
Computer Science
&

Data Science

Capstone Report - Fall 2023

On modifying Loss Function for Physics

Informed Neural Operator(PINO) to approach

Mathematics Nature in Fluid Mechanics

Kunyi (Mark) Ma

km5239@nyu.edu

Honors Mathematics, Data Science (Mathematics Concentration)

supervised by
Zhuang Su (zs2439@nyu.edu)

mailto:km5239@nyu.edu
mailto:zs2439@nyu.edu

Preface

This project explores the mathematics possibility of Neural Operator Learning
in Navier-Stokes Equations. We modified the original Data and PDE Loss
functions in PINO using regularity theory from PDE Analysis, and found a
Data Loss Norm that sees clearer turbulence flows. This promises more future
collaborations between mathematics analysis and data science. The project is
inspired by the author’s self-recognition as a PDE Analyst in the field of pure
mathematics, hence target audiences who are familiar with theoretical PDE
while hoping to explore fields in Applied Mathematics.

Acknowledgements

I express my deepest gratitude to my advisor Dr. Zhuang Su, and Prof.
Mathieu Lauriere for the discussions. I thank Mathematics Professors who led
me to the study in Fluid Mechanics PDE Analysis, Prof. Vahagn Nersesyan
and Prof. Vlad Vicol, and equally thank professor who’ve cultivated my PDE
maturity up to this semester: Prof. Fanghua Lin, Prof. Chao Li, Prof. Pedro
Antonio Santoro Salomão and Prof. Mac Huang. Finally, I wish to thank
Yuejia Zhang, my girlfriend, whose unconditional love and emotional support
helped me walk through the stressful semester.

2

Abstract

In this project, we explore a mathematics potential that fits PINO model better
to the PDE in Neural Operator Learning. We care about 2D Incompressible
Navier-Stokes, and leverage regularity theories from PDE Analysis to design
4 new Data and PDE Loss functions to the problem, Ls

data, L⇤
pde, Lw

data, and
Lw,t

data. Under 3 sets of experiments, Ls

data designed assuming strong H
1 ini-

tial data stands out in predicting clearer turbulence flows compared with other
methods and the original method. Hence this project introduces a promising
idea that encodes proper PDE energy class into Data Loss function norm de-
sign, leading PINO into mathematics nature in Navier-Stokes to a greater
extent.

Keywords

Neural Operator; Deep Learning; Physics Informed Neural

Operator; Physics Informed Neural Network; Fluid Mechanics;

Navier-Stokes Equations; Sobolev Training

3

Contents

1 Introduction 5

1.1 context . 5

1.2 objective . 7

1.3 contributions . 8

2 Related Work and Backgrounds 9

2.1 Model - PINO . 9

2.2 PDE - 2D Incompressible Navier-Stokes Cauchy Problem vorticity fomulation . . 10

3 Norm Design - Ls

data
, L⇤

pde
, Lw

data
, and Lw,t

data
13

3.1 Method 1 - Ls

data
Strong Solution Norm . 13

3.2 Method 2 - L⇤
pde

Sobolev PDE Loss function . 14

3.3 Method 3 & 4 - Lw

data
, Lw,t

data
Weak Solution norm (and with time regularity) . . . 16

4 Experiment and Results 18

4.1 Data Explanation and Training Setup . 18

4.2 Experimental Setup . 19

4.3 Experiment 1 . 21

4.4 Experiment 2 . 22

4.5 Experiment 3 . 26

5 Discussion 34

6 Conclusion 35

4

1 Introduction

1.1 context

Machine Learning with neural network has recently become promising in solving Partial Dif-

ferential Equations (PDE), formulated as

Lau(x, t) = f(x, t) x 2 D, t 2 [0, T]

The purpose was to learn the unknown function u with neural network, given operator La, function

f , and possible Initial/Boundary conditions. Note u is defined on each input (x, t) 2 D ⇥ [0, T].

Yet the previous work was subject to changes in the explicit form of La, i.e., for each new

’a’ entering La, the model always needs retraining. To tackle such a problem, Dr. Li and his

collaborators proposed the idea of ’Neural Operator’ which learns the operator that maps L from

function spaces a 2 A to u 2 U [1], instead of the function u (·) = L�1
a f (·) : D ⇥ [0, T] ! R.

