 2.7 (Representation Formula for Dirichlet BVP). Suppose u ∈ C2(Ω) ∩ C0(Ω) s.t. u solves (19).
Suppose for any x ∈ Ω, there exists ϕ(y;x) s.t. (22) holds, then u(x) has the representation (25).

Example 2.1. Apply (24) to u ≡ 1 so

1 = −
ˆ
∂Ω

∂GDir,Ω(x, y)

∂ny
dS(y)

Notice that
∂GDir,Ω(x,y)

∂ny
dS(y) is weighted surface measure. For harmonic function on balls, this collapses to

Mean Value Property.

Lemma 2.3. For x, y ∈ Ω s.t. x ̸= y, GDir,Ω(x, y) = GDir,Ω(y, x) is symmetric. This is essentially due to ∆
is self-adjoint operator.
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Proof. Introduce v(z) := G(x, z) and w(z) := G(y, z) with x, y fixed. v singular at x while w singular at y.
Remove small discs around the singularities of size ε small enough. Let Ωε := Ω \ (Bε(x) ∪Bε(y)). In Ωε

0 = v(z)∆zw(z)− w(z)∆zv(z) = ∇ · (v(z)∇zw(z)− w(z)∇zv(z))

0 =

ˆ
Ωε

∇ · (v(z)∇zw(z)− w(z)∇zv(z)) dz

=

ˆ
∂Ωε

v(z)
∂w

∂nz
− w(z)

∂v

∂nz
dS(z)

Look at v(z) and w(z) on ∂Ω. v(z) = G(x, z) → 0 for x ∈ Ω as z → ∂Ω and w(z) = G(y, z) → 0 for y ∈ Ω as
z → ∂Ω, so

0 =

ˆ
|z−x|=ε

v(z)
∂w

∂nz
(z)− w(z)

∂v

∂nz
(z) dS(z) +

ˆ
|z−y|=ε

v(z)
∂w

∂nz
(z)− w(z)

∂v

∂nz
(z) dS(z)

now as z → x, v(z) looks like Φ(x− z) ∼ 1
|x−z|n−2 , which is a weak singularity, while w(z) = G(y, z) → G(y, x)

is bounded as z → x. Also, as z → x, ∂w
∂nz

(z) ∼ 1
|y−x|n−1 bounded, and apply similar argument to the second

term
0 = o(1)−G(y, x) +G(x, y)− o(1) =⇒ G(y, x) = G(x, y)

Example 2.2. Green’s Function for Ba(0) = {y | |y| < a}. Need to seek ϕ(y;x,Ba) s.t. for all x ∈ Ba(0),
∆yϕ(y;x) = 0, and that for any y0 ∈ ∂Ba

lim
y→y0 |y|<a

ϕ(y;x) =
1

ωn(n− 2)

1

|y0 − x|n−2
= Φ(x− y0)

Key Geometric Property of Ba(0): Given any |x| < a, there exists x∗ s.t. |x∗| > a and for any y0 ∈ ∂Ba(0)

|x∗ − y0|
|x− y0|

= C(a, |x|)

and
x∗ = (

a

|x|
)2x C(a, |x|) = a

|x|
x∗ is reflection point to x w.r.t. ∂Ba. To apply this,

1

|x− y0|
=
C(a, |x|)
|x∗ − y0|

=⇒ 1

|x− y0|n−2
− (C(a, |x|))n−2

|x∗ − y0|n−2
= 0 =⇒ Φ(x− y0)− C(a, |x|)n−2Φ(x∗ − y0) = 0

hence
Φ(x− y)− C(a, |x|)n−2Φ(x∗ − y)

∣∣
y=y0, |y0|=a

= 0

where the left term is Newtonian Potential with singularity at x ∈ Ba(0) and the right term is Newtonian
Potential with singularity outside Ba(x), and ∆ϕ(y;x,Ba) = 0 for y ∈ Ba(0). Conclusion:

GDir,Ba
(x, y) = Φ(x− y)− C(a, |x|)n−2Φ(x∗ − y) for all x, y ∈ Ba(x) s.t. x ̸= y

Indeed
−∆GDir,Ba(x, y) = δ(x− y), |x| < a =⇒ lim

y→y0 |y|<a
GDir,Ba(x, y) = 0

Proposed Representation of the Solution of{
−∆u = f in |x| < a
u||x|=a = g on |x| = a

for a given f defined on Ba(0) and g defined on ∂Ba(0) is

u(x) =

ˆ
|y|<a

GDir,Ba
(x, y)f(y) dy −

ˆ
|y|=a

g(y)
∂GDir,Ba(x, y)

∂ny
dS(y) (26)

=

ˆ
|y|<a

GDir,Ba
(x, y)f(y) dy +

ˆ
|y|=a

g(y)H(x, y) dS(y) (27)

where for n ≥ 3

GDir,Ba
(x, y) = Φ(x− y)− (

a

|x|
)n−2Φ(x∗ − y) for x∗ = (

a

|x|
)2x 0 < |x| < a, |y| < a and x ̸= y

One may actually calculate Poisson Kernel for Ba(0)

H(x, y) = − ∂GDir,Ba(x, y)

∂ny

∣∣∣∣
|x|<a,|y|=a

=
1

aωn

a2 − |x|2

|x− y|n
(28)
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Theorem 2.8. u ∈ C2(|y| < a) ∩ C0(|y| ≤ a) solution to (19) with Ω = Ba(0), then u is given by (27).

Theorem 2.9. Let g denote any continuous function on ∂Ba(0) = {|x| = a}. Let H(x, y) be the Poisson
Kernel (28), define

V (x) =

{
g(x) |x| = a´

|y|=a
H(x, y)g(y) dS(y) |x| < a

Then V satisfies the Dirichlet Problem (19) with f = 0 and

• V ∈ C2(|x| < a) with ∆V = 0 for |x| < a

• V ∈ C0(|x| ≤ a), i.e., for any x0 with |x0| = a, one has

lim
x→x0 |x|<a

V (x) = g(x0) (29)

Remark 2.7. Set x = 0, so H(0, y) = 1
an−1ωn

, so V (0) =
´
|y|=a

g(y)H(0, y) dS(y) = 1
ωnan−1

´
|y|=a

g(y) dS(y).

This may also be interpreted as probability of Brownian Motion starting at x escaping through Γ ⊂ ∂Ba using´
Γ
H(x, y) dS(y).

Proposition 2.1. Properties on H(x, y)

(a) H(x, y) ∈ C∞ for |y| ≤ a, |x| < a with y ̸= x

(b) ∆xH(x, y) = 0 for any |x| < a and |y| = a

(c)
´
|y|=a

H(x, y) dS(y) = 1 for |x| < a

Proof. Look at u ≡ 1 and apply (27).

(d) H(x, y) > 0 for |x| < a and |y| = a

(e) Pick ζ with |ζ| = a with δ > 0

lim
x→ζ

H(x, y) = 0 uniformly on {|y| = a | |y − ζ| ≥ δ > 0}

Proof. H(x, y) ∼ a2−|x|2
|x−y|n ∼ a2−|x|2

|ζ−y|n ≤ a2−|x|2
δn → 0 uniformly in y for |y| = a and |y − ζ| ≥ δ > 0.

Proof of Theorem 2.9. For any x0 with |x0| = a. For |x| < a

V (x)− g(x0) =

ˆ
|y|=a

g(y)H(x, y) dS(y)− g(x0)

ˆ
|y|=a

H(x, y) dS(y)

=

ˆ
|y|=a

(g(y)− g(x0))H(x, y) dS(y)

Let ε > 0, it suffices to show that as |x− x0| → 0, |V (x)− g(x0)| ≤ ε. For any δ > 0

V (x)− g(x0) =

ˆ
|y|=a

|y−x0|<δ

H(x, y)(g(y)− g(x0)) dS(y) +

ˆ
|y|=a

|y−x0|≥δ

H(x, y)(g(y)− g(x0)) dS(y) := I1(δ) + I2(δ)

By continuity, there exists δ(ε) > 0 s.t.

|y − x0| < δ(ε) =⇒ |g(y)− g(x0)| < ε

Hence

|I1(δ)| ≤
ˆ

|y|=a
|y−x0|<δ

H(x, y)|g(y)− g(x0)| dS(y) ≤ ε

ˆ
|y|=a

|y−x0|<δ

H(x, y) dS(y) ≤ ε

Now send x to x0

|I2(δ)| ≤ |
ˆ

|y|=a
|y−x0|≥δ

H(x, y)(g(y)− g(x0)) dS(y)| ≤ 2 ∥g∥∞
ˆ

|y|=a
|y−x0|≥δ

H(x, y) dS(y)

≤ 2 ∥g∥∞ max
|y−x0|≥δ,|y|=a

H(x, y)

ˆ
|z|=a

1 dS(z) = 2 ∥g∥∞ ωna
n−1 max

|y−x0|≥δ,|y|=a
H(x, y)

→ 0 as x→ x0

This proves (29).
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2.4 Potential Theory Approach to solving general Dirichlet Problem (integral
equations)

Suppose that u solves

{
∆u = 0
u|∂Ω = g

The layer potential representation formula says

u(x) =

ˆ
∂Ω

(
g(y)

∂

∂ny
Φ(x− y)− Φ(x− y)

∂

∂ny
u(y)

)
dS(y)

One seek solution

u(x) =

ˆ
∂Ω

∂

∂ny
Φ(x− y)µ(y) dS(y)

for µ to be determined. Note x ∈ Ω one has ∆xu(x) = 0. Choose µ = µg. One wish to Tune µ so that

lim
x→x0∈∂Ω

u(x) = g(x0)

One has the key observation that

lim
x∈Ω→x0∈∂Ω

u(x) = −1

2
µ(x0) +

ˆ
∂Ω

K(x0, y)µ(y) dS(y)

where K(x, y) = − ∂Φ(x−y)
∂ny

∣∣∣
x ̸=y∈∂Ω

Therefore, µ must satisfy (this is very practical)

g(x) = −1

2
µ(x) +

ˆ
∂Ω

K(x, y)µ(y) dS(y)

which is a linear integral equation on the boundary. It is in fact Fredholm alternative operator. Tk is a compact
operator on L2(∂Ω).

(−1

2
I + TK)µ = g

Recall linear algebra Ax = b solvable iff b ⊥ ker(A∗). Claim:

(−1

2
I + TK)∗ = −1

2
I + TK∗

for K∗(x, y) = K(y, x) and the nullspace Ker((− 1
2I+TK)∗) = {0}. Note − 1

2I+TK∗ is associated to uniqueness

of the Neumann boundary value problem


∆u = 0

∂
∂nu

∣∣
∂Ω

= 0
u→ 0 as |x| → ∞

This converts the existence of Dirichlet Boundary

Value Problem to the Uniqueness of the Neumann Problem. For a sketch, look at n = 3 so Φ(x− y) ∼ 1
|x−y| .

u(x) =

ˆ
∂Ω

∇y(
1

|x− y|
) · nyµ(y) dS(y) ∼

ˆ
∂Ω

1

|x− y|2
(
x− y

|x− y|
· ny)µ(y) dS(y)

We try computing

|u(x)| ≤
ˆ
∂Ω

1

|x− y|2
dS(y) ∥µ∥L∞ ∼

ˆ
1

|y|2
|y| d|y|

But this fails. On the other hand, observe

x− y

|x− y|
· ny → 0 as x→ x0 and y → x0
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3 Heat/Diffusion Equation

Motivation: Think about a random walk on δZ, i.e., (−∞, · · · ,−2δ,−δ, 0, δ, 2δ, · · · ,∞) for 0 < δ < 1. For each
time increment τ , 2τ, · · · , the walker which starts at x = 0 jumps right or left with probability 1

2 . Question:
What is the probability that the particle/walker which starts at x = 0, t = 0 is at position x ∈ δZ at time
t = nτ .

δ = microscopic spatial scale and τ = microscopic time scale

Write v(x, t) = P(Xn = x | t = nτ) and look at

v(x, t+ τ) = P(Xn+1 = x | t = (n+ 1)τ)

= P(Xn = x− δ | t = nτ and the walker jumps right) + P(Xn = x+ δ | t = nτ and the walker jumps left)

= P(Xn = x− δ)P(walker jumps right) + P(Xn = x+ δ)P(walker jumps left)

=
1

2
v(x− δ, t) +

1

2
v(x+ δ, t) for x ∈ δZ and t = τN

One may taylor expand so

v(x, t) + vt(x, t)τ +O(τ2) =
1

2

[
v(x, t) + vx(x, t)δ + vxx(x, t)

δ2

2!
+O(δ3) + v(x, t)− vx(x, t)δ + vxx(x, t)

(−δ)2

2!
+O((−δ)3)

]
= v(x, t) +

1

2
δ2vxx(x, t) +O(δ3)

=⇒ vt(x, t) +O(τ) =
1

2
(
1

τ
δ2)vxx(x, t) +O(

1

τ
δ2δ)

let D = 1
τ δ

2 constant. Send δ, τ → 0. This leads to vt =
1
2Dvxx with initial condition v0(x) = v(x, 0) = δ(x)

and v0(x) ≥ 0 and
´
v0(x) dx = 1.

Second Motivation: f(x, t) = concentration or density of a quantity at position x at time t. e.g. the density
ρ = mass

volume . For V ⊂ R3 ˆ
V

ρ(x, t) dx =Mass inside V at time t

with our physcial model
d

dt

ˆ
V

ρ(x, t) dx = −
ˆ
∂V

F · ndS

One compute using Gauss-Green

d

dt

ˆ
V

ρ(x, t) dx =

ˆ
V

d

dt
ρ(x, t) dx = −

ˆ
V

∇ · F dx

hence
∂tρ(x, t) = −∇x · F (x, t) ∀ (x, t)

Assume F = −a(x)∇ρ. So
∂tρ = ∇ · (a(x)∇ρ)

for a(x) ≡ a0 > 0 constant we simly have ∂tρ = a0∆ρ

3.1 Initial Value Problem

Look for solution to initial value problem{
ut = ∆u x ∈ Rn t > 0

u(x, 0) = f(x) t = 0
(30)

3.1.1 Fourier Transform

Definition 3.1 (Schwartz Class S(R1)). ϕ ∈ S(R1) if ϕ ∈ C∞ and for any α, β ≥ 0 integers, we have

|xα∂βxϕ(x)| ≤ Cα,β, ϕ <∞ for all x

Definition 3.2 (Schwartz Class S(Rn)). ϕ ∈ S(Rn) if ϕ ∈ C∞ and for any α, β ∈ Nn, let xα = x1
α1 · · ·xnαn

and ∂βx = ∂β1
x1

· · · ∂βn
xn

.

sup
x∈Rn

|xα∂βxϕ(x)| ≤ Cα, β, ϕ <∞ ⇐⇒ |xα∂βxϕ(x)| ≤ Cα, β, ϕ <∞ for all x

Some further notation, |α| =
∑n

i=1 αi.

14



For example, e−|x|2 ∈ S(Rn). But e−|x| is not.

Theorem 3.1. S(Rn) is dense in Lp(Rn) for any 1 ≤ p <∞. Let f ∈ Lp(Rn), there exists fj ⊂ S(Rn) s.t.

∥fj − f∥Lp → 0 as j → ∞

Definition 3.3 (Fourier Transform). For any f ∈ L1(Rn), define

f̂(ξ) = (Ff)(ξ) := 1

(2π)
n
2

ˆ
Rn

e−iy·ξf(y) dy

Lemma 3.1 (Riemann-Lebesgue). For f ∈ L1(Rn), the simplest bound is

|f̂(ξ)| ≤ 1

(2π)
n
2
∥f∥L1

And in fact
lim

|ξ|→∞
f̂(ξ) = 0

But we have no information about the decay rate.

Proposition 3.1. f ∈ S(Rn). Then

(i) f̂ ∈ C∞(Rn).

Proof. f̂ ∼
´
eix·ξf(x) dx then

∂βξ f̂(ξ) ∼
ˆ
(−iξ)βeix·ξf(x) dx

so

|∂βξ f̂(ξ)| ≤
ˆ

|ξ|β |f | dx <∞

(ii) ∂βξ f̂(ξ) =
1

(2π)
n
2

´
e−ix·ξ(−ix)βf(x) dx = ĝ(ξ) where g(x) = (−ix)βf(x)

(iii) ∂̂βxf(ξ) = (iξ)β f̂(ξ).