They designed an iteration procedure with additional Kernel Integral Operator term

vt+1 (x) := �

✓
Wvt (x) +

Z

D

(K (a;�) vt) (x� y) dy

◆
8 x 2 D

whose choice is well-known for the Fourier Integral Operator

(K (a;�) vt) (x) = F�1 (R� · F (vt)) (x) 8 x 2 D

with F as Fourier Transform and R� the parameter to learn [2]. Such a method, known as Fourier

Neural Operator (FNO), can both solve the resolution issue for 1-dimension function space and

speed up computation with FFT.

In particular, they implemented their idea about FNO into a recently proposed method called

Physics Informed Neural Operator (PINO). The PINO model combines two ideas in operator

learning: using training model FNO, and minimizing loss function using Physics Informed Neural

Networks (PINN)[3], a well-established design based on the physics constraints from PDE problem

itself. The use of FNO is a supervised learning which requires input data, while minimizing loss

based on PINN is an unsupervised learning that purely originates from the physics problem. One

can think of PDE constraints as some ‘true’ guidance from mathematics that leads the model to

the correct parameters.

5

Therefore, it’s natural to construct 2 sets of loss functions to a well-formulated PINO problem.

The first set Lpde serves as PDE loss function designed from the PDE constraint, which takes

in source data a 2 A and our model prediction, and fits the model to our PDE of interest. The

second set Ldata is Data loss, which takes in our model prediction and the true data that we have,

fitting the model to the true data at hand. In concrete, for a given dynamical system

du

dt
= R(u), in D ⇥ (0,1)

u = g, in @D ⇥ (0,1)

u = a in D̄ ⇥ {0}

(1.1)

with a = u (0) 2 A as the initial condition, g as known boundary condition, R a partial differential

operator and the unknown u 2 U for A, U Banach spaces, the purpose is to learn the solution

operator G : A! C ((0, T] ; U) defined by a 7! u. In PINO, they designed the Operator PDE

Loss Function Lpde as

Lpde (a,G✓ (a)) ⌘ Lpde (a, u✓) :=

����
d

dt
u✓ �R(u✓)

����
2

L2((0,T];U(D))

(1.2)

+ ↵ ku✓|@D � gk2
L2((0,T];U(@D)) + � ku✓|t=0 � ak2U(D) (1.3)

choosing U (D) = L
2 (D) with hyperparameters ↵, �. Also, to minimize error between each

output of neural operator u✓ = G✓(a) and true value u, they have the original Operator Data

Loss Function Ldata

Ldata(u,G✓(a)) ⌘ Ldata(u, u✓) := ku� u✓k2U =

Z

D

|u(x)� u✓|2dx (1.4)

However, the original authors of PINO took it for granted that the natural norm L
2((0, T];L2(D))

they implemented in Lpde and Ldata works for all PDEs they consider. But based on my own

background from PDE analysis, norms for both loss functions Ldata and Lpde could be, and should

be carefully designed w.r.t. the specific PDE problem of interest due to proper regularity theories.

In doing so, one may expect a faster and more stable convergence rate, as well as less error in

Lpde loss while training.

6

1.2 objective

In this project, we care about the 2D periodic Navier-Stokes Equations for viscous and incom-

pressible fluid in vorticity form, with supporting theories from [4], [5] [6] and [7]. We wish to

justify the eligibility for modifying the loss functions Ldata and Lpde to the problem of learning

the operator Gtrue that maps initial condition to the full solution, i.e., Gtrue : w0 7! w|[0,T], whose

original assumptions are u 2 C
�
[0, T] ; Hr

�
D; R2

��
and w0 2 L

2 (D; R), D = (0, l)2 , r > 0

@tw (x, t) + u (x, t) ·rw (x, t) = ⌫�w (x, t) + f (x) x 2 (0, l)2 , t 2 (0, T]

r · u (x, t) = 0 x 2 (0, l)2 , t 2 (0, T]

w (x, 0) = w0 (x) x 2 (0, l)2

where w = r ⇥ u is vorticity, w0 initial condition, ⌫ 2 R+ the viscosity coefficient, and f 2

L
2
per((0, l)

2;R) the forcing function. In other words, we wish to train a model that predicts the

behavior of 2D turbulence flow in a finite time future, given the present vorticity of the flow.