Proof. ˆ
e−ix·(∂xi

f) dx =

ˆ
∂xi

(e−ix·ξf(x))− ∂xi
(e−ix·ξ)f(x) dx =

ˆ
ξie

−ix·ξf(x) dx

Hence

∂̂βxf(ξ) =
1

(2π)
n
2

ˆ
e−ix·ξ(∂βx )f(x) dx =

1

(2π)
n
2

ˆ
(−1)β∂βx (e

−ix·ξ)f(x) dx

=
1

(2π)
n
2

ˆ
(−1)β(−iξ)βe−ix·ξf(x) dx

= (iξ)β
1

(2π)
n
2

ˆ
e−ix·ξf(x) dx = (iξ)β f̂(ξ)

(iv) Hence for f ∈ S(Rn), f̂ ∈ S(Rn).

Proof. For any q, r ∈ Nn

ξq∂rξ f̂(ξ) = ξq∂rξ

ˆ
e−ix·ξf(x) dx

= ξq
ˆ
e−ix·ξ(−ix)rf(x) dx

=
1

| − i|q

ˆ
(−iξ)qe−ix·ξ(−ix)rf(x) dx

=
1

| − i|q

ˆ
∂qx(e

−ix·ξ)(−ix)rf(x) dx

=
1

|i|q

ˆ
e−ix·ξ∂qx((−ix)rf(x)) dx

=⇒ |ξq∂rξ f̂(ξ)| ≤ C

ˆ
|∂qx((−ix)rf(x))|dx <∞

using f ∈ S(Rn).

15



Definition 3.4 (Fourier Inversion). f̌(x) = 1

(2π)
n
2

´
eix·ξf(ξ) dξ = f̂(−x)

Lemma 3.2 (Fourier Inversion Formula). (i) If f ∈ S(Rn),
ˇ̂
f(x) = f

(ii)
∥∥∥f̂∥∥∥

L2(Rn)
= ∥f∥L2(Rn).

Proposition 3.2 (Plancherel). F : S(Rn) → S(Rn) can be extended from S(Rn) to all L2(Rn) as a bounded
linear operator.

∥Ff∥L2(Rn) = ∥f∥L2(Rn)

In fact, F extends, by density, to be an operator on L2(Rn). This is unitary operator.

Proof. Use S(Rn) dense in L2(Rn) and BLT Theorem as the following

Theorem 3.2 (BLT Theorem). Let (X, ∥·∥X) be a normed linear space and (Y, ∥·∥Y ) be a complete normed
space (Banach Space). Suppose M ⊂ X is a dense subspace of X, i.e., M = X, and suppose

T :M → Y is a bounded linear transformation

i.e.,
∃ cT > 0 s.t. ∥Tx∥Y ≤ cT ∥x∥X for all x ∈M

Then there exists unique bounded linear transformation T s.t.

T : X → Y

with properties

(a) For any x ∈M , T (x) = T (x)

(b)
∥∥T∥∥

B(X,Y )
= ∥T∥B(M,Y )

Proof. For any x ∈ X, (xn) ⊂M s.t. ∥xn − x∥X → 0. Define T (x) = lim
n→∞

Txn.

3.1.2 Representation Formula

For ut = ∆u for x ∈ Rn and t > 0, u(x, t = 0) = f(x). Let’s derive assuming f ∈ S(Rn). Apply F to them,
resulting in

ût(ξ, t) = ∆̂u(ξ, t) = −|ξ|2û(ξ, t)

û(ξ, t = 0) = f̂(ξ)

This is family of Initial Value Problems for ODE’s parametrized by ξ ∈ Rn.

û(ξ, t) = e−|ξ|2tf̂(ξ)

=⇒ u(x, t) =
1

(2π)
n
2

ˆ
Rn

eix·ξe−|ξ|2t f̂(ξ) dξ

But we want a clearer representation where we can read of positivity. Using Fubini

u(x, t) =
1

(2π)
n
2

ˆ
Rn

ξ

eix·ξe−|ξ|2t 1

(2π)
n
2

ˆ
Rn

y

e−iy·ξf(y) dy dξ

=
1

(2π)n

ˆ
Rn

y

(ˆ
Rn

ξ

ei(x−y)·ξe−|ξ|2t dξ

)
f(y) dy

Hence one obtain

u(x, t) =

ˆ
Rn

y

Kt(x− y)f(y) dy = (Kt ∗ f) (x, t)

where

Kt(x− y) :=
1

(2π)n

ˆ
Rn

ξ

ei(x−y)·ξe−|ξ|2t dξ

16



Compute by change of variables to ζ = ξt
1
2 so dζ = t

n
2 dξ.

Kt(x) =
1

(2π)n

ˆ
Rn

ξ

eix·ξe−|ξ|2t dξ

=
1

(2π)n

ˆ
e
i 1√

t
x·(t

1
2 ξ)
e−|t

1
2 ξ|2 1

t
n
2
d(t

1
2 ξ)

=
1

(2π)n
1

t
n
2

ˆ
Rn

e
i( x√

t
)·ξ
e−|ξ|2 dξ

Let µ = x√
t
so

eiµ·ξ−ξ·ξ = e−(ξ·ξ−iµ·ξ) = e−|ξ− iµ
2 |2− 1

4 |µ|
2

Here |ξ|2 = ξ · ξ. So

Kt(x) =
1

(2π)n
1

t
n
2

ˆ
Rn

e−|ξ− iµ
2 |2− 1

4 |µ|
2

dξ

=
1

(2π)n
1

t
n
2
e−

1
4

|x|2
t

ˆ
Rn

e−|ξ− iµ
2 |2 dξ

=
1

t
n
2
e−

1
4

|x|2
t

n∏
j=1

(ˆ
R
e−(ξj− i

2µj)
2 dξj
2π

)

where µj =
xj√
t
. By Cauchy’s Theorem

Kt(x) =
1

t
n
2
e−

1
4

|x|2
t

1

(2π)n
(

ˆ ∞

−∞
e−z2

dz)n

Kt(x) =
1

t
n
2
e−

1
4

|x|2
t

1

(2π)n
π

n
2

=
1

(4πt)
n
2
e−

|x|2
4t for t > 0

This is heat(diffusion) Kernel on Rn so

u(x, t) = (Kt ∗ f)(x) =
1

(4πt)
n
2

ˆ
Rn

e−
|x−y|2

4t f(y) dy for t > 0 (31)

As with our study of the Poisson formula for the Dirichlet problem for

∆u = 0 x ∈ Ba(0)
u|∂Ba(0)

= f(x) x ∈ ∂Ba(0)

Proposition 3.3. We have basic properties of Kt(x) =
1

(4πt)
n
2
e−

|x|2
4t

(i) Kt(x) ∈ C∞ for all x ∈ Rn, t > 0

(ii) ( ∂
∂t −∆)Kt(x) = 0 for t > 0, x ∈ Rn

(iii) Kt(x) > 0 for all t > 0 and x ∈ Rn

(iv) For t > 0 ˆ
Rn

Kt(y) dy = 1 (32)

Proof. For t > 0

ˆ
Rn

1

(4πt)
n
2
e−

|y|2
4t dy =

n∏
j=1

ˆ
R

1√
4πt

e−
y2
j

4t dyj =

(ˆ
R

1√
4πt

e−
ρ2

4t dρ

)n

=⇒
ˆ
R

1√
4πt

e−
ρ2

4t dρ =

ˆ
R
e−σ2 1√

π
dσ = 1
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(v) Fix δ > 0, look at amount of mass outside the small neighborhood

lim
t→0

ˆ
|y−x|>δ

Kt(x− y) dy = 0 uniformly in x ∈ Rn (33)

Proof. make change of variables ξ = y−x√
4t

for t > 0 so dξ = 1

(4t)
n
2
dy

ˆ
|y−x|>δ

1

(4πt)
n
2
e−

|x−y|2
4t dy =

1

(π)
n
2

ˆ
|ξ|> δ√

4t

e−|ξ|2 dξ → 0 as t→ 0

Theorem 3.3 (Representation Formula for Heat Equation). Let f be bounded in Rn. Define u as in (31), then

(i) For fixed t > 0, u(x, t) = (Kt ∗ f)(x) ∈ C∞(Rn) smooth in space. In fact it is also smooth in t, so

u(x, t) ∈ C∞(Rn × {t > 0})

(ii) ut = ∆u for t > 0 and x ∈ Rn.

(iii) Suppose moreover f is continuous on Rn

u(x, t) =

{´
Rn Kt(x− y, t)f(y) dy for t > 0

f(x) for t = 0, x ∈ Rn

Then this is continuous on Rn × [0,∞). Thus,

lim
(x,t)→(ξ,0)

u(x, t) = f(ξ)

for any ξ ∈ Rn.

Proof. Since f bounded in Rn, there exists M > 0 s.t. |f(x)| ≤ M for all x ∈ Rn. Want to show (iii). Fix
ξ ∈ Rn, and let (x, t) → (ξ, 0) for t > 0, using (32)

u(x, t)− f(ξ) =

ˆ
Rn

Kt(x− y) (f(y)− f(ξ)) dy

By continuity of f , given any ε > 0, there is a δ = δ(ε) > 0 s.t. if |y − ξ| < 2δ(ε), then |f(y)− f(ξ)| < ε.

u(x, t)− f(ξ) =

ˆ
|y−x|<δ

Kt(x− y) (f(y)− f(ξ)) dy +

ˆ
|y−x|≥δ

Kt(x− y) (f(y)− f(ξ)) dy

=: Iδ(t, x) + Jδ(t, x)

Assume |x− ξ| < δ(ε). Then

|y − ξ| = |y − x+ x− ξ| ≤ |y − x|+ |x− ξ| ≤ 2δ(ε)

Look at the first part Iδ(t, x).

|Iδ(t, x)| ≤
ˆ
|y−x|<δ

Kt(x− y)|f(y)− f(ξ)| dy < ε

For second part Jδ(t, x), use (33)

|Jδ(t, x)| ≤
ˆ
|y−x|≥δ

Kt(x− y)|f(y)− f(ξ)| dy ≤ 2M

ˆ
|y−x|≥δ

Kt(x− y) dy → 0 as t→ 0 uniformly in x

Hence
lim sup

(x,t)→(ξ,0)

|u(x, t)− f(ξ)| ≤ ε

Conclude by taking ε→ 0.

Some notation
u(x, t) = (Kt ∗ f)(x) =: e∆tf(x)

In fact the above generalizes to the model{
ut = D∆u x ∈ Rn t > 0

u(x, 0) = f(x) t = 0
for D > 0

for diffusion constant D with heat kernel

Kt(z) :=
1

(4πDt)
n
2
e−

|z|2
4Dt
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3.2 Properties of Solution to Heat Equation

Take (30) {
ut = ∆u x ∈ Rn t > 0

u(x, 0) = f(x) t = 0

3.2.1 Conservation Law and Dissipation

Theorem 3.4 (Conservation of L1 norm). Assume u(x, t) solution with nice decay properties as |x| → ∞. One
may take derivative outside

d

dt

ˆ
Rn

u(x, t) dx = lim
R→∞

ˆ
|x|<R

∇x · (∇xu(x, t)) dx = lim
R→∞

ˆ
|x|=R

∂u

∂n
dS = 0

This is conservation law. And for f ∈ L1(Rn)
ˆ
Rn

u(x, t) dx =

ˆ
Rn

ˆ
Rn

Kt(x− y)f(y) dy dx =

ˆ
Rn

ˆ
Rn

Kt(x− y) dxf(y) dy =

ˆ
Rn

f(y) dy

But on the other hand, heat equation has dissipative character.

Theorem 3.5 (Dissipation of L2 norm).

ut = ∆u

uut = u∆u

∂t(
u2

2
) = u∆u = ∇ · (u∇u)− |∇u|2

Now integrate assuming that u(x, t) and ∇u(x, t) → 0 as |x| → ∞ sufficiently fast for any fixed t > 0

d

dt

ˆ
Rn

u2

2
dx =

ˆ
Rn

∇x · (u∇u)− |∇u|2 dx

d

dt

ˆ
Rn

u2 dx = −2

ˆ
Rn

|∇u|2 dx ≤ 0

Hence energy ∥u∥L2(Rn) (t) dissipates as t→ ∞. Alternatively one may view from the ODE on the Fourier Side

∂tû(ξ, t) = −|ξ|2û(ξ, t)

û(ξ, t) = e−|ξ|2tû(ξ, 0)ˆ
Rn

û2(ξ, t) dξ =

ˆ
Rn

e−2|ξ|2tû2(ξ, 0) dξ

=⇒ d

dt

ˆ
Rn

û2(ξ, t) dξ = −2

ˆ
Rn

|∇u(x, t)|2 dx ≤ 0

Hence using Plancherel we have ˆ
R
|u(x, t)|2 dx ≤

ˆ
R
|f(x)|2 dx

3.2.2 Instantaneous Propagation and Comparison Principle

Proposition 3.4 (Instantaneous Propagation of Information). Consider IVP to heat equation (30). Take f ≥ 0
for all x ∈ Rn. Suppose also f ∈ C0

bdd(Rn). If f(x0) > 0 for some x0 ∈ Rn. Then u(x, t) > 0 for all x ∈ Rn

and t > 0.

Proof. Assume f(x) ≥ c > 0 on some Bε(x0) for 0 < ε≪ 1. Then for any x ∈ Rn and t > 0

u(x, t) =

ˆ
Rn

Kt(x− y)f(y) dy ≥
ˆ
Bε(x0)

Kt(x− y)f(y) dy

≥ c

ˆ
Bε(x0)

1

(4πt)
n
2
e−

|x−y|2
4t dy

≥ c min
y∈Bε(x0)

(
1

(4πt)
n
2
e−

|x−y|2
4t

)
|Bε(x0)|

≥ c

(
1

(4πt)
n
2
e−

(dist(x,Bε(x0))+ε)2

4t

)
ωn

n
εn > 0
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Proposition 3.5 (Comparison Principle). Suppose f1, f2 ∈ L1(Rn) ∩ C0(Rn). Assume f1(x) ≤ f2(x) and
f1(x0) < f2(x0) for some x0. Let {uj(x, t)}2j=1 solve the heat equation

(∂t −∆)uj = 0 for t > 0 with uj(x, 0) = fj(x)

Then u1(x, t) < u2(x, t) for x ∈ Rn and t > 0.

Proof. Let δ(x, t) = u2(x, t)− u1(x, t), so

(∂t −∆)δ = 0 δ(x, 0) = f2(x)− f1(x) ≥ 0

and δ(x0, 0) > 0. Hence by instantaneous propagation, δ(x, t) > 0 for all x ∈ Rn and t > 0.

3.2.3 Stability and Uniqueness

Proposition 3.6 (Stability). Suppose f1, f2 ∈ L2(Rn) ∩ C0(Rn). Let {uj(x, t)}2j=1 solve the heat equation

(∂t −∆)uj = 0 for t > 0 with uj(x, 0) = fj(x)

Define δ(x, t) = u2(x, t)− u1(x, t), then

∂tδ(x, t) = ∆δ(x, t) with δ(x, 0) = f2(x)− f1(x)

Now

δ∂tδ = δ∆δ

∂t(
1

2
δ2) = ∇ · (δ∇δ)−∇δ · ∇δ

=⇒ 1

2
∂t

ˆ
Rn

δ2(x, t) dx = −
ˆ
Rn

|∇δ(x, t)|2 dx ≤ 0

This contrasts with ∂t
´
Rn δ(x, t) ds = 0. Then for any t > 0ˆ

Rn

δ2(x, t) dx ≤
ˆ
Rn

δ2(x, 0) dx

=⇒
ˆ
Rn

|u2(x, t)− u1(x, t)|2 dx ≤
ˆ
Rn

|f2(x)− f1(x)|2 dx

Proposition 3.7 (Uniqueness). Let {uj(x, t)}2j=1 solve the heat equation

(∂t −∆)uj = 0 for t > 0 with uj(x, 0) = f(x)

Then

0 ≤
ˆ
Rn

|u2(x, t)− u1(x, t)|2 dx ≤ 0

for any t > 0. So u1(x, t) = u2(x, t) for any t > 0 and a.e.x ∈ Rn.