We’ve come up with 4 methods to modify loss functions in all. 3 of them lies in modifying the

Data loss function Ldata based on Uniqueness and Existence Theory from Navier-Stokes PDE

Analysis; 1 modifies the PDE loss function Lpde leveraging Sobolev Training for PINN [5]. In

particular, the new Ldata are an innovation that incorporates information from PDE into the data

loss design, by choosing proper norms matching regularity of the PDE.

A brief idea for the 4 designs are as follows (see detailed constructions in Section 3). Recall

the original norm both to Ldata Lpde are L
2
�
(0, T] ; L2 (D)

�
, i.e., L2 in both time and space:

1. [4] suggests replacing Ldata norm L
2 (D) with results in Uniqueness and Existence theorem

from Navier-Stokes assuming H
1 strong initial data. We use the norm for the energy class

in Theorem 3.4 from [4] ‘Global Existence and Uniqueness of strong solutions in 2D’.

2. [5] suggests replacing Lpde norm L
2
�
(0, T] ; L2 (D)

�
with L

2
�
(0, T] ; H1 (D)

�
, i.e., Sobolev

norm H
1 in space, which incorporates the PDE’s first-order derivative.

3. [4] also introduces the notion of Leray-Hopf Weak solution, which satisfies global existence in

time assuming only L
2 initial data, but as a trade-off, sacrifices regularity. We try adopting

such norm for the energy class in Theorem 4.2, 4.5 from [4] ‘Existence and Uniqueness of

Leray-Hopf weak solutions in 2D’.

4. [4] mentioned for Leray-Hopf Weak solutions, one shall require certain time derivative reg-

7

ularities in accordance to the energy class. So we try adding the time-regularity to Ldata

as suggested by Theorem 4.2, 4.5 from [4] ‘Existence and Uniqueness of Leray-Hopf weak

solutions in 2D’.

During the computation in H
1, we wish to try an equivalent Sobolev norm H

k
, k 2 R in Real

Analysis [6], [7]

kfk2
Hk =

����F
�1

⇣
1 + |⇠|2

⌘ k
2 Ff

�����
2

L2

=

Z

Rd

⇣
1 + |⇠|2

⌘
k
���f̂ (⇠)

���
2
d⇠ (1.5)

which could be computed more efficiently by FNO in [2] via FFT and multiplication in Fourier

Space. Moreover, this shall perform more stable than finite difference method due to invariance

under resolutions.

1.3 contributions

We’ve coded and tested all Methods 1 - 4 with a Data Set as described in Sec 4.1. By comparing

training data loss errors, testing data loss errors and model predictions, we conclude that a good

choice of norm to capture mathematics nature in 2D Navier-Stokes is the choice of Strong Solution

Norm Ls

data (3.2), which captures better physics phenomenon than the Original Method as in [3].

This finding and invention hence suggests it’s important and promising to impose proper energy

class (regularity) theory from PDE analysis into Data Loss Function design.

8

2 Related Work and Backgrounds

The literature review aims to cover the original work on PINO, and the theoretical background

from 2D Navier-Stokes PDE that leads to the 4 norm designs to Lpde, Ldata I proposed.

2.1 Model - PINO

Traditionally, ‘operators’ are mathematical objects that map functions to other functions, which

play a crucial role in PDE. As deep learning started making waves in a multitude of domains,

the concept of a ‘neural operator’ emerged as an exciting synthesis of classical mathematical

operators and neural networks.

The idea of Neural Operator started to mark its importance in the paper [1], which brings

forward an innovative neural network architecture tailored for PDEs, defined as

G✓ := Q � (WL +KL) � · · · � �(W1 +K1) � P (2.1)

where P and Q are pointwise operators,. The model stacks L layers of �(Wl +Kl) where W are

pointwise linear operators, Kl : {D ! Rdl} ! {D ! Rdl+1} are integral kernel operators and �

as activation function. The later paper [2] by Dr. Li et al on the Fourier Neural Operator (FNO),

in particular, revised the iteration procedure

vt+1 (x) := �

✓
Wvt (x) +

Z

D

 (x, y, a (x) , a (y) ;�) vt (y) dy

◆
8 x 2 D

by choosing the kernel operator as the Fourier Kernel, defined as

 (x, y, a (x) , a (y) ;�) vt (y) ⌘ (K (a;�) vt) (x� y) := F�1 (R� · F (vt)) (x� y) 8 x� y 2 D

The Fourier kernels view convolution operation as multiplication in the Fourier space, and by

setting a limit to frequency truncation in Fourier modes, they exhibit remarkable proficiency

in capturing multi-scale features in many PDE problems. This characteristic not only bolsters

computational efficiency but also ensures a degree of discretization invariance, making the model

particularly adept at handling varied spatial-temporal data.

Meanwhile, the blending of classical physics with modern machine learning techniques, partic-

ularly led by PINN, has become an area of burgeoning research in solving PDEs. Building on

9

Figure 1: solve for one specific instance verse learn the entire solution operator
Left: numerical solvers and PINNs focus on solving one specific instance. Right: neural

operators learn the solution operator for a family of equations. In PINO, for each iteration, we
use Data loss to learn the operator for the Right, and then optimize the operator by minimizing

w.r.t. PDE loss instance-wise for the Left.

foundational architectures in the FNO, Dr. Li et al in [3] introduced the Physics-Informed Neural

Operator (PINO), whose brilliance lies in identifying that learning solution to PDEs falls into

2 paradigms: data-driven learning, and physics-informed optimization. As summarized in the

introduction part from [3], PINO model aims to merge both paradigms by combining training

data with a PDE loss function at a higher resolution, to ensure less degradation in accuracy

on high-resolution tests if only low-resolution training data is provided. On one hand, it out-

performs their old design in FNO, which cannot capture frequencies seen beyond training data,

while on the other hand, it outperforms PINN because FNO computes gradients in Fourier space

explicitly, which are more accurate than sampling-location-computations purely based on auto-

differentiation w.r.t. PDE loss function. Figure 1 shall serve as a direct comparison between how

PINN optimizing loss function solves equation pointwise, and how FNO as neural operator works

upon training with data loss.

2.2 PDE - 2D Incompressible Navier-Stokes Cauchy Problem vorticity fomulation

The ‘Navier-Stokes equations’(NS), a cornerstone in the study of fluid mechanics, capture the

behavior of viscous fluid motion. In the realm of ‘incompressible flows’, the fluids are of constant

density and prohibit volume changes, while in terms of ‘vorticity formulation’, solutions represent

the fluid’s local rotational effects [4]. In particular, the ‘2D case’ is commonly favored in numerical

methods as vorticity is of dimension 1 (while in 3D vorticity remains dimension 3), hence more

numerically computable. Moreover, the associated ‘Cauchy problem’ focuses on the temporal

evolution from a specified initial vorticity w0, which makes it possible for operator learning by

10

viewing initial data w0 as input, and its behavior over time [0, T] governed by the equation, w|[0,T]

as output [8]. Hence, the study on 2D Incompressible Navier-Stokes Cauchy Problem vorticity

fomulation isn’t only math problem, but also fits as perfect setting for Neural Operator Learning

as proposed by Dr. Li et al [3].

We first present the PDE problem on 2D Navier-Stokes from [3]. Consider the 2D Navier-

Stokes equation for a viscous, incompressible fluid in vorticity form on the unit torus, where

u 2 C([0, T];Hr
per((0, l)

2;R2) for any r > 0 is the velocity field, w = r⇥ u is the vorticity, w0 2

L
2
per((0, l)

2;R) is the initial vorticity, ⌫ 2 R+ is the viscosity coefficient, and f 2 L
2
per((0, l)

2;R)

is the forcing function. We want to learn the operator mapping the vorticity from the initial

condition to the full solution Gtrue : w0 7! w|[0,T].

@tw(x, t) + u(x, t) ·rw(x, t) = ⌫�w(x, t) + f(x), x 2 (0, l)2, t 2 (0, T]

r · u(x, t) = 0, x 2 (0, l)2, t 2 [0, T]

w(x, 0) = w0(x), x 2 (0, l)2

(2.2)

To prepare for our norm design in Operator PDE Loss function Lpde, we mention some

mathematical fact behind the particular NS setting, and how a computer computes it by ‘solving

velocity from vorticity’. Recall the 2D Biot-Savart’s law in [4], which recovers velocity field

u =

2

64
ux

uy

3

75 given vorticity w 2 R.