3.2.4 Semigroup Property of Heat Flow

For u(x, t) = e∆tf =: Kt ∗ f .
Lemma 3.3. For t, s ≥ 0

e∆(t+s) = e∆te∆s = e∆se∆t

Proof. For f ∈ L1(Rn) ∩ C0(Rn) nice,

t 7→ e∆(t+s)f ut = ∆u u(x, 0) = e∆sf

with solutions u(t+ s).
t 7→ e∆t(e∆sf) ut = ∆u u(x, 0) = e∆sf

Hence by uniqueness, they give rise to the same solutions.

Note

e∆(t+s)f =

ˆ
Rn

Kt+s(x− y)f(y) dy

e∆te∆sf =

ˆ
Rn

Kt(x− z)

ˆ
Rn

Ks(z − y)f(y) dy dz

=

ˆ
Rn

ˆ
Rn

Kt(x− z)Ks(z − y)dz f(y)dy

=⇒ Kt+s(x− y) =

ˆ
Rn

Kt(x− z)Ks(z − y)dz

This converts integral type information into pointwise information.
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3.3 Heat Equation on Bounded Domains

Let ut = ∆u for t > 0 and x ∈ Ω with boundary condition

• u|∂Ω = g(x) Dirichlet B.C. with prescribed temperature distribution.

• ∂u
∂n

∣∣
∂Ω

= g(x) insulating B.C.

• ∂u
∂n

∣∣
∂Ω

= −c(u(x)− c0) Newton’s Law of cooling.

3.3.1 Maximum Principle

Theorem 3.6 (Maximum Principle for Heat Equation). Ω bounded in Rn, 0 < T < ∞. Ω × [0, T ]. Assume
∂tu = ∆u in Ω× (0, T ). Claim: u(x, t) attains its maximum either on Ω× {t = 0} or on ∂Ω× [0, T ].

Proof. Let ε > 0. Set vε(x, t) := u(x, t) + ε|x|2 ≥ u(x, t). Then

(∂t −∆)vε = −2nε < 0

Take T ′ < T . If the maximum value of vε occurs at an interior point of Ω × (0, T ′). Then it is necessarily a
critical point hence ∂tv

ε = 0, and since it’s maximum 0 ≥ tr(Dvε) = ∆vε at such (x0, t0) hence

(∂t −∆)vε(x0, t0) ≥ 0

contradiction. Hence the maximum of vε occurs either on Ω× {t = 0} or on ∂Ω× [0, T ′].

max
Ω×[0,T ′]

u ≤ max
Ω×[0,T ′]

vε

= max
Ω×{t=0}∪∂Ω×[0,T ′]

vε

≤ max
Ω×{t=0}∪∂Ω×[0,T ′]

u+ ε max
Ω×{t=0}∪∂Ω×[0,T ′]

|x|2

Let ε→ 0, T ′ → T so
max

Ω×[0,T ]
u ≤ max

Ω×{t=0}∪∂Ω×[0,T ]
u

3.3.2 Separation of Variables and Exponential Decay

Think about Initial Boundary Value Problem∂tu = ∆u in Ωx × (0,∞)t
u(x, 0) = f(x)
u|∂Ω = 0

(34)

One may try for separation of variables. Let u(x, t) = F (x)G(t).

F (x)G′(t) = ∆F (x)G(t)

=⇒ G′(t)

G(t)
=

∆F (x)

F (x)
= λ

G′(t) = λG(t)

G(t) = eλt

=⇒
{
∆F = λF
F |∂Ω = 0

We have an eigenvalue problem for ∆ on a space with Dirichlet Boundary Value Problem.

Theorem 3.7. There exists {Fj}j≥1 s.t. Fj ∈ C∞(Ω) and corresponding λj eigenvalues (counting multiplicity)
s.t. 0 > −λ1 > −λ2 ≥ −λ3 ≥ · · · with the first eigenvalue λ1 simple (multiplicity 1) s.t.{

∆Fj = −λjFj

Fj |∂Ω = 0

One can arrange for {Fj} to be orthonormal set

ˆ
Ω

F 2
j dx = 1

ˆ
Ω

FjFℓ dx = 0
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In fact {Fj} is orthonormal basis for L2(Ω). Let N <∞ and let f ∈ L2(Ω), define

SN [f ](x) :=

N∑
j=1

⟨Fj , f⟩L2(Ω)Fj(x)

where

⟨f, g⟩L2(Ω) :=

ˆ
Ω

fg dx

Then we have
∥f − SN [f ]∥L2(Ω) → 0 as N → ∞

i.e., ∆ Dirichlet Boundary Conditions on ∂Ω has an orthonormal basis of eigenvectors in L2(Ω).

If f ∈ Domian of ∆, i.e., f smooth and f |∂Ω = 0, one get stronger convergence of partial sums to f . Let
u(x, t) :=

∑∞
j=1 cj(t)Fj(x) so

∞∑
j=1

ċj(t)Fj(x) =

∞∑
j=1

cj(t)∆Fj(x)

=

∞∑
j=1

cj(t)(−λj)Fj(x)

Then take inner product in L2(Ω) with Fm

ċm(t) = −λmcm(t)

=⇒ cm(t) = e−λmtcm(0)

Hence u(x, t) :=
∑∞

j=1 cj(t)Fj(x) =
∑∞

j=1 e
−λjtcj(0)Fj(x) This satisfies the PDE for t > 0. To match the initial

data

f(x) = u(x, t)|t=0 =

∞∑
j=1

cj(0)Fj(x)

=⇒ cj(0) = ⟨Fj , f⟩

=⇒ u(x, t) =

∞∑
j=1

e−λjt⟨Fj , f⟩L2(Ω)Fj(x)

One may estimate

ˆ
Ω

|u(x, t)|2 dx =

ˆ
Ω

 ∞∑
j=1

e−λjt⟨Fj , f⟩L2(Ω)Fj(x)

( ∞∑
m=1

e−λmt⟨Fm, f⟩L2(Ω)Fm(x)

)
dx

=

∞∑
m=1

e−2λmt|⟨Fm, f⟩|2

≤ e−2λ1t
∞∑

m=1

|⟨Fm, f⟩|2

= e−2λ1t

ˆ
Ω

|f |2

where λ1 is the largest eigenvalue of ∆ with Dirichlet Boundary Condition on Ω

∥u(t)∥L2(Ω) ≤ e−λ1t ∥f∥L2(Ω)

Contrast with (∂t −∆)u = 0 with u(x, 0) = f(x) for x ∈ Rn where

u(x, t) = Kt ∗ f =
1

(4πt)
n
2

ˆ
Rn

e−
|x−y|2

4t f(y) dy

|u(x, t)| ≤ 1

(4πt)
n
2
∥f∥L2(Rn)
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3.3.3 Backward Heat Equation

For forward heat equation ut = ∂2xu with u(x, 0) = f(x) and u|∂Ω = 0. Say we’re dealing with Ω = [0, 1].∥∥∥e∂2
xtf
∥∥∥
L2([0,1])

≤ e−λ1t ∥f∥L2([0,1])

=⇒
∥∥∥e∂2

xtf
∥∥∥
L2

≤ ∥f∥L2

For any ε > 0, if ∥f∥L2 < ε then ∥∥∥e∂2
xtf
∥∥∥
L2
< ε ∀ t > 0

We have stability result: start small, we stay small.
But for the backward heat equation ut = −uxx (0, 1)× (0,∞)

u(0, t) = 0 u(1, t) = 0
u(x, 0) = fn(x) = a sin(2nπx)

Look at solutions of the form

u(x, t) = U(t) sin(2nπx)

U ′(t) sin(2nπx) = 4n2π2U(t) sin(2nπx)

U ′(t) = 4n2π2U(t)

U(t) = e4n
2π2tU(0) = ae4n

2π2t

Hence
u(x, T ) = U(T ) sin(2nπx) = e4n

2π2Ta sin(2nπx)

Fix t = T

∥u(T )∥2L2 =

ˆ 1

0

e8n
2π2Ta2 sin2(2nπx) dx

= e8n
2π2Ta2

1

2
= e8n

2π2T ∥fn∥2L2

Instead of decaying, the solution grows exponentially.
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4 Weak Solution and Ellipticity

Look at {
−∆u = f x ∈ Ω

u|∂Ω = g
(35)

Want solution via Hilbert Space Methods.

• We want to reduce to homogeneous Dirichlet Boundary Conditions. Given g defined on ∂Ω, we would like
to extend g to a function Ext(g) defined on all of Ω.

• Given Ext(g), define U(x) := u(x)− Ext(g). Ask: What PDE does U satisfy?

−∆U = −∆u+∆Ext(g)

we have {
−∆U = f +∆Ext(g)

U |∂Ω = 0

• So if we can solve {
−∆v = f
v|∂Ω = 0

∀ f (36)

Then we can solve for all f, g.

We now restrict to (36). We call v a classical solution to (36) if v ∈ C2(Ω) and satisfies (36).

Definition 4.1 (Test Functions). C∞
0 (Ω) := {functions u ∈ C∞(Ω) that have compact support in Ω (vanish on ∂Ω)}.

Assume v ∈ C2(Ω) classical solution, the Integration by Parts gives, for any u ∈ C∞
0 (Ω)

ˆ
Ω

∇u · ∇v dx =

ˆ
Ω

uf dx

We view the LHS as an inner product and the RHS as a linear functional. We need to develop Hilbert Space.
Denote

(u, v)D :=

ˆ
Ω

∇u · ∇v ϕf (u) :=

ˆ
Ω

u f dx

Theorem 4.1 (Riesz Representation). Let H denote a Hilbert Space, which is complete normed linear space,
i.e., Banach Space, where ∥·∥H :=

√
⟨·, ·⟩H . Let H∗ denote the set of all bounded linear functionals on H.

ϕ ∈ H∗ means ϕ : H → C or R s.t.

linearity ϕ(αu+ βv) = αϕ(u) + βϕ(v)

bounded ∃M > 0 s.t. |ϕ(u)| ≤M ∥u∥H ∀ u ∈ H

Given any ϕ ∈ H∗, there exists a unique vϕ ∈ H s.t.

ϕ(u) = ⟨vϕ, u⟩ ∀ u ∈ H

Furthermore ∥ϕ∥H∗ = ∥vϕ∥H . Note it is trivial that for any v ∈ H, ϕv(u) := ⟨v, u⟩ defines a bounded linear
functional. The Riesz Representation tells us that all bounded linear functionals are of such type.

Note C∞
0 is not a Hilbert space.

4.1 Weak Derivatives and Sobolev Space

Note for u ∈ C1(Ω), let ϕ ∈ C∞
0 (Ω),
ˆ
Ω

uxi
ϕdx =

ˆ
Ω

(uϕ)xi
− uϕxi

dx = −
ˆ
Ω

uϕxi
dx

We wish to generalize this to arbitrary derivatives. For any α ∈ N with α = (α1, · · · , αn) and ∂
α
x = ∂α1

x1
· · · ∂αn

xnˆ
Ω

∂αx u(x) ϕ(x) dx = (−1)|α|
ˆ
Ω

u(x)∂αxϕ(x) dx ∀ϕ ∈ C∞
0

Definition 4.2 (Weak Derivative). Let u, v ∈ L1
loc(Ω), i.e., for any K ⊂ Rn compact,

´
K
|u| dx <∞. We say

∂αx u = v in the weak sense, or v is the α-th weak derivative of u provided

(−1)|α|
ˆ
Ω

u∂αxϕ(x) dx =

ˆ
Ω

v ∂αxϕdx ∀ϕ ∈ C∞
0 (Ω) (37)
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Lemma 4.1 (Uniqueness of weak derivative). If u has an α-th weak derivative, then it is unique up to a measure
zero set.

Proof. If both v1, v2 ∈ L1
loc(Ω) satisfiesˆ

Ω

uDαϕdx = (−1)|α|
ˆ
Ω

v1 ϕdx = (−1)|α|
ˆ
Ω

v2 ϕdx for any ϕ ∈ C∞
0 (Ω)

Then
´
Ω
(v1 − v2)ϕdx = 0 for any test function ϕ. Hence v1 = v2 a.e.

Example 4.1. Look at u(x) s.t. u(x) =

{
x 0 ≤ x ≤ 1
1 1 ≤ x ≤ 2

Now define v(x) :=

{
1 0 ≤ x ≤ 1
0 1 < x ≤ 2

This is our

natural candidate for the weak derivative of u. The claim is: u′ = v in the weak sense.

Proof. Clearly v ∈ L1(0, 2). Now for any ϕ ∈ C∞
0 (0, 2).

−
ˆ 2

0

u(x)ϕ′(x) dx = −
ˆ 1

0

u(x)ϕ′(x) dx−
ˆ 2

1

u(x)ϕ′(x) dx

= −
ˆ 1

0

xϕ′(x) dx−
ˆ 2

1

ϕ′(x) dx

= −
ˆ 1

0

xϕ′(x) dx+ ϕ(1)

= −
ˆ 1

0

((xϕ(x))′ − ϕ(x)) dx+ ϕ(1)

= −
(
ϕ(1)− 0−

ˆ 1

0

ϕ(x) dx

)
+ ϕ(1)

=

ˆ 1

0

ϕ(x) dx

Example 4.2. Suppose u(x) =

{
x 0 < x ≤ 1
2 1 ≤ x < 2

Claim: u′ does not exist in the weak sense.

Proof. Want to show there is not v ∈ L1
loc(0, 2) s.t.

−
ˆ 2

0

uϕ′ dx =

ˆ 2

0

vϕ dx

Suppose there is such v ∈ L1
loc(0, 2). We probe the suspicious point x = 1 with a sequence ϕm(x) ∈ C∞

0 (0, 2).
Choose ϕm(x) ∈ [0, 1] with ϕm(0) = 0 = ϕm(2) where ϕm(x) → 0 as m → ∞ for all x ∈ (0, 2) \ {1} and
ϕm(1) = 1 for any m. If so,

ˆ 2

0

vϕm dx = −
ˆ 2

0

uϕ′m dx

= −
ˆ 1

0

xϕ′m dx− 2

ˆ 1

0

ϕ′m dx

= −ϕm(1) +

ˆ 1

0

ϕm(x) dx− 2ϕm(2) + 2ϕm(1)

= ϕm(1) +

ˆ 1

0

ϕm(x) dx

=⇒
ˆ 2

0

vϕm dx−
ˆ 1

0

ϕm(x) dx = ϕm(1)

But LHS goes to 0 as m→ ∞, yet ϕm(1) = 1.

Definition 4.3 (Sobolev Space). 1 ≤ p ≤ ∞.

W k,p(Ω) := {f ∈ L1
loc(Ω) | ∂αf exists in the weak sense ∀ |α| ≤ k, ∂αf ∈ Lp(Ω)}

For p = 2, we often write Hk(Ω) =W k,2(Ω). Norms on W k,p(Ω)

∥u∥Wk,p(Ω) = ∥u∥k,p :=


(∑

|α|≤k

´
Ω
|∂αu|p dx

) 1
p

1 ≤ p <∞∑
|α|≤k ess sup

Ω
|Dαu| p = ∞
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We say um → u in W k,p(Ω) if
∥um − u∥Wk,p(Ω) → 0 as m→ ∞

Definition 4.4 (W k,p
0 (Ω)). W k,p

0 (Ω) := closure of C∞
0 (Ω) w.r.t. W k,p(Ω) norm, i.e., u ∈ W k,p(Ω) iff there

exists {um} ⊂ C∞
0 (Ω) s.t.

∥um − u∥Wk,p(Ω) → 0 as m→ ∞

Roughly speaking, W k,p
0 (Ω) consists of all u ∈W k,p(Ω) s.t. ∂αu|∂Ω = 0 for any |α| ≤ k − 1.

Of particular interest to us is the space H1
0 (Ω) =W 1,2

0 (Ω).

Theorem 4.2. H1(Ω) is Hilbert space with norm defined by

∥u∥2H1(Ω) :=

ˆ
Ω

|∇u|2 + |u|2 dx

with inner product

(f, g)H1(Ω) :=

ˆ
Ω

∇f · ∇g + fg dx

H1
0 (Ω) as a closed subspace of H1(Ω) is also a Hilbert Space w.r.t. ∥u∥2H1(Ω).

Lemma 4.2 (Smooth Approximation). For Ω bounded open subset with ∂Ω smooth, one has smooth approxi-
mations

• For any u ∈ H1(Ω) =W 1,2(Ω), there exists {un} ⊂ C∞(Ω) s.t. ∥un − u∥H1(Ω) → 0. Here

∥u∥2H1(Ω) =
∑
|α|≤1

ˆ
Ω

|∂αu(x)|2 dx

• For any u ∈ H1
0 (Ω) =W 1,2

0 (Ω), there exists {un} ⊂ C∞
0 (Ω) s.t. ∥un − u∥H1(Ω) → 0 as n→ ∞.