u(t) = �r>(��)�1
w(t) (2.3)

where the curl operator �r> :=

2

64
@y

�@x

3

75 in 2D. We call the scalar function that solves the

Poisson’s equation �� (t) = w(t) the stream function (which is scalar). Hence by inverting

the Laplacian, we can represent u(t) =

2

64
@y

�@x

3

75 where = (��)�1
w. Note that using Fourier

Transform, differentiation and ‘inverting differential operator’ are equivalent to multiplying by

powers of ik, where k is frequency from Fourier space and i is imaginary unit. Hence u can be

computed easily from w upon using Fast Fourier Transform. Therefore given ✓ as parameter for

the current neural operator, we’re able to compute u✓ purely from using w✓, hence the following

R(w✓) := �u✓(x, t) ·rw✓(x, t) + ⌫�w✓(x, t) + f(x) (2.4)

11

where the forcing f and viscosity coefficient ⌫ are initialized as part of the PDE problem. There-

fore the original PDE loss function (1.2), using G✓ from (2.1), in the 2D NS vorticity formulation

case, reduces to

Lpde (w0,G✓(w0)) ⌘ Lpde (w0, w✓) := ↵

����
d

dt
w✓ �R(w✓)

����
2

L2((0,T];L2((0,`)2))
+� kw✓|t=0 � w0k2L2((0,`)2)

(2.5)

where R(w✓) can be explicitly computed as above, and d

dt
w✓ via finite difference method.

To prepare for our norm design in Operator Data Loss function Ldata, we similarly view

it in the 2D NS setting as in (1.4), for w true solution and w0 initial data

Ldata(w,G✓(w0)) ⌘ Ldata(w,w✓) := ↵kw � w✓k2L2([0,T);L2((0,`)2)) = ↵

Z
T

0

Z

(0,`)2
|w � w✓|2dxdt

(2.6)

To introduce theories, we recall definition for Sobolev Spaces

H
k (D) :=

�
f 2 L

2 (D) | 8 ↵ 2 Zd
+ multi� index s.t. |↵| k, the distribution derivative @

↵
f 2 L

2 (D)

(2.7)

with multi-index ↵ = (↵1, · · · ,↵d), of order |↵| :=
P

d

i=1 ↵i and @
↵
f ⌘ @

↵1 · · · @↵df . We also

denote for simplicity

H
1
� := L

2
� \H

1
where L

2
� :=

�
u 2 L

2 | r · u = 0 in distribution sense

that captures ‘incompressible’ condition. Now we state the Theorems that we wish to follow

from [4].

Theorem 2.1 (Global Existence and Uniqueness of strong solutions in 2D (Theorem 3.4 from

[4])). Fix ⌫ > 0 viscosity, and given u0 2 H
1
� in 2D, there exists unique solution u 2 C

�
[0, T) ;H1

�

�
\

L
2
�
(0, T) ;H2

�

�
that solves (2.2) with f = 0, where T > 0 is arbitrary.

Theorem 2.2 (Existence and Uniqueness of Leray-Hopf weak solutions in 2D (Theorem 4.2,

4.5 from [4])). Fix ⌫ > 0 viscosity, and given u0 2 L
2
� in 2D, there exists unique Leray-Hopf

weak solution u 2 L
1
loc

�
0,1;L2

�

�
\ L

2
loc
(0,1; Ḣ1

�) whose time derivative has regularity @tu 2

L
2
loc
(0,1; Ḣ�1) solving (2.2) in the sense of distributions with f = 0.

Here norm in Ḣ
k means considering only highest order distributional derivative in H

k. And

H
�1 is dual space of H1. We compute H

�1 norm using Fourier Characterisation (1.5).

12

3 Norm Design - Ls

data
, L⇤

pde
, Lw

data
, and Lw,t

data

In this section, we explain in detail the 4 methods in loss function design, with possible algo-

rithms included.

3.1 Method 1 - Ls

data
Strong Solution Norm

We’re proud to introduce a new set of Data Loss function of high originality in the domain of

Data Science. They include information from the PDE solution’s regularity, yet serve as pure

Data Loss function, meaning the loss function themselves have less to do with the explicit PDE,

but only takes important information from the solution space that the PDE generates. We can,

of course, still define Data Loss functions using unusual norms without knowing the PDE. But it

is because of the PDE that makes such particular choice of norm reasonable.