More generally, for 0 ≤ s ∈ N0

∥f∥2Hs(Ω) :=
∑
|α|≤s

ˆ
Ω

|∂αf(x)|2 dx

4.2 Weak Solutions

Recall (36) {
−∆v = f
v|∂Ω = 0

∀ f

We first study {
(−∆+ 1)v = f x ∈ Ω

v|∂Ω = 0
(38)

If v is a classical solution, then for any ϕ ∈ C∞
0ˆ
(−∆+ 1)v ϕ =

ˆ
Ω

f ϕ

ˆ
Ω

∇v · ∇ϕ+ vϕ =

ˆ
Ω

f ϕ

Definition 4.5. We say v is a weak solution to (38) if v ∈ H1
0 (Ω) and for all u ∈ H1

0 (Ω)ˆ
Ω

∇v · ∇u+ vu =

ˆ
Ω

f u

Equivalently, v is a weak solution to (38) if

(v, u)H1
0 (Ω) = ϕf (u) ∀u ∈ H1

0 (Ω)

Existence of unique solution. Note u 7→ ϕf (u) :=
´
Ω
f u dx is a bounded linear functional on H1

0 (Ω). Linearity
is trivial. To see boundedness

|ϕf (u)| = |
ˆ
Ω

fu dx| ≤ ∥f∥L2(Ω) ∥u∥H1
0 (Ω)

using Cauchy Schwarz. Thus there exists vf by Riesz Representation.
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Claim: work with H := (H1
0 (Ω), ∥u∥D :=

´
Ω
|∇u|2 dx) and (f, g)D :=

´
Ω
∇f · ∇g dx.

Definition 4.6. Let f ∈ L2(Ω). We say v ∈ H1
0 (Ω) is a weak solution to (36) if for all u ∈ H1

0 (Ω)ˆ
Ω

∇v · ∇u =

ˆ
Ω

f u

The goal is to use functional analysis techniques to construct weak solutions using Riesz Theorem 4.1. Recall
we’ve defined for any u, v ∈ H1

0 (Ω)

(u, v)D :=

ˆ
Ω

∇u · ∇v ϕf (u) :=

ˆ
Ω

u f dx

Then v is a weak solution to the Dirichlet problem iff for any u ∈ H1
0 (Ω)

(u, v)D = ϕf (u) ∀u ∈ H1
0 (Ω)

Now is (u, v)D an inner product? Notice inner product requires (u, u) = 0 iff u = 0.

Lemma 4.3. ∥u∥D :=
√
(u, u)D is a norm on H1

0 (Ω). In fact, it is equivalent to the standard norm on H1
0 (Ω),

i.e., there exists c1, c2 > 0 independent of u s.t. for any u ∈ H1
0 (Ω)

c2 ∥u∥H1(Ω) ≤ ∥u∥D ≤ c1 ∥u∥H1(Ω)

It follows that (
H1

0 (Ω), ∥·∥H1

) ∼= (H1
0 (Ω), ∥·∥D

)
as Hilbert space.

Assume the above lemma, then there exists unique vf ∈ H1
0 s.t.

ϕf (u) = (vf , u)D

from Riesz Representation Theorem provided that the functional ϕf ∈ (H1
0 (Ω))

∗ is bounded.

Proof of Lemma 4.3. We want to show that

c′2 ∥u∥
2
H1(Ω) ≤ ∥u∥2D ≤ c′1 ∥u∥

2
H1(Ω)

The second inequality indeed holds for c1 = 1. We essentially want to show
´
Ω
|u|2 ≤ C

´
Ω
|∇u|2 for any

u ∈ H1
0 (Ω).

Theorem 4.3 (Poincaré Inequality). Consider any domain Ω bounded between 2 planes. There is a constant
PΩ > 0 s.t. for all u ∈ H1

0 (Ω), ∥u∥L2(Ω) ≤ pΩ ∥u∥D.

Poincaré Inequality clearly implies equivalence of norms between(
H1

0 (Ω), ∥·∥H1

) ∼= (H1
0 (Ω), ∥·∥D

)
And furthermore, it implies that the mapping from u 7→ ϕf (u) :=

´
Ω
f u dx is a bounded linear functional on

the Hilbert space with Dirchlet inner product norm.

Proof of boundedness of ϕf .

|ϕf (u)| = |
ˆ
Ω

fu dx|

≤ ∥f∥L2(Ω) ∥u∥L2(Ω)

≤ C ∥f∥L2(Ω) ∥u∥D

It all boils down to proving the Poincaré Inequality.
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Proof of Poincaré (4.3). After possible rotation of coordinates. We may assume that Ω lies between 2 hyper-
planes {x1 = −a} and {x1 = a} for some a ≥ 0. The distance in between in 2a. Let w ∈ C∞

0 (Ω). We prove
for such w and then extend to all H1

0 (Ω). Namely let u ∈ H1
0 (Ω), then there exists {uj}j≥1 ⊂ C∞

0 (Ω) s.t.
∥uj − u∥D → 0. So we first do for C∞

0 and let u be 0 outside Ω. Let u(x1, x
′) where x′ = (x2, · · · , xn). Do

u(x1, x
′) =

ˆ x1

−a

∂xiu(s, x
′) ds

u2(x1, x
′) =

(ˆ x1

−a

∂xi
u(s, x′) ds

)2

≤
(ˆ x1

−a

1 ds

)(ˆ x1

−a

(∂xi
u(s, x′))2 ds

)
|u(x1, x′)|2 ≤ (x1 + a)

(ˆ x1

−a

(∂xiu(s, x
′))2 ds

)
ˆ a

−a

|u(x1, x′)|2 d(x1) ≤
ˆ a

−a

(x1 + a) d(x1)

(ˆ x1

−a

(∂xi
u(s, x′))2 ds

)
= 2a2

(ˆ x1

−a

(∂xiu(s, x
′))2 ds

)
ˆ
Rn−1

ˆ a

−a

|u(x1, x′)|2 d(x1) dx′ ≤ 2a2
ˆ
Ω

|∇u|2 dx
ˆ
Ω

|u|2 dx ≤ 2a2
ˆ
Ω

|∇u|2 dx

Then use this to extend to H1
0 (Ω) by density.

Now to generalize a little bit

L = −
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj

for aij = aji ∈ C∞(Ω) and symmetric. L is uniformly elliptic if there exists 0 < λ− ≤ λ1(x) ≤ λ2(x) ≤ · · · ≤ λ+
for λ− and λ+ independent of x. What if we want to solve for{

Lv = f for x ∈ Ω
v|∂Ω = 0

(39)

Now for u ∈ C∞
0 (Ω), if v is a classical solution v ∈ C2(Ω) s.t. v|∂Ω = 0.

u

−
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
v

 = uf

∑
ij

ˆ
Ω

∂u

∂xi
aij(x)

∂

∂xj
v dx =

ˆ
Ω

fu dx

Definition 4.7.

(u, v)D,a =

n∑
i,j=1

ˆ
Ω

∂u

∂xi
aij(x)

∂

∂xj
v dx

Now note

(u, u)D,a =

ˆ
Ω

n∑
i,j=1

∂u

∂xi
aij(x)

∂u

∂xj
dx ≥ λ−

ˆ
Ω

n∑
i,j=1

| ∂u
∂xi

|2 dx

so one may define

∥u∥D,a :=
√

(u, u)D,a

Notice
(∇u)Ta(x)(∇u) ≥ λ−|∇u|2

λ− ∥u∥2D ≤ (u, u)D,a ≤ λ+ ∥u∥2D
Then (

H1
0 (Ω), ∥u∥D,a

)
is a Hilbert Space.

Theorem 4.4. Given any f ∈ L2(Ω), there exists unique vf ∈ H1
0 (Ω) s.t. solving the weak Dirichlet Problem

in the sense of Definition 4.6.
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4.3 Elliptic Regularity

We will show that if f ∈ L2(Ω), then vf ∈ H1
0 (Ω)∩H2(Ω). In fact, if f ∈ Hm(Ω) then vf ∈ Hm+2(Ω)∩H1

0 (Ω).
Then if f ∈ Hm(Ω) for any m, we have vf ∈ Hm(Ω) for any m, hence vf ∈ C∞(Ω). Always 2 degrees smoother
in the Sobolev sense. Then in the classical sense.

vf = (−∆)−1f in Ω

Idea: If vf ∈ H1
0 (Ω), then ˆ

Ω

∇u · ∇vf =

ˆ
Ω

uf ∀ u ∈ H1
0 (Ω)

Instead of u, put in second order derivative formally u =
∂2vf
∂x2

i
, so we have

ˆ
Ω

∇∂2vf
∂x2i

· ∇vf =

ˆ
Ω

∂2vf
∂x2i

f

We integrate by parts then taking ε = 1
2

−
∑
j

ˆ
Ω

∂xj

∂

∂xi
vf∂xj

∂

∂xi
vf =

ˆ
Ω

∂2vf
∂x2i

f

∑
j

ˆ
Ω

(
∂2

∂xixj
vf )

2 dx =

ˆ
Ω

|∂
2vf
∂x2i

f | ≤
ˆ

|∂
2vf
∂x2i

||f |

≤ ε

2

ˆ
Ω

|∂
2vf
∂x2i

|2 + 1

2ε

ˆ
Ω

|f |2

∑
i

∑
j

ˆ
Ω

(
∂2

∂xixj
vf )

2 dx ≤ ε

2

ˆ
Ω

∑
i

∑
j

| ∂2

∂xixj
vf |2 +

n

2ε

ˆ
Ω

|f |2

1

2

∑
i

∑
j

ˆ
Ω

(
∂2

∂xixj
vf )

2 dx ∼ ∥vf∥H2(Ω) ≤ n

ˆ
Ω

|f |2

This suggests vf ∈ H2(Ω).

Theorem 4.5 (Interior Regularity). vf ∈ H2(Ω)

Proof. To justify interior regularity, let V ⊂ Ω be arbitrary open set. Want to show that vf ∈ H2(V ). Now
take any V ⊂W ⊂ Ω s.t. W ⊂ Ω.

Definition 4.8 (Difference Quotient).

(Dh
kf)(x) :=

f(x+ hek)− f(x)

h

Note for f smooth

D−h
k Dh

kf(x) →
∂2

∂x2k
f

as h→ ∞.

Take ζ smooth cutoff s.t. 0 ≤ ζ ≤ 1, ζ ≡ 1 on V and ζ ≡ 0 on Ω \W . Let

u := −D−h
k ζ2Dh

kvf ∈ H1
0 (Ω) for |h| ≪ 1

Hence

−
ˆ
Ω

∇(D−h
k ζ2Dh

kvf ) · ∇vf dx =

ˆ
Ω

(D−h
k ζ2Dh

kvf )f dx

notice LHS writes by commuting ∇ with D−h
k and throwing to the other side

−
ˆ
D−h

k ∇(ζ2Dh
kvf ) · ∇vf dx =

ˆ
∇(ζ2Dh

kvf ) ·Dh
k∇vf dx

=

ˆ
∇(ζ2Dh

kvf ) · ∇(Dh
kvf ) dx

=

ˆ
ζ2∇(Dh

kvf ) · ∇Dh
kvf dx+ 2

ˆ
ζ∇ζDh

kvf · ∇Dh
kvf dx

=

ˆ
ζ2|∇(Dh

kvf )|2 dx+ 2

ˆ
ζ∇ζDh

kvf · ∇Dh
kvf dx
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Hence throwing this to RHS gives

ˆ
ζ2|∇(Dh

kvf )|2 dx = −
ˆ
D−h

k (ζ2Dh
kvf )f dx− 2

ˆ
ζ∇ζDh

kvf · ∇Dh
kvf dx

= I+ II

II ≤ 2

ˆ
Ω

|∇ζ||Dh
kvf |ζ|∇Dh

kvf | dx

≤ 1

ε1

ˆ
Ω

|∇ζ|2|Dh
kvf |2 dx+ ε1

ˆ
Ω

ζ2|∇Dh
kvf |2 dx

I ≤ ε2
2

ˆ
Ω

|D−h
k (ζ2Dh

kvf )|2 dx+
1

2ε2

ˆ
Ω

|f |2 dx
ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ ε1

ˆ
Ω

ζ2|∇Dh
kvf |2 dx+

ε2
2

ˆ
Ω

|D−h
k (ζ2Dh

kvf )|2 dx+
1

ε1

ˆ
Ω

|∇ζ|2|Dh
kvf |2 dx+

1

2ε2

ˆ
Ω

|f |2 dx

(1− ε1)

ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ ε2
2

ˆ
Ω

|D−h
k (ζ2Dh

kvf )|2 dx+
1

ε1

ˆ
Ω

|∇ζ|2|Dh
kvf |2 dx+

1

2ε2

ˆ
Ω

|f |2 dx

Choose ε1 = 1
2

1

2

ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ ε2
2

ˆ
Ω

|D−h
k (ζ2Dh

kvf )|2 dx+ 2

ˆ
Ω

|∇ζ|2|Dh
kvf |2 dx+

1

2ε2

ˆ
Ω

|f |2 dx

Lemma 4.4. χ(x)Dh
kF (x) ∈ H1

0 (Ω) for all |h| ≪ 1. In particular,

ˆ
Ω

χ(x)2|Dh
kF (x)|2 dx ≤ c

ˆ
Ω

|∇F (x)|2 dx

RHS independent of h≪ 1.

Proof.

hDh
kF (x) = F (x− hek)− F (x) =

ˆ 1

0

d

dt
F (x− thek) dt = −

ˆ 1

0

∇xF (x− thek)ek dth

Divide by h on both sides.

Apply Lemma to first the second terms on RHS so

1

2

ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ C
ε2
2

ˆ
Ω

|∇(ζ2Dh
kvf )|2 dx+ 2C

ˆ
Ω

|∇vf |2 dx+
1

2ε2

ˆ
Ω

|f |2 dx

Note ˆ
Ω

|∇(ζ2Dh
kvf )|2 dx ≤

ˆ
Ω

ζ4|∇Dh
kvf |2 + 4ζ2|∇ζ||∇Dh

kvf ||Dh
kvf |+ 4ζ2|∇ζ|2|Dh

kvf |2 dx

Conclude with same trick, one obtain

ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ C

(ˆ
Ω

|∇vf |2 dx+

ˆ
Ω

|f |2 dx
)

Now integrating over V

ˆ
V

|∇(Dh
kvf )|2 dx ≤

ˆ
ζ2|∇(Dh

kvf )|2 dx ≤ C

(ˆ
Ω

|∇vf |2 dx+

ˆ
Ω

|f |2 dx
)

since the bound is uniformly in h for |h| ≪ 1. We take h→ 0 to obtain

∇x
∂vf
∂xk

exists in L2 on LHS. Since k = 1, · · · , n arbitrary, we have vf ∈ H2(Ω).

Iterating this argument we obtain v ∈ Hm(Ω) for higher order Sobolev Spaces.
Now we’d like to address the existence of classical solutions from weak solutions defined via Definition 4.6. Note
we’ve already proved

• Given any f ∈ L2(Ω), there exists unique vf ∈ H1
0 (Ω) s.t. vf is a weak solution.
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• If f ∈ Hm(Ω), then vf ∈ Hm+2(Ω) ∩H1
0 (Ω) for any m ∈ N.

vf = (−∆Dir,Ω)
−1f

We’re left to prove for f ∈ C∞(Ω), then vf ∈ C∞(Ω). To prove this, we use the Sobolev Lemma.

Lemma 4.5 (Sobolev Lemma). Hs(Ω) ⊂ Ck(Ω) if s > k + n
2 pointwise regularity.

For simplicity, we prove this with Ω = Rn. Recall

∥f∥2Hs(Rn) =
∑
|α|≤s

ˆ
Rn

|∂αf(x)|2 dx

and the Fourier Transform

f̂(ξ) :=
1

(2π)
n
2

ˆ
e−ix·ξf(x) dx

f(x) =
1

(2π)
n
2

ˆ
eix·ξ f̂(x) dx

Note S is dense in Hs

∥f∥2Hs(Rn) =
∑
|α|≤s

ˆ
Rn

|∂αf(x)|2 dx =
∑
|α|≤s

ˆ
Rn

|∂̂αf(ξ)|2 dξ =
∑
|α|≤s

ˆ
Rn

|(iξ)αf̂(ξ)|2 dξ

Observation: there exists C+, C− > 0 depending only on n, s s.t.

C−(1 + |ξ|2)s ≤
∑
|α|≤s

|(iξ)α|2 ≤ C+(1 + |ξ|2)s

Hence

C−

ˆ
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ ≤ ∥f∥2Hs(Rn) ≤ C+

ˆ
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ

and so (ˆ
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ
) 1

2

is an equivalent norm for Hs(Rn).

Proof of 4.5 on Rn. Take f ∈ S(Rn). Then

∂αx f(x) =
1

(2π)
n
2

ˆ
eix·ξ(iξ)αf̂(x) dx

|∂αx f(x)| ≤
1

(2π)
n
2

ˆ
|ξ||α||f̂(x)|dξ

=
1

(2π)
n
2

ˆ
|ξ||α|

(1 + |ξ|2) s
2
|f̂(x)|(1 + |ξ|2) s

2 dξ

≤ 1

(2π)
n
2

(ˆ
|ξ|2|α|

(1 + |ξ|2)s
dξ

) 1
2
(ˆ

|f̂(x)|2(1 + |ξ|2)sdξ
) 1

2

≤ Cn

(ˆ
|ξ|2|α|

(1 + |ξ|2)s
dξ

) 1
2

∥f∥Hs(Rn)

Fix k. Then we ask a condition on s so that |∂αx f(x)| ≤ Cn,k ∥f∥Hs(Rn). This is equivalent to observing when

does the integral
(´ |ξ|2|α|

(1+|ξ|2)s dξ
) 1

2

converge. Since |α| ≤ k, we want to know when

ˆ
|ξ|2k

(1 + |ξ|2)s
dξ

converges. We go to polar coordinates

ˆ
|ξ|2k

(1 + |ξ|2)s
dξ =

ˆ
Sn−1

dθ

ˆ ∞

0

r2k

(1 + r2)s
rn−1 dr
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near 0 there’s no singular. It suffices to estimate
ˆ ∞

1

r2k

(1 + r2)s
rn−1 dr ≤

ˆ ∞

1

r2k−2s+n−1 dr

This converges if 2k − 2s+ n− 1 < −1 hence 2k + n < 2s so k + n
2 < s. Hence if s > k + n

2 , for f ∈ S(Rn), we
have

|∂αf(x)| ≤ Cs,n ∥f∥Hs(Rn)

This is the Sobolev Inequality. Now let F ∈ Hs(Rn). Then there exists a sequence Fj ⊂ S(Rn) s.t.

∥Fj − F∥Hs(Rn) → 0

as s→ ∞. This is Cauchy in Hs(Rn). Hence by Sobolev inequality on Rn

|∂αFj − ∂αFℓ| ≤ Ck,n ∥Fj − Fℓ∥Hs(Rn) → 0

as j, ℓ→ ∞. Hence {∂αFj(x)} is Cauchy in
(
C0(Rn), ∥·∥∞

)
for all |α| ≤ k. Thus ∂αFj(x) converges uniformly

to ∂αF (x) due to uniqueness of limits in weak derivatives. Moreover

|∂αF (x)| ≤ Cs,n ∥F∥Hs(Rn)

for any s > k + n
2 .

Definition 4.9. A complete orthonormal sequence in L2(Ω) is a sequence ϕj ⊂ L2(Ω) s.t. ⟨ϕj , ϕℓ⟩ = δjℓ, and
for any f ∈ L2(Ω), define

SN [f ](x) :=

N∑
j=1

⟨ϕj , f⟩L2(Ω)ϕj

we have
∥SN [f ]− f∥L2(Ω) → 0 as N → ∞

Theorem 4.6. For Ω ⊂ Rn open and ∂Ω smooth, L2(Ω) has a complete orthonormal sequence of eigenfunctions
of {

−∆ϕj = λjϕj x ∈ Ω
ϕj |∂Ω = 0

where ϕj ∈ C∞(Ω).

Proof. Let f ∈ L2(Ω), there exists a unique vf ∈ H1
0 (Ω) s.t.ˆ

Ω

∇u · ∇vf dx =

ˆ
Ω

uf ∀ u ∈ H1
0 (Ω)

Let T : L2(Ω) → H1
0 (Ω) ⊂ L2(Ω) s.t. T (f) := vf .

• First argue T is linear. This follows from uniqueness of solutions.

• Second argue T is bounded. Write ˆ
Ω

∇u · ∇(Tf) dx =

ˆ
Ω

uf dx

Take u = Tf so

ˆ
Ω

|∇(Tf)|2 dx =

ˆ
Ω

Tff dx ≤
(ˆ

Ω

|Tf |2
) 1

2
(ˆ

Ω

|f |2
) 1

2

≤
(ˆ

Ω

|∇(Tf)|2
) 1

2
(ˆ

Ω

|f |2
) 1

2

by recalling Poincare for Tf ∈ H1
0 . Hence(ˆ

Ω

|∇(Tf)|2
) 1

2

≤
(ˆ

Ω

|f |2
) 1

2

Again by Poincare

1

C

(ˆ
Ω

|Tf |2 dx
) 1

2

≤
(ˆ

Ω

|∇(Tf)|2
) 1

2

≤ C

(ˆ
Ω

|f |2
) 1

2

So T is a bounded linear operator on L2(Ω).
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• Thirdly claim T : L2(Ω) → L2(Ω) is self-adjoint operator, i.e., for any f, g ∈ L2(Ω)ˆ
Ω

fTg dx = (f, Tg)L2(Ω) = (Tf, g)L2(Ω) =

ˆ
Ω

Tfg dx

Recall ˆ
Ω

∇u · ∇(Tf) dx =

ˆ
Ω

uf dx

For g ∈ L2(Ω), Tg ∈ H1
0 (Ω) ˆ

Ω

∇(Tg) · ∇(Tf) dx =

ˆ
Ω

(Tg)f dx

But one may interchange f and g and conclude
´
Ω
(Tg)f =

´
Ω
g(Tf).

• Fourth, we claim T : f → Tf = vf from L2(Ω) to L2(Ω) is also a compact operator, i.e., if {fj} is a
bounded sequence in L2(Ω), that is there is a constant M s.t.

∥fj∥L2(Ω) ≤M ∀ j

Then the sequence {Tfj} has a subsequence {Tfjk}k that converges in L2(Ω). The heart of this is Rellich’s
compactness theorem. Since

(u, Tfj)D =

ˆ
Ω

ufj dx

ˆ
Ω

|Tfj |2 dx = (Tfj , T fj)D =

ˆ
Ω

Tfjfj dx

≤
(ˆ

Ω

|Tfj |2
) 1

2
(ˆ

Ω

|fj |2
) 1

2

≤ CΩM
2 <∞

So {Tfj} ˆ
Ω

|Tfj |2 + |∇(Tfj)|2 dx ≤ C <∞

is uniformly bounded in H1
0 (Ω).

Theorem 4.7 (Rellich Compactness). For Ω bounded and ∂Ω C1, H1
0 (Ω) is compactly embedded in

L2(Ω), i.e., for any sequence {uj} ⊂ H1
0 (Ω) uniformly bounded in H1

0 , there exists a subsequence {ujk}
that converges in L2(Ω).

Proof for d = 1. Idea for n = 1 is to use Arzela-Ascoli. We want to show H1
0 (a, b) ⊂⊂ L2(a, b). Take f

smooth, say f ∈ C∞
0 (a, b). WLOG let a = 0, b = 1. Since smooth, we apply FTC so that

f(x) =

ˆ x

0

f ′(s) ds ≤ (

ˆ x

0

1ds)
1
2

(ˆ x

0

(f ′(s))2
) 1

2

≤
√
x ∥f ′∥L2(0,1)

=⇒ |f(x)| ≤
√
x ∥f ′∥L2(0,1) ∀ 0 ≤ x ≤ 1

|f(x)− f(y)| ≤
ˆ x

y

|f ′(s)| ds ≤ (

ˆ x

y

1ds)
1
2

(ˆ x

y

(f ′(s))2
) 1

2

≤ |x− y| 12 ∥f ′∥L2(0,1)

This is true for C∞
0 , so we extend to H1

0 by density. Now let {fj} be bounded in H1
0 (0, 1), we want to

show there exists {fjk} subsequence s.t. fjk converges in L2(0, 1). Hence for M > 0 independent of j

|fj(x)| ≤M

|fj(x)− fj(y)| ≤
√
|x− y|M

Since {fj}j is uniformly bounded family of equi-continuous functions in C0(0, 1), by Arzela-Ascoli, the
sequence {fj} is precompact, so there exists a convergent subsequence {fjk} ⊂ {fj} uniformly to a limiting
function f∗ ∈ C0(0, 1), i.e.

max
0≤x≤1

|fjk(x)− f∗(x)| → 0 as k → ∞

But this is more than enough to bound
ˆ 1

0

|fjk(x)− f∗(x)|2 dx ≤ max
0≤x≤1

|fjk(x)− f∗(x)| → 0
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Theorem 4.8 (Rellich-Kondrachov Theorem). ∂Ω C1. Let 1 ≤ p < n. Then W 1,p(Ω) ⊂⊂ Lq(Ω) for
1 ≤ q < p∗ = np

n−p .

Apply Rellich, there exists subsequence {Tfjk} s.t. converges in L2(Ω).

• Now we’ve verified that T is self-adjoint and compact, by Hilbert-Schmidt theorem(Spectral Theorem for
self-adjoint compact operators), there exists ϕj ∈ L2(Ω) s.t. {ϕj}j≥1 is orthonormal basis for L2(Ω) s.t.

Tϕj = αjϕj

and αj → 0 as j → ∞. Recall Tϕj ∈ H1
0 (Ω) satisfies for all u ∈ H1

0 (Ω)

(u, Tϕj)D = (u, ϕj)L2(Ω)

(u, αjϕj)D = αj(u, ϕj)D = (u, ϕj)L2(Ω)

Suppose there is a 0 eigenvalue αj0 = 0. Then (u, ϕj0)L2(Ω) = 0 for all u ∈ H1
0 (Ω). We may take u = ϕj0

then ∥ϕj0∥2 = 0. But ϕj0 has to be nonzero otherwise ϕj0 by definition cannot be eigenfunction. Thus
there are no zero eigenvalues. So for any u ∈ H1

0 (Ω)

(u, ϕj)D = (u,
1

αj
ϕj)L2(Ω)

Hence ϕj are weak solutions to −∆ϕj = 1
αj
ϕj . Define λj = 1

αj
→ ∞ as j → ∞. By Elliptic Regularity,

ϕj ∈ C∞(Ω).

Example 4.3. • For − d2

dx2 on [0, 1] with Dirichlet Boundary Conditions. Fourier Sine Series {
√
2 sin(2πn)}n≥1

are complete. Eigenvalues are (2πn)2.

• For −∆ on L2
rad(R2) = {f ∈ L2(R2) | f = f(r) r = |x|}. Bessel Series s.t. J0(0) = 1 and J ′

0(0) = 0

J ′′
0 (r) +

1

r
J ′
0(r) + J0(r) = 0

are complete. Denote αn as nth zeros of J0(r). Eigenvalues are α2
n.
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5 Wave Equation

Example 5.1 (Transport Equation). For one-dimensional transport equation with c > 0

∂tu+ c∂xu = 0

one has solution for F ∈ C1(R)
u(x, t) = F (x− ct)

A generalization to Rn is, for c ∈ Rn

∂tu+ c · ∇u = 0

where
u(x, t) = F (x− ct)

Definition 5.1 (Wave Equation).
(∂2t − c2∆x)u := □u = 0

where
□ := ∂2t − c2∆x

5.1 Wave Equation in n = 1

Example 5.2. For n = 1,
□u = (∂2t − c2∂2x)u = (∂t − c∂x)(∂t + c∂x)u = 0

Do a change of variables (x, t) 7→ (ξ, η) s.t.

ξ := x+ ct η := x− ct

Thus

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η
= c(

∂

∂ξ
− ∂

∂η
)

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η(
∂

∂t

)2

= c2(
∂

∂ξ
− ∂

∂η
)2(

∂

∂x

)2

= (
∂

∂ξ
+

∂

∂η
)2

Hence

∂2t − c2∂2x = c2(
∂

∂ξ
− ∂

∂η
)2 − c2(

∂

∂ξ
+

∂

∂η
)2 = −4c2∂ξ∂η

And

□u = 0 ⇐⇒ ∂ξ(∂ηu) = 0

Note ∂ηu is independent of ξ so
∂ηu = g(η)

Then do the same again

u(ξ, η) =

ˆ η

g(ξ′)dξ′ + F (ξ)

Hence any solution of the wave equation is of the form

u(x, t) = F (x+ ct) +G(x− ct)

Definition 5.2 (IVP). For c > 0 fixed number (speed of propagation)□u = 0 x ∈ R t ∈ R
u(x, 0) = f(x)
ut(x, 0) = g(x)

(40)

with prescribed initial conditions.
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Solve IVP for d’Alembert’s Solution. We know that

u(x, t) = F (x+ ct) +G(x− ct)

Then using u(x, 0) = f(x) we have
F (x) +G(x) = f(x)

Also using ut(x, 0) = g(x) and since we have

ut(x, t) = cF ′(x+ ct)− cG′(x− ct)

we obtain
g(x) = ut(x, 0) = cF ′(x)− cG′(x)

Assume we may differentiate {
F ′(x) +G′(x) = f ′(x)
F ′(x)−G′(x) = 1

cg(x)

So we have

F ′(x) =
1

2

(
f ′(x) +

1

c
g(x)

)
G′(x) =

1

2

(
f ′(x)− 1

c
g(x)

)
upon integration we have

F (ξ) =
1

2
f(ξ) +

1

2c

ˆ ξ

0

g(s)ds+ C1

G(η) =
1

2
f(η)− 1

2c

ˆ η

0

g(s)ds+ C2

Thus we may write down solution to wave equation and verify the initial conditions

u(x, t) =
1

2
f(x+ ct) +

1

2c

ˆ x+ct

0

g(s)ds+ C1 +
1

2
f(x− ct)− 1

2c

ˆ x−ct

0

g(s)ds+ C2

u(x, 0) = f(x) + C1 + C2 = f(x) =⇒ C1 + C2 = 0

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) +

1

2c

ˆ x+ct

x−ct

g(s)ds

Theorem 5.1. Let f ∈ C2(R) and g ∈ C1(R), then

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) +

1

2c

ˆ x+ct

x−ct

g(s)ds (41)

solves the Initial Value Problem (40) for 1 dimension wave equation.

5.1.1 Properties of Wave Equation

Definition 5.3 (Domain of Dependence/Domain of Influence). Take any (x0, t0) ∈ R× R.

• One has 2 characteristic lines connecting (x0, t0) with (x0 − ct0, 0) and (x0 + ct0, 0)

x− x0 = c(t− t0) x− x0 = −c(t− t0) 0 ≤ t ≤ t0

The three points form the backward characteristic cone C−(x0, t0) emanating from (x0, t0). This means to
determine the value u(x0, t0), one only need information for initial condition on [x0 − ct0, x0 + ct0] ⊂ R.
C−(x0, t0) is the domain of dependence for the point (x0, t0).

• If one alternatively choose (x0, t0) and look at the future T > t0. The C+
T (x0, t0) denotes forward tri-

angle connecting the three points (x0, t0) with the 2 points that intersects the line t = T using the same
characteristic lines

x− x0 = c(t− t0) x− x0 = −c(t− t0) t0 ≤ t ≤ T

Here C+
T (x0, t0) is the domain of influence for (x0, t0).

36



The fact that the size of domain of influence grows at finite speed is Huygen’s Principle.