The paper by Dr. Li at el [3] did choose a good function class for expected solutions u and

initial value w0 to work with. Yet they seemed to stop there, and didn’t quite make use of

the regularity result that automatically establishes itself from Theorem 2.1. Under the similar

assumptions compatible with the paper (the paper assumes w0 2 L
2, hence u0 2 H

1), velocity u

automatically satisfies existence and uniqueness in the following class

u 2 C
�
[0, T) ;H1

�

�
\ L

2
�
(0, T) ;H2

�

�
=) w 2 C

�
[0, T) ;L2

�

�
\ L

2
�
(0, T) ;H1

�

�
(3.1)

meaning if w✓ were to converge w.r.t. the norm on RHS, then the limit is unique as the true

solution w. Hence,

Ls

data
(w,G✓(w0)) ⌘ Ls

data(w,w✓) := ↵kw � w✓k2L2([0,T);H1((0,`)2)) + �kw � w✓k2L1([0,T);L2((0,`)2))

(3.2)

should be a more theoretical norm than the previous ordinary norm in L
2. Here L

1 is simply

defined as taking maximum, and H
1 the Sobolev norm.

When computing H
1 norm for each iteration, we try 2 methods: finite difference method using

Sobel Operator Algorithm 1, and implementing the Fourier Differentiation Algorithm 2 making

use of (1.5).

The finite difference method uses dx = 1/64 as compatible with spatial resolution for the input

data dimension. For the Fourier Differentiation, we use Fast Fourier Transform and choose the

lower half wave numbers in accordance with choice from [2], which truncates the finite number of

13

Algorithm 1 Compute Spatial Gradients using Sobel Operator
1: function Compute_Spatial_Gradients(w, dx)
2: Define Sobel operators for x and y gradients:

3: sobel_x

2

4
�1 0 1
�2 0 2
�1 0 1

3

5⇥ 1
8dx

4: sobel_y

2

4
�1 �2 �1
0 0 0
1 2 1

3

5⇥ 1
8dx

5: grad_x 2D convolution of w with sobel_x

6: grad_y 2D convolution of w with sobel_y

7: Return grad_x, grad_y

8: end function

Algorithm 2 Fourier Differentiation
function Fourier_Differentiation(w)

2: batchsize batchsize of w
nx size of x spatial dimension of w

4: ny size of y spatial dimension of w
w w.reshape(batchsize, nx, ny)

6: wh 2D FFT of w over spatial domain
k_max nx//2

8: N nx

Generate kx and ky wavenumbers
10: wx_h 1j ⇥ kx ⇥ wh

wy_h 1j ⇥ ky ⇥ wh

12: wx Inverse FFT of wx_h[:, :, : k_max+ 1]
wy Inverse FFT of wy_h[:, :, : k_max+ 1]

14: Return wx,wy

end function

Fourier modes for the FNO model. The feasibility is guaranteed by (1.5). Experimental results

appear similar for both cases, so we stick to Fourier Differentiation in our following experiments

that shall in theory expect more stability.

3.2 Method 2 - L⇤
pde

Sobolev PDE Loss function

As from [5], the main concept behind Sobolev Training is to minimize error between output and

target function, and that between derivatives of output and target function, known as ‘gradient

matching’. By adding the first-order derivative term to the loss function, the neural network is

penalized if its gradients deviate from the expected gradients (as given by the physical laws). This

helps in stabilizing the training, which often results in faster convergence and better generaliza-

tion, and is especially beneficial when the available data is sparse. In our case, it is equivalently

14

to rewriting our Lpde(w0,G✓(w0) as

L⇤
pde

(w0,G✓(w0)) ⌘ L⇤
pde

(w0, w✓) := ↵

����
d

dt
w✓ �R(w✓)

����
2

L2((0,T];H1((0,`)2))
+� kw✓|t=0 � w0k2H1((0,`)2)

(3.3)

that incorporates information about first derivative in space, with R defined in (2.4). Here we

provide Algorithm 3 designed based on [3] that computes the object D(w) (which later take

difference with forcing f to obtain d

dt
w✓�R(w✓)), using finite difference method for time interval,

yet Fourier Differentiation for spatial gradients. We plug the result into L
2
tH

1
x norm as designed

from Algorithm 2. Notice during Statement 14 to 16 in Algorithm 3, we’ve used Biot-Savart’s

law to recover u from w, as discussed in (2.3).