Remark 5.1. Domain of Dependence, Domain of Influence and Huygen’s Principle holds as well for variable
coefficient PDEs for example

∂2t u = c2(x)∂2xu

for c21 ≥ c2(x) ≥ c20 > 0

Theorem 5.2 (Conservation of Energy).

utt = c2uxx

ututt = c2utuxx

∂t(
u2t
2
) = c2 (∂x(utux)− (∂xut)ux)

= c2
(
∂x(utux)− ∂t(

u2x
2
)

)
∂t

(
u2t
2

+ c2
u2x
2

)
= c2∂x(utux)

This take the form
∂tE + ∂xJ = 0

where E :=
u2
t

2 + c2
u2
x

2 is the conserved energy density and J := −c2utux is current. Upon integrating w.r.t.
spatial domain, we obtain
ˆ
R
∂t

(
u2t
2

+ c2
u2x
2

)
= c2 utux|∞−∞ = 0 =⇒

ˆ
R

u2t
2
(x, t)+c2

u2x
2
(x, t) dx =

ˆ
R

u2t
2
(x, 0)+c2

u2x
2
(x, 0) dx ∀ t ≥ 0

This is conservation Law. If moreover we give initial data u(x, 0) = f(x) and ut(x, 0) = g(x) we integrate in
spatial dimension so ˆ ∞

−∞

u2t
2

+ c2
u2x
2
dx =

ˆ ∞

−∞

1

2
g2(x) +

c2

2
(f ′)2 dx

This is conservation of Energy

5.1.2 Geometric Interpretation of Wave Equation

Consider C−(x0, t0) the domain of dependence for (x0, t0). Rewrite

utt − c2uxx = 0 ⇐⇒ ∂x(−c2ux)− ∂t(−ut) = 0

Recall Green’s Theorem for (P,Q) vector fields over Ω that
¨

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

ˆ
∂Ω

Pdx+Qdy

Thus apply Green’s Theorem we obtain

0 =

¨
C−(x0,t0)

∂x(−c2ux)− ∂t(−ut) dxdt

=

ˆ
∂C−(x0,t0)

−ut dx− c2ux dt

Let I denote the line segment pointing from (x0− ct0, 0) to (x0+ ct0, 0), II pointing from (x0+ ct0, 0) to (x0, t0)
and finally III pointing from (x0, t0) to (x0 − ct0, 0). Then we write down contour integral explicitly

ˆ
I

−utdx− c2uxdt = −
ˆ x0+ct0

x0−ct0

ut(x, 0) dx

ˆ
II

−utdx− c2uxdt =

ˆ x0

x0+ct0

−ut(x, t0 −
1

c
(x− x0))dx− c2

ˆ x0

x0+ct0

ux(x, t0 −
1

c
(x− x0))

dt

dx
dx

Notice dt
dx = − 1

c and

ux(x, t0 −
1

c
(x− x0)) =

∂

∂x

(
u(x, t0 −

1

c
(x− x0))

)
+

1

c
ut(x, t0 −

1

c
(x− x0))

cux(x, t0 −
1

c
(x− x0)) = c

∂

∂x

(
u(x, t0 −

1

c
(x− x0))

)
+ ut(x, t0 −

1

c
(x− x0))
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so

−ut(x, t0 −
1

c
(x− x0)) + cux(x, t0 −

1

c
(x− x0)) = c

∂

∂x

(
u(x, t0 −

1

c
(x− x0))

)
ˆ
II

−utdx− c2uxdt = c

ˆ x0

x0+ct

∂

∂x

(
u(x, t0 −

1

c
(x− x0))

)
dx

= c (u(x0, t0)− u(x0 + ct0, 0))

For the third one ˆ
III

−utdx− c2uxdt = −c (u(x0 − ct0, 0)− u(x0, t0))

so summing up gives

0 = −
ˆ x0+ct

x0−ct

ut(x, 0) dx+ c (u(x0, t0)− u(x0 + ct0, 0)) +−c (u(x0 − ct0, 0)− u(x0, t0))

u(x0, t0) =
1

2c

ˆ x0+ct0

x0−ct0

ut(x, 0)dx+
1

2
u(x0 + ct0, 0) +

1

2
u(x0 − ct0, 0)

=
1

2
f(x0 + ct0) +

1

2
f(x0 − ct0) +

1

2c

ˆ x0+ct0

x0−ct0

g(s)ds

If we’re given initial data u(x, 0) = f(x) and ut(x, 0) = g(x).

5.2 Wave Equation in n = 3

Definition 5.4 (IVP). For c > 0□u = (∂2t − c2∆x)u = 0 x ∈ R3 t ∈ R
u(x, 0) = f(x)
ut(x, 0) = g(x)

(42)

with prescribed initial conditions.

Recall for f ∈ S(Rn) Definition 3.2, the Fourier Transform

f̂(ξ) = (Ff)(ξ) := 1

(2π)
n
2

ˆ
Rn

e−iy·ξf(y) dy

and the Fourier Inversion

f̌(x) =
1

(2π)
n
2

ˆ
eix·ξf(ξ) dξ = f̂(−x)

Note F : S(Rn) → S(Rn) is unitary operator in L2, i.e.

∥f∥2L2 =
∥∥∥f̂∥∥∥2

L2

and that S is dense in L2. Hence F extends to a unitary operator on all of L2(Rn) as in Proposition 3.2.

Lemma 5.1. One has convolution properties. For (f ∗ g)(x) =
´
f(x− y)g(y) dy

• (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

• (f ∗ g)(x) = (f̂ ĝ)∨(x)

• Denote f = F̌ and g = Ǧ so (F̌ ∗ Ǧ) = (FG)∨

Derive formula for IVP (42) using Fourier Transform. Do Fourier Transform in space. Assume f, g ∈ S(R3)

∂2t û(ξ, t)− c2F(∆xu)(ξ, t) = 0

û(ξ, 0) = f̂(ξ)

∂tû(ξ, 0) = ĝ(ξ)

Note F(∂αxw) = (iξ)αŵ(ξ), so

(∂2t + c2|ξ|2)û(ξ, t) = 0
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Now for each fixed ξ ∈ Rn, we have that

u(ξ, t) = cos(c|ξ|t)f̂(ξ) + sin(c|ξ|t)
c|ξ|

ĝ(ξ)

Now inverting Fourier Transform

u(x, t) = F−1
(
cos(c|ξ|t)f̂(ξ)

)
+ F−1

(
sin(c|ξ|t)
c|ξ|

ĝ(ξ)

)
How to proceed?

Lemma 5.2.

F−1
(
A(ξ)F̂ (ξ)

)
=

1

(2π)
n
2
(A∨ ∗ F ) (x)

Proof.

F−1
(
A(ξ)F̂ (ξ)

)
=

1

(2π)
n
2

ˆ
eix·ξA(ξ)F̂ (ξ) dξ

=
1

(2π)
n
2

ˆ
eix·ξA(ξ)

(
1

(2π)
n
2

ˆ
e−iy·ξF (y) dy

)
dξ

=
1

(2π)
n
2

ˆ (ˆ
ei(x−y)·ξ

(2π)
n
2
A(ξ) dξ

)
F (y) dy

=
1

(2π)
n
2

ˆ
Ǎ(ξ)(x− y)F (y) dy

=
1

(2π)
n
2
(A∨ ∗ F ) (x)

Thus

u(x, t) =
1

(2π)
n
2
F−1 (cos(c|ξ|t)) ∗ f(x, t) + 1

(2π)
n
2
F−1

(
sin(c|ξ|t)
c|ξ|

)
∗ g(x, t) (43)

But how does (43) help? We know for n = 1 the solution (41) is beautiful. We need to compute

F−1

(
sin(c|ξ|t)
c|ξ|

)
=

1

(2π)
n
2

ˆ
eix·ξ

sin(c|ξ|t)
c|ξ|

dξ(
F−1

(
sin(c|ξ|t)
c|ξ|

)
∗ g
)
(x, t) =

1

(2π)
n
2

ˆ
Rn

(ˆ
ei(x−y)·ξ sin(c|ξ|t)

c|ξ|
dξ

)
g(y) dy

Let’s derive a theory for tempered distributions.

5.2.1 Tempered Distributions

Definition 5.5. T : S(Rn) → R or C is a linear functional if for any ϕ, ψ ∈ S

T (αϕ+ βψ) = αT (ϕ) + βT (ψ) ∀ α, β ∈ R or C

Definition 5.6 (Convergence). We say {ϕj}j≥1 ⊂ S converges to ϕ ∈ S if

sup
x∈Rn

|xα∂βx (ϕj − ϕ)| → 0 as j → ∞ ∀ α, β ∈ Nn
0

Definition 5.7 (Tempered Distribution). A tempered distribution is a continuous linear functional on S, i.e.
for any ϕj → ϕ in S

T (ϕj) → T (ϕ) as j → ∞

Denote S ′(Rn) as the space of tempered distributions.
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Example 5.3. Let f(x) be such that

|f(x)| ≤ C(1 + |x|)N ∀ x ∈ R1

known as polynomially bounded functions. Here C and N are fixed. To this function, we can naturally associate
a tempered distribution if ∈ S ′(Rn) s.t.

if [ψ] :=

ˆ
R
f(x)ψ(x) dx ∀ ψ ∈ S(R)

This is clearly linear. One may also easily check that if is a tempered distribution. Assume that ψj → ψ in S,
then for any m ∈ Nn

0

sup
x∈R

|xm(ψj(x)− ψ(x))| → 0 as j → ∞

We want to show |if [ψj ]− if [ψ]| → 0.

|if [ψj ]− if [ψ]| = |if [ψj − ψ]| ≤
ˆ

|f(x)||ψj − ψ|dx

≤ C

ˆ
(1 + |x|)N |ψj(x)− ψ(x)| dx

= C

ˆ
1

(1 + |x|)2
(1 + |x|)N+2|ψj(x)− ψ(x)| dx

≤ C

(ˆ
1

(1 + |x|)2
dx

)
· sup
z∈R

(1 + |z|)N+2|ψj(z)− ψ(z)| → 0

By assumption that ψj → ψ in S.

Example 5.4. For any ψ ∈ S(Rn), define
δz[ψ] := ψ(z)

This is Dirac Delta Distribution at z. This is clearly linear and continuous. Hence δ ∈ S ′(Rn).

To study Fourier Transform on Tempered Distributions S ′(Rn), note the following.

Lemma 5.3 (Duality Relation). For f, g ∈ S(Rn), thenˆ
f̂g dx =

ˆ
fĝ dx

Motivated by such Lemma, if f, g ∈ S(Rn)
if̂ [g] = if [ĝ]

Now we extend the Fourier Transform to S ′(Rn) via the following

Definition 5.8 (Fourier Transform on S ′(Rn)). If T ∈ S ′(Rn), then

T̂ (g) := T [ĝ] ∀ g ∈ S(Rn)

In other words, we look for T̂ ∈ S ′(Rn) s.t.

T [ψ̂] = T̂ [ψ] ∀ ψ ∈ S

Example 5.5. One compute examples for S ′(Rn)

• T = i1 then

T [ψ] = i1(ψ) =

ˆ
Rn

ψ(x) dx

Compute

T̂ [ψ] :=

ˆ
1ψ̂(x) dx

Now if we write via Fourier inversion

ψ(y) =
1

(2π)
n
2

ˆ
eix·yψ̂(y) dy

in particular

ψ(0) =
1

(2π)
n
2

ˆ
ψ̂(y) dy

Then
T̂ [ψ] = (2π)

n
2 ψ(0) = (2π)

n
2 δ0(ψ)

Hence
î1 = 1̂ = (2π)

n
2 δ0(ψ)
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• f(x) = eix·a for a ∈ Rn and x ∈ Rn, let T = if then T acts as Fourier inversion

T [ψ̂] =

ˆ
Rn

eix·aψ̂(x) dx

= (2π)
n
2 ψ(a)

îeix·a = êix·a = (2π)
n
2 δa

• Look at, for T = if where f = eix·a

Ť [ψ] = (F−1T )(ψ) = T [ψ̌]

=

ˆ
eix·a(F−1ψ)(x) dx

=

ˆ
e−ix·(−a)(F−1ψ)(x) dx

= (2π)
n
2 ψ(−a) = (2π)

n
2 δ−a(ψ)

Hence for T = ieix·a

F−1T = Ť = (2π)
n
2 δ−a

i.e.
(eix·a)∨ = (2π)

n
2 δ(x+ a)

• For T = δb ∈ S ′(Rn) with b ∈ Rn

[Fδb](ψ) = δb[Fψ] = δb[ψ̂] ∀ ψ ∈ S

= δb

(
1

(2π)
n
2

ˆ
e−ix·ξψ(x) dx

)
=

1

(2π)
n
2

ˆ
e−ix·bψ(x) dx = iF [ψ]

For

F (x) =
e−ix·b

(2π)
n
2

So

δ̂b =
e−ix·b

(2π)
n
2

• Let H(s) be Heaviside where H = 1 for s ≥ 0 and 0 otherwise. Let

f(x) = H(a− |x|)

and T = if . Then

T̂ [ψ] = T [ψ̂] =

ˆ
H(a− |x|)ψ̂(x) dx

=
1

(2π)
n
2

ˆ
H(a− |x|)

ˆ
e−iy·xψ(y) dy dx

=
1

(2π)
n
2

ˆ (ˆ a

−a

e−iy·x dx

)
ψ(y) dy

=
1

(2π)
n
2

ˆ (
e−iy·x

−iy

∣∣∣∣x=a

x=−a

)
ψ(y) dy

=
1

(2π)
n
2

ˆ (
2eiy·a − 2e−iy·a

2iy

)
ψ(y) dy

=
1

(2π)
n
2

ˆ
2 sin(ay)

y
ψ(y) dy

So we obtain

T̂ (ψ) =
1

(2π)
n
2

ˆ
2 sin(ay)

y
ψ(y) dy

Thus

T̂ = Ĥ(a− | · |)(z) = 1

(2π)
n
2

2 sin(az)

z

and

H(a− |x|) = F−1

(
2 sin(ay)

(2π)
n
2 y

)
(x) (44)
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5.2.2 Application to Wave Equation

Definition 5.9 (Convolutions). For |F (x)| ≤ C(1 + |x|)N for ϕ ∈ S(Rn) and ϕx(y) := ϕ(x− y)

(F ∗ ϕ)(x) =
ˆ
F (y)ϕ(x− y) dy = iF [ϕx]

Then fro T ∈ S ′(Rn), define
T ∗ ϕ(x) := T [ϕx]

Example 5.6. For T = δa
(δa ∗ f)(x) ≡ δa[fx] = f(x− y)|y=a = f(x− a)

Example 5.7 (n = 1 compute (43)). For n = 1

u(x, t) =
1√
2π

F−1 (cos(c|ξ|t)) ∗ f(x, t) + 1√
2π

F−1

(
sin(c|ξ|t)
c|ξ|

)
∗ g(x, t) = f+ g

f =
1√
2π

F−1

(
1

2
eic|ξ|t

)
∗ f(x, t) + 1√

2π
F−1

(
1

2
e−ic|ξ|t

)
∗ f(x, t)

=
1

2
δ−ct ∗ f(x, t) +

1

2
δ+ct ∗ f(x, t)

=
1

2

ˆ
δ(x+ ct− y)f(y) dy +

1

2

ˆ
δ(x− ct− y)f(y) dy =

1

2
(f(x+ ct) + f(x− ct))

For term g, use (44) so that

H(ct− |x|) = F−1

(
2 sin(cty)

(2π)
1
2 y

)
(x)

1

2c
H(ct− |x|) = 1

(2π)
1
2

F−1

(
sin(cty)

cy

)
(x)

Hence we compute

g =
1√
2π

F−1

(
sin(cty)

cy

)
(x) ∗ g

=
1

2c
H(ct− |x|) ∗ g(x, t) = 1

2c

ˆ
H(ct− |x− y|)g(y) dy

=
1

2c

ˆ x+ct

x−ct

g(s) ds

What about finally for n = 3? Recall (43).

u(x, t) =
1

(2π)
3
2

F−1 (cos(c|ξ|t)) ∗ f(x, t) + 1

(2π)
3
2

F−1

(
sin(c|ξ|t)
c|ξ|

)
∗ g(x, t) = f+ g

Note formally for f
∂

∂t
F−1

(
sin(c|ξ|t)
c|ξ|

)
= F−1 (cos(c|ξ|t))

Hence it suffices to compute g. The key is to compute δ̂|·|−R ∈ S ′(R3) so that

δ̂|·|−R[ψ] =

ˆ
|x|=R

ψ̂(x) dS(x) ∀ ψ ∈ S(R3)

Theorem 5.3 (n = 3).
1

(2π)
3
2

F−1
ξ

(
sin(c|ξ|t)
c|ξ|

)
(x, t) =

δ|x|−ct

4πc2t
(45)

Proof of (45). Compute

δ̂|·|−R[ψ] = δ|·|−R[ψ̂] =

ˆ
|y|=R

ψ̂(y) dS(y)

=

ˆ
|y|=R

1

(2π)
3
2

(ˆ
e−iη·yψ(η) dη

)
dS(y)

=

ˆ
R3

(ˆ
|y|=R

e−iη·y dS(y)

)
ψ(η) dη

1

(2π)
3
2
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To compute the integral inside, go to spherical coordinates with polar angle θ and azimuthal angle ϕ so that

dS(y) = R2 sin(θ)dθdϕ

Also for η fixed, pick spherical coordinates where η is the north pole direction. Hence

η · y = |η||y| cos(θ)

The the integral writes
ˆ
|y|=R

e−iη·y dS(y) =

ˆ 2π

0

dϕ

ˆ π

0

e−i|η||y| cos(θ)R2 sin(θ) dθ

= 2πR2

ˆ π

0

e−i|η|R cos(θ) iR|η|
iR|η|

sin(θ) dθ

= 2πR2

ˆ π

0

∂

∂θ

(
e−i|η|R cos(θ)

) 1

iR|η|
dθ

=
2πR

i|η|
2i

(
eiR|η| − e−iR|η|

2i

)
=

4πR

|η|
sin(R|η|)

Hence

δ̂|·|−R[ψ] =

ˆ
R3

(
4πR

|η|
sin(R|η|)

)
ψ(η) dη

1

(2π)
3
2

1

4πR
δ̂|·|−R[ψ] =

ˆ
R3

sin(R|η|)
|η|

1

(2π)
3
2

ψ(η) dη

=⇒ 1

4πR
δ̂|·|−R =

1

(2π)
3
2

sin(R|η|)
|η|

=
1

(2π)
3
2

F−1

(
sin(R| · |)

| · |

)
So let R = ct

1

4πct
δ|·|−ct =

1

(2π)
3
2

F−1

(
sin(ct| · |)

| · |

)
1

4πc2t
δ|·|−ct =

1

(2π)
3
2

F−1

(
sin(ct|ξ|)
c|ξ|

)
(x, t)

Thus

u(x, t) = f+
1

4πc2t
δ|x|−ct ∗ g

= f+
1

4πc2t

ˆ
|x−y|=ct

g(y) dy

=
∂

∂t

(
1

4πc2t

ˆ
|x−y|=ct

f(y) dy

)
+

1

4πc2t

ˆ
|x−y|=ct

g(y) dy (46)

How to make it look a little bit more like the solution at n = 1? Let y = x + ctω where |ω| = 1. Do a change
of variables

dS(y) = (ct)2dS(ω)

so

1

4πc2t

ˆ
|x−y|=ct

g(y) dS(y) =
(ct)2

4πc2t

ˆ
|ω|=1

g(x+ ctω) dS(ω)

=
t

4π

ˆ
|ω|=1

g(x+ ctω) dS(ω)

u(x, t) =
t

4π

ˆ
|ω|=1

g(x+ ctω) dS(ω) +
∂

∂t

(
t

4π

ˆ
|ω|=1

f(x+ ctω) dS(ω)

)
(47)

It is easy to verify both (46) and (47) satisfies the IVP (42).
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5.2.3 Properties of Wave Equation in n = 3

• We have finite propagation speed c, and sharp arrival and departure of signals. This is known as Strong
Huygen’s Principle.

• Conservation of Energy.

E(t) :=
ˆ
R3

1

2
u2t +

1

2
c2|∇u|2 dx = E(0)

if u solves (42).

• Diffraction of Waves.

|u(x, t)| ≤ C

t
t≫ 1

Let’s carry out the derivative in (47).

u(x, t) =
t

4π

ˆ
|ω|=1

g(x+ ctω) dS(ω) +
∂

∂t

(
t

4π

ˆ
|ω|=1

f(x+ ctω) dS(ω)

)

=
t

4π

ˆ
|ω|=1

g(x+ ctω) dS(ω) +
1

4π

ˆ
|ω|=1

f(x+ ctω) dS(ω) +
t

4π

ˆ
|ω|=1

∇xf(x+ ctω) · cω dS(ω)

=
t

4π

1

(ct)2

ˆ
|x−y|=ct

g(y) dS(y) +
1

4π

1

(ct)2

ˆ
|x−y|=ct

f(y) dS(y) +
t

4π

1

(ct)2

ˆ
|x−y|=ct

∇yf(y) ·
y − x

t
dS(y)

=
1

4πc2t2

(ˆ
|x−y|=ct

(tg(y) + f(y) +∇yf(y) · (y − x)) dS(y)

)
(48)

This is loss of smoothness. In physics, this is focusing effect.

Theorem 5.4 (Domain of Dependence). Let (x0, t0) ∈ R3 × [0,∞). The backward cone of (x0, t0) writes

c(t0 − t) = |x0 − x|

So according to (48) u(x0, t0) depends only on g, f,∇f on the Surface of sphere of radius ct0

∂B(x0, ct0) := {x ∈ R3 | |x− x0| = ct0}

Theorem 5.5 (Domain of Influence). Let (x0, 0) ∈ R3 × {0}. What parts of solution does the point influence?
It’s the forward light cone, which is essentially the union of spheres of ascending radius with center x0 ∈ R3.
Assume that f, g have support inside Bρ(0). To see what is influenced, we need to see the union of all spheres
arising from each point in Bρ(0). Notice u ≡ 0 in the inner region of the spheres as the energy just radiates
out.

In particular, if supp(f, g) = Bρ(0)

tarrivial of signal(x0) =
dist(x0, Bρ(0))

c

and

tdeparture of signal(x0) =
dist(x0, Bρ(0)) + 2ρ

c

Theorem 5.6 (Conservation of Energy).

ututt = utc
2∆u

1

2
∂t(u

2
t ) = c2 (∇ · (ut∇u)−∇ut · ∇u)

∂t(
1

2
u2t ) = c2

(
∇ · (∂tu∇u)− ∂t

∇u · ∇u
2

)
∂t

(
1

2
u2t + c2

|∇u|2

2

)
+∇ ·

(
−c2ut∇u

)
= 0

Again energy density E := 1
2u

2
t + c2 |∇u|2

2 and current J := −c2ut∇u writes

∂tE +∇x · J = 0
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Hence integrating in spatial dimensions gives

ˆ
R3

∂t

(
1

2
u2t + c2

|∇u|2

2

)
dx = c2

ˆ
R3

∇ · (ut∇u) dx = 0

further implies

=⇒
ˆ
R3

(
1

2
u2t + c2

|∇u|2

2

)
(t, x) dx =

ˆ
R3

(
1

2
u2t + c2

|∇u|2

2

)
(0, x) dx =

ˆ
R3

(
1

2
g2(x) + c2

|∇f(x)|2

2

)
dx

where u(0, x) = f and ut(0, x) = g denotes initial data.

Theorem 5.7 (Diffraction and Amplitude Decay).

sup
x∈R3

|u(x, t)| ≤ Cdata

t

is uniform in x. This is attenuation. In n = 3, 1
t is the attenuation rate.

According to expression of solution (48), the term g has the slowest decay in t and is the only term that we
should worry about.

Lemma 5.4. For supp(g) ⊂ Bρ(0), we have estimate

1

4πc2t

ˆ
|x−y|=ct

g(y) dS(y) ≤ 1

4πc2t
∥g∥L∞ 4πρ2 =

Cdata

t
∀ x

Proof. ˆ
A

h =

ˆ
A

1{h̸=0}h

Hence

|
ˆ
A

h| ≤ ∥h∥L∞ |{h ̸= 0} ∩A|

Now suppose supp(h) ⊂ Bρ(0) = {x | |x| ≤ ρ} and A = {y | |x− y| = ct}. We have

ˆ
|x−y|=ct

h dS(y) ≤ ∥h∥L∞ |Bρ(0) ∩ {|x− y| = ct}| ≤ 4πρ2 ∥h∥∞

Hence applying to
h = g

we have

1

4πc2t

ˆ
|x−y|=ct

g(y) dS(y) ≤ 1

4πc2t
∥g∥L∞ 4πρ2

Remark 5.2. Why do we not have diffraction in n = 1?

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) +

1

2c

ˆ x+ct

x−ct

g(s)ds

If fix x and let t get large, then f(x± ct) are 0 due to compact support. On the other hand

1

2c

ˆ x+ct

x−ct

g(s)ds→ 1

2c

ˆ
supp(g)

g(y) dy

so u is identically constant for t large enough.
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5.3 Wave Equation in n = 2

We use Method of Descent to derive solution to n = 2.

Definition 5.10 (IVP). For c > 0□u = (∂2t − c2(∂2x1
+ ∂2x2

))u = 0 x ∈ R2 t ∈ R
u(x1, x2, 0) = f(x1, x2)
ut(x1, x2, 0) = g(x1, x2)

(49)

with prescribed initial conditions.

Solution to IVP (49). We view IVP at n = 2 as special case for IVP at n = 3. Take special initial condition
that is translational invariant in x3

v(x1, x2, x3, 0) = f(x1, x2)

vt(x1, x2, x3, 0) = g(x1, x2)

Where v solves
□v = (∂2t − c2∆x)v = 0 x ∈ R3

Hence we have

□n=3
∂

∂x3
v = 0

∂

∂x3
v

∣∣∣∣
t=0

= 0

∂

∂t

∂

∂x3
v

∣∣∣∣
t=0

= 0

Denote V := ∂
∂x3

v. By uniqueness we know V ≡ 0 then

∂

∂x3
v = 0 =⇒ v = v(x1, x2)

This gives us a 2d solution. Now we plug into solution to 3d (46)

u(x1, x2, t) = v(x1, x2, x3 = 0, t)

=
∂

∂t

(
1

4πc2t

ˆ
(x1−y1)2+(x2−y2)2+y2

3=c2t2
f(y1, y2) dy

)
+

1

4πc2t

ˆ
(x1−y1)2+(x2−y2)2+y2

3=c2t2
g(y1, y2) dy

We parametrize the sphere about (x1, x2, 0). We look at the upper hemi-sphere.

y3 =
√
c2t2 − (x1 − y1)2 − (x2 − y2)2

and the lower hemi-sphere
y3 = −

√
c2t2 − (x1 − y1)2 − (x2 − y2)2

Thus y3 = y3(y1, y2). Introduce notations and first consider the upper hemi-sphere

x′ = (x1, x2)

y′ = (y1, y2)

y3 =
√
c2t2 − |x′ − y′|2

Notice the Surface element writes

dS(y) =

√
1 + (

dy3
dy1

)2 + (
dy3
dy2

)2dy1dy2

due to tangent vectors

(1, 0,
∂y3
∂y1

) (0, 1,
∂y3
∂y2

)

and calculating their cross product. Thus our solution writes via parametrization

1

4πc2t

ˆ
|x′−y′|2+y2

3=c2t2
g(y1, y2) dy

=
1

4πc2t

ˆ
|x′−y′|2≤c2t2

g(y′)

√
1 + (

dy3
dy1

)2 + (
dy3
dy2

)2dy′
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Notice

dy3
dyj

=
xj − yj√

c2t2 − |x′ − y′|2
j = 1, 2

Now look at

1 + (
dy3
dy1

)2 + (
dy3
dy2

)2 = 1 +
|x′ − y′|2

c2t2 − |x′ − y′|2
=

c2t2

c2t2 − |x′ − y′|2√
1 + (

dy3
dy1

)2 + (
dy3
dy2

)2 =
ct√

c2t2 − |x′ − y′|2

Hence

1

4πc2t

ˆ
|x′−y′|2+y2

3=c2t2
g(y1, y2) dy

=
1

4πc2t

ˆ
|x′−y′|≤ct

g(y′)
ct√

c2t2 − |x′ − y′|2
dy′

Now do the same for lower hemi-sphere. Hence we add them up and obtain

1

4πc2t

ˆ
(x1−y1)2+(x2−y2)2+y2

3=c2t2
g(y1, y2) dy =

1

2πc

ˆ
|x′−y′|≤ct

g(y′)√
c2t2 − |x′ − y′|2

dy′

Hence we summarize solution at n = 2.

u(x1, x2, t) =
∂

∂t

(
1

2πc

ˆ
|x′−y′|≤ct

f(y′)√
c2t2 − |x′ − y′|2

dy′

)
+

1

2πc

ˆ
|x′−y′|≤ct

g(y′)√
c2t2 − |x′ − y′|2

dy′ (50)

Suppose f, g are supported in Bρ(0) ⊂ R2. Suppose we’re at (x10, x20) far away from Bρ(0), then initially the
supports of f, g do not overlap

{|x1 − y1|2 + |x2 − y2|2 ≤ c2t2}

But for t large enough, we have contribution from f , g. Wait longer, we overlap more. But for t even larger,
eventually the ball of ct radius centered at (x10, x20) completely covers Bρ(0). We can in fact show the uniform
estimate

sup
x∈R2

|u(x, t)| ≤ Cdata√
t

5.4 Inhomogeneous Wave Equation

Consider inhomogeneous Wave Equation in n = 1.

Definition 5.11 (Inhomogeneous IVP). For c > 0 fixed number (speed of propagation)□u = w(x, t) x ∈ R t ∈ R
u(x, 0) = f(x)
ut(x, 0) = g(x)

(51)

with prescribed initial conditions.

We think of writing solution
u(x, t) = u0(x, t) + u1(x, t)

where u0 solves □u0 = 0 x ∈ R t ∈ R
u0(x, 0) = f(x)
u0t(x, 0) = g(x)

purely initial value problem and u1 solves□u1 = w(x, t) x ∈ R t ∈ R
u1(x, 0) = 0
u1t(x, 0) = 0

(52)

purely forced problem.
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5.4.1 Solving Purely Forced IVP

To solve (52) we use Duhamel’s Principle. {
∂
∂tu = Au+ w(t)

u(0) = 0

for A independent of t. Then write

∂

∂t
u−Au = w(t)

∂t(e
−Atu(t)) = e−Atw(t)

e−Atu(t) =

ˆ t

0

e−Asw(s) ds

u(t) =

ˆ t

0

eA(t−s)w(s) ds =

ˆ t

0

U(t, s)w(s) ds

where

∂

∂t
U(t, s) = AU(t, s)

U(t, s)|t=0 = w(s)

Recall for A = ∆

u(x, t) =

ˆ t

0

e∆(t−s)w(s) ds

=

ˆ t

0

ˆ
e−

(x−y)2

4(t−s)

(4π(t− s))
n
2
w(y, s) dyds

Now the Analogous Duhamel’s Principle for Wave Equation is, taking u = u1 in (52)

Lemma 5.5. Define

u(x, t) =

ˆ t

0

U(x, t, s) ds

s.t. for each s ≥ 0

□x,tU(x, t, s) = 0

U(x, t, s)|t=s = 0

∂tU(x, t, s)|t=s = w(x, s)

Then u solves purely forced problem (52).

Proof. Using assumptions on U(x, t, s) we have

∂tu(x, t) = U(x, t, s)|s=t +

ˆ t

0

Ut(x, t, s) ds =

ˆ t

0

Ut(x, t, s) ds

∂2t u(x, t) = ∂tU(x, t, s)|s=t +

ˆ t

0

Utt(x, t, s) ds

= w(x, s) +

ˆ t

0

c2∆xU(x, t, s) ds

= w(x, s) + c2∆xu(x, t)

Hence
(∂2t − c2∆)u(x, t) = w(x, t)

Now we wish to construct U .

n = 1 U construction. Write

U(x, t, s) =
1

2c

ˆ x+c(t−s)

x−c(t−s)

w(y, s) dy
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Indeed
U(x, t, s)|t=s = 0 ∀ s ≥ 0

and

∂tU(x, t, s) =
1

2
(w(x+ c(t− s), s) + w(x− c(t− s), s))

∂2tU(x, t, s) =
c

2
w1(x+ c(t− s), s)− c

2
w1(x− c(t− s), s)

where w1 denotes partial derivative w.r.t. first coordinate.

∂xU(x, t, s) =
1

2c
(w(x+ c(t− s), s)− w(x− c(t− s), s))

∂2xU(x, t, s) =
1

2c
(w1(x+ c(t− s), s)− w1(x− c(t− s), s))

=⇒ ∂2tU(x, t, s) = c2∂2xU(x, t, s)

Then verify

Ut(x, t, s)|t=s =
1

2c
(cw(x+ c(t− s), s)− (−c)w(x− c(t− s), s))

∣∣∣∣
t=s

= w(x, s)

Now apply Duhamel

u(x, t) =
1

2c

ˆ t

0

ds

ˆ x+c(t−s)

x−c(t−s)

w(y, s) dy

n = 3 U construction. Write

U(x, t, s) =
1

4πc2(t− s)

ˆ
|x−y|=c(t−s)

w(y, s) dS(y)

So

u(x, t) =

ˆ t

0

1

4πc2(t− s)

ˆ
|x−y|=c(t−s)

w(y, s) dS(y) ds

=

ˆ t

0

1

4πc

ˆ
|x−y|=c(t−s)

w(y, s)

|x− y|
dS(y) ds

=
1

4πc

ˆ
|x−y|<ct

w(y, t− |x−y|
c )

|x− y|
dy

Here t− |x−y|
c is the retarded time.

5.4.2 Properties of Inhomogeneous Wave Equation

Consider wave equation with inhomogeneous media

∂2t u = ∇ · (c2(x)∇u)− q(x)u

assuming c2 ≥ c(x) ≥ c1 > 0 and q(x) ≥ 0. Also assume that u ∈ C2 solution. Then we conclude that

• signals propagate with speed ≤ c2.

• If data f, g have compact support. Then for all t > 0, u(x, t) has compact support.

Theorem 5.8 (Conservation of Energy). Write

utt = ∇ · (c2(x)∇u)− q(x)u

ututt = ut∇ · (c2(x)∇u)− q(x)utu

∂t(
1

2
u2t ) = ∇ · (utc2(x)∇u)−∇ut · c2(x)∇u− q(x)∂t(

1

2
u2)

= ∇ · (utc2(x)∇u)−
1

2
∂t
(
∇u · c2(x)∇u

)
− q(x)∂t(

1

2
u2)

0 = ∂t

(
1

2
u2t +

1

2
c2(x)|∇u|2

)
+∇ ·

(
−utc2(x)∇u(x)

)
+ q(x)∂t(

1

2
u2)
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Hence conservation of energy writes

∂tE(ut, u) +∇x · J (ut, u) = 0

where

E(ut, u) =
1

2
u2t +

1

2
c2(x)|∇u|2 + 1

2
q(x)u2

J (ut, u) = −utc2(x)∇u

For such equation we have domain of dependence competing with each other

• two line with slope ± 1
c2

crossing (x0, t0).

• two line with slope ± 1
c1

crossing (x0, t0).

For any s < t fixed, consider

• Σs = {(x, s) ∈ Rn+1 | x lies within lines with slope ± 1
c2
} = {(x, s) ∈ Rn+1 | |x− x0| ≤ c2(t0 − s)}

• and Σt = {(x, t) ∈ Rn+1 | x lies within lines with slope ± 1
c2
} = {(x, t) ∈ Rn+1 | |x− x0| ≤ c2(t0 − t)}.

• and Σ0 = {(x, 0) ∈ Rn+1 | |x− x0| ≤ c2t0}

Hence for
Q(t, s) = {|x− x0| ≤ c2(t0 − η) | s ≤ η ≤ t}

whose boundary we write
∂Q(t, s) = Σt ∪ Fs,t ∪ Σs

where
Fs,t = {|x− x0| = c2(t0 − η) | s ≤ η ≤ t}

We use Gauss Theorem

(∇, ∂t) · (J , E) = 0

0 =

¨
(∇, ∂t) · (J , E) dxdt

=

¨
∂Q(t,s)

(J , E) · (nx, nt) dS

=

ˆ
Σt

(J , E) · (0, 1) dS +

ˆ
Σs

(J , E) · (0,−1) dS

+

¨
Fs,t

(J , E) · (nx, nt) dS
ˆ
Σs

E dx =

ˆ
Σt

E dx+

ˆ
Fs,t

(J , E) · (nx, nt) dS

Notice the localized energy

E(Σs) :=

ˆ
|x−x0|≤c2(t0−s)

E(∂su(x, s), u(x, s)) dx

=

ˆ
|x−x0|≤c2(t0−t)

E(∂tu(x, t), u(x, t)) dx+

¨
Fs,t

(J , E) · (nx, nt) dS

= E(Σt) +

¨
Fs,t

(J , E) · (nx, nt) dS

we claim that ¨
Fs,t

(J , E) · (nx, nt) dS ≥ 0 (53)

If so we have our energy inequality
E(Σs) ≥ E(Σt) ≥ 0 (54)
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Proof for (53). On Fs,t we have plane

c2(t− t̃)− |x− x0| = 0 ∀ s ≤ t̃ ≤ t

Thus normal vectors to the plane write

(nx, nt̃) =

(
x−x0

|x−x0| , c2

)
√

1 + c22
(±1)

We choose our normal vectors as

(nx, nt̃) =

(
x−x0

|x−x0| , c2

)
√
1 + c22

Therefore

¨
Fs,t

(J , E) · (nx, nt̃) dS =

¨
Fs,t

J · x−x0

|x−x0|√
1 + c22

+ c2E dSx,t̃

We would like to show

J · x− x0
|x− x0|

+ c2E ≥ 0

Notice

2J · x− x0
|x− x0|

+ 2c2E = −2c2(x)ut∇u · x− x0
|x− x0|

+ c2
(
u2t + c2(x)|∇u|2 + qu2

)
≥ −2c2(x)|ut||∇u|+ c2

(
u2t + c2(x)|∇u|2 + qu2

)
≥ −2c(x)c2|ut||∇u|+ c2

(
u2t + c2(x)|∇u|2 + qu2

)
= c2

(
−2|ut|c(x)|∇u|+ u2t + c2(x)|∇u|2 + qu2

)
≥ c2

(
−u2t − c2(x)|∇u|2 + u2t + c2(x)|∇u|2 + qu2

)
≥ c2qu

2 ≥ 0

Hence we’re done.

Remark 5.3 (Consequences of the Energy Inequality). Fix some (x0, t0) ∈ Rn × R. Let u(x, t), ut(x, t) be 0
on Σ0 = {(x, 0) ∈ Rn+1 | |x0 − x| ≤ c2t0}. Then from (54)

0 ≤ E(Σs) ≤ E(Σ0) = 0 ∀ 0 ≤ s ≤ t0

Hence E(Σs) = 0 for all 0 < s < t0. Recall definition for localized energy

E(Σt) =
1

2

ˆ
Σt

u2t + |∇u|2c2(x) + qu2 dx

This implies that ut = 0, ∇u = 0 and u = 0 on all Σs for 0 ≤ s ≤ t0. Hence u(x0, t0) = 0.
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6 Schrödinger Equation

Let ψ(x, t) where x denotes position and t as time. ψ is called wave function.

ψ : Rn
x × R1

t → C

for n = 1, 2, 3. Let
|ψ(x, t)|2 := ψ(x, t)ψ(x, t)

Then |ψ(x, t)|2 dx is some probability measure. Let Ω ⊂ Rn we have physical meaning

ˆ
Ω

|ψ(x, t)|2 dx = P ( quantum particle in Ω at time t)

We prescribe ψ(x, t = 0) = ψ0(x) and
´
Rn |ψ0(x)|2 dx = 1. The data ψ0(x) evolves as t increases according to

Schrödinger Equation

ih∂tψ = (− h2

2m
∆+ V (x))ψ(x)

where h is Planck’s constant over 2π. m is mass of the particle. V (x) the potential. For example Hydrogen has

V (x) =
−e2

|x|

Coulomb potential. Now rewrite
i∂tψ = (−∆+ V (x))ψ

We further study the case of free Schrödinger Equation with V (x) = 0.

6.1 Free Schrödinger Equation

We study the Free Schrödinger Equation governing a free particular.{
i∂tψ = −∆ψ

ψ(x, 0) = ψ0(x) ∈ S(Rn)
(55)

Solve using Fourier.

f̂(ξ) =
1

(2π)
n
2

ˆ
e−ix·ξf(x) dx

f̌(ξ) =
1

(2π)
n
2

ˆ
eix·ξf(x) dx = f̂(−ξ)

So for |ξ|2 = ξ · ξ we have {
i∂tψ̂ = |ξ|2ψ̂

ψ̂(ξ, 0) = ψ̂0(ξ) ∈ S(Rn)

so

ψ̂(ξ, t) = e−i|ξ|2tψ̂0(ξ)

ψ(x, t) =
1

(2π)
n
2

ˆ
eix·ξψ̂(ξ, t) dξ

ψ(x, t) =
1

(2π)
n
2

ˆ
eix·ξe−i|ξ|2tψ̂0(ξ) dξ

=

ˆ
Rn

S(x− y, t)ψ0(y) dy ∀ x ∈ Rn t ∈ R

where

S(z, t) =
e

i|z|2
4t

(4πit)
n
2

This is Schrödinger Kernel.

To rewrite, we claim

ψ(x, t) = F−1
(
e−i|z|2tψ̂0(z)

)
=
(
F−1(e−i|ξ|2t) ∗ ψ0

)
(x, t)
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Recall that if f ∈ L1
loc(Rn) then we define

T [ϕ] :=

ˆ
fϕ dx

and its Fourier Transform is

T̂ [ϕ] ≡ T [ϕ̂] =

ˆ
fϕ̂ dx ∀ ϕ ∈ S(Rn)

Lemma 6.1. For
ga,b(x) = e(−a+ib)|x|2

with a, b ∈ R, we have

ĝa,b(z) =
1

(a− ib)
n
2

1

2
n
2
e−

|z|2
4(a−ib)

provided either

• a > 0, b ∈ R

• a = 0, b ∈ R and b ̸= 0

If so, for a = 0 and b = −t we have

g0,−t(x) = e−it|x|2

ĝ0,−t(ξ) =
1

(i2t)
n
2
e−

|ξ|2
4it

F−1
(
e−i|ξ|2t

)
(y, t) =

1

(4πit)
n
2
e

−i|y|2
4it

ψ(x, t) =
1

(4πit)
n
2

ˆ
Rn

e−
−|x−y|2

4it ψ0(y) dy = [S(t)ψ0](x, t)

Lemma 6.2. If t > 0 and x ∈ Rn with ψ0 ∈ S(Rn), the above expression for ψ(x, t) satisfies

(i∂t +∆)ψ = 0

This leave the question in which sense does this object attain the initial condition.

Lemma 6.3.
∥ψ(·, t)− ψ0(·)∥2L2 → 0

Proof.

∥ψ(·, t)− ψ0(·)∥2L2 =

ˆ
R
|ψ(x, t)− ψ0(x)|2 dx

=

ˆ
R
|ψ̂(ξ, t)− ψ̂0(ξ)|2 dξ

=

ˆ
R
|e−i|ξ|2t − 1|2|ψ̂0(ξ)|2 dξ → 0 as t→ 0

Using DCT.

There’s huge difference between Schrödinger iψt = −∆ψ and Heat Equation ut = ∆u.

• heat u : Rn
x × R+

t → R and Schrödinger ψ : Rn × R → C.

Example 6.1. Consider iψt = −ψxx. Write ψ = U + iV for U, V R-valued. Then

i(Ut + iVt) = −(Uxx + iVxx)

Ut = −Vxx
Vt = Uxx

Then

(Ut)t = −(Vxx)t

= −(Vt)xx

Utt = −Uxxxx

Vtt = −Vxxxx

This is in fact wave equation. But it supports infinite propagation speed.
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6.2 Properties of Solutions

Theorem 6.1. The Schrödinger evolution is unitary in L2.

∥ψ(·, t)∥2L2 = ∥ψ0(·)∥2L2 ∀ t ∈ R

Proof.

∥ψ(·, t)∥2L2 =

ˆ
|ψ(x, t)|2 dx =

ˆ
|ψ̂(ξ, t)|2 dξ

=

ˆ
e−i|ξ|2t|ψ̂0(ξ)|2 dξ =

ˆ
|ψ̂0(ξ)|2 dξ = ∥ψ0∥2L2

Proof. Alternatively we can do in pure physical space.

iψt = (−∆+ V (x))ψ

iψtψ = (−∆+ V )ψψ

−iψtψ = (−∆+ V )ψψ

i(ψtψ + ψtψ) = −∆ψψ +∆ψψ

= ∇ · (ψ∇ψ − ψ∇ψ)
∂t|ψ|2 +∇ · (ψ∇ψ − ψ∇ψ) = 0

d

dt

ˆ
Rn

|ψ|2 = 0

On the other hand, look at

Theorem 6.2 (Dispersive Decay).

|ψ(x, t)| = |(St ∗ ψ)(x, t)| ≤
1

(4π|t|)n
2
∥ψ0∥L1(Rn)

Dispersion is waves of different wave length travel at different speed. It is why the wave packets pull apart.

The solution is decaying but the area underneath stays the same. This is dispersive decay.

Definition 6.1. Let

•
´
A
|ψ(x, t)|2 dx resembles the probability that the particle position is in the set A at time t.

•
´
M

|ψ̂(ξ, t)|2 dξ resemble the probability that the particle momentum is in the set M at time t.

• Mean position of a particle at time t

⟨X⟩(t) ≡
ˆ
Rn

x|ψ(x, t)|2 dx

• Mean momentum

⟨Ξ⟩(t) ≡
ˆ
Rn

ξ|ψ̂(ξ, t)|2 dξ

• Variance in position

⟨|X|2⟩(t) ≡
ˆ
Rn

|x|2|ψ(x, t)|2 dx

This is uncertainty in position.

• Variance in momentum

⟨|Ξ|2⟩(t) ≡
ˆ
Rn

|ξ|2|ψ̂(ξ, t)|2 dξ

This is uncertainty in momemtum. (But usually we substract the mean).

Theorem 6.3 (Uncertainty Relation). Suppose
´
Rn |ψ0|2dx = 1 and ψ satisfies the free Schrödinger Equation

(55) with data ψ0. Then

⟨|X|2⟩(t)⟨|Ξ|2⟩(t) ≥ (
n

2
)2
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Lemma 6.4 (Weighted Sobolev). Let f be such that xf(x) ∈ L2(Rn), i.e., has it finite variance. Let ∇f ∈
L2(Rn). Then ˆ

Rn

|f |2 dx ≤ 2

n

(ˆ
|xf |2 dx

) 1
2
(ˆ

|∇f |2 dx
) 1

2

Proof.

x · ∇|f |2 = x · ∇(ff) = xf · ∇f + xf · ∇fˆ
x · ∇|f |2 =

ˆ
xf · ∇f +

ˆ
xf · ∇f

But IBP on LHS we have

−n
ˆ

|f |2 =

ˆ
x · ∇|f |2

Using Hölder we have

−n
ˆ

|f |2 ≤ 2(

ˆ
|x|2|f |2) 1

2 (

ˆ
|∇f |2) 1

2

Proof of (6.3). Using Plancherel we have ∇̂f = iξf̂(ξ)

1 =

ˆ
|ψ0|2 =

ˆ
|ψ(x, t)|2 dx

≤ 2

n

(ˆ
|xψ|2 dx

) 1
2
(ˆ

|∇ψ|2 dx
) 1

2

=
2

n
⟨|X|2⟩ 1

2 (t)⟨|Ξ|2⟩ 1
2 (t)

Now think of
i∂tψ = −∆ψ

with

ψ(x, 0) = fL(x) = e−
|x|2

2L2

We have solution

ψ(x, t) =
1

(2n)
n
2

ˆ
e−ix·ξe−i|ξ|2tf̂L(ξ) dξ

But the RHS is complex Gaussian. Then take inverse transform

ψ(x, t) =
1

(1 + 2it
L2 )

n
2

e
− |x|2

2L2(1+ 2it
L2 )

Introduce

ψ(x, 0) = fL,ξ0(x) = eiξ0xe−
|x|2

2L2

This is Wave Packet, with wave length 2π
|ξ0| . This is giving it a push (kick) with ξ0. We want to study how it

evolves.

Lemma 6.5. Let ψ(x, t) be any solution of
i∂tψ = −∆ψ

For any ξ0 ∈ Rn define
ψ̃(x, t) := Gξ0(ψ)(x, t) = ψ(x− 2ξ0t, t)e

iξ0(x−ξ0t)

Then
i∂tψ̃ = −∆ψ̃

with initial data
ψ̃(x, 0) = eiξ0·xψ(x, 0)

Lemma 6.6.

ψ(x, t) =
1

(1 + 2it
L2 )

n
2

e
− |x−2ξ0t|2

2L2(1+ 2it
L2 ) eiξ0(x−ξ0t)

Very very concentrated things will spread out much faster. Things propagate outwards, decay and then spread.
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