Algorithm 3 Finite Difference Method for Navier-Stokes Vorticity Formulation
procedure FDM_NS_Vorticity(w, ⌫, t_interval)

Extract dimensions batchsize, nx, ny, nt from w

3: Reshape w to (batchsize, nx, ny, nt)
Compute 2D FFT of w over x, y dimensions to get wh

Initialize wavenumbers kx, ky for x, y directions:
6: k_max nx//2

N nx

Generate wavenumber tensors kx and ky up to k_max modes in both spatial dimensions
9: Compute negative Laplacian in Fourier space:

lap (k2x + k
2
y)

Avoid division by zero at zero-frequency by setting lap[0, 0, 0, 0] 1.0
12: Compute stream function in Fourier space:

fh wh/lap

Compute velocity components in Fourier space:
15: uxh 1j · ky · fh

uyh �1j · kx · fh
Compute gradient of vorticity in Fourier space:

18: wxh 1j · kx · wh

wyh 1j · ky · wh

Compute Laplace of vorticity in Fourier space:
21: wlaph �lap · wh

Convert Fourier space computations back to spatial domain:
ux Inverse FFT of uxh

24: uy Inverse FFT of uyh
wx Inverse FFT of wxh
wy Inverse FFT of wyh

27: wlap Inverse FFT of wlaph
Compute time step dt t_interval/(nt� 1)
Compute time derivative of vorticity wt using finite difference:

30: wt (w[..., 2 :]� w[..., : �2])/(2 · dt)
Compute the Navier-Stokes term D(w):
D(w) wt+ (ux · wx+ uy · wy � ⌫ · wlap)[..., 1 : �1]

33: Return D(w)
end procedure

15

Note that this is much stronger assumption than the previous Lpde. Hence mimicing the proof

provided in Theorem 7.4 from [5], which is originally carried using 1�D Burger’s equations, we

can show that

kw(t)� G✓(w0)(t)kL1(0,T ;L2((0,`)2)) ! 0 as L⇤
pde

(w0,G✓(w0))! 0

The essential ideas are integrating by parts, Hölder’s Inequality and Grönwall’s Inequality. Also,

in the modification to Lpde, we’re only requiring regularity u 2 C
�
[0, T] ; H1

�
(0, `)2; R2

��
and

w0 2 L
2
�
(0, `)2; R

�
, which matches the pre-assumed regularity class in the paper [3], meaning

the provided dataset shall work well. Hence we’re confident about obtaining good convergence

result via this L⇤
pde

. Finally, notice in our case, since the output dimension is essentially 1 due

to vorticity formulation, we don’t need to worry much about high-computation-costs for the

derivative issues from [9] which have to use stochastic approximations for simplicity, but indeed

introduced noises.

3.3 Method 3 & 4 - Lw

data
, Lw,t

data
Weak Solution norm (and with time regularity)

Now compared to Ls

data
as in Section 3.1, if we relax our notion of regularity for u a little

bit, for example, viewing spatial derivative in the distribution sense, we can allow for u0 initial

velocity in L
2
�. By result in Theorem 2.2, this gives Uniqueness and Existence to Leray-Hopf weak

solution globally in 2D, which are of lower regularity. The reason why we care about such notion

is due to low regularity phenomenon observed in turbulence, known as Kolmogorov and Onsager

theories of hydrodynamic turbulence. The ansatz of such theory is that, in the vanishing viscosity

limit, solutions of Navier-Stokes Equations do not remain smooth uniformly w.r.t. ⌫, thus may

only converge to distributional solutions of Euler’s equations [10]. Hence in mathematics, weak

solutions are in fact of more importance according to the physics nature. And in our dataset

of interest, ⌫ = 1/500 is indeed small number, which makes sense to try using energy class to

leray-Hopf weak solution. The full definition of Leray-Hopf weak solution is quite complicated,

interested readers might find in [4]. Here we only need 2 facts about u

u 2 L
1
loc

�
0,1;L2

�

�
\ L

2
loc
(0,1; Ḣ1

�) the energy class (3.4)

@tu 2 L
2
loc
(0,1; Ḣ�1) the time regularity (3.5)

16

There we shall leverage either the duality w.r.t. Ḣ
1 to compute Ḣ

�1 or by Fourier Characteri-

sation (1.5). And notice since u is no longer differentiable, we might need to again use Biot-Savart

(2.3) to recover u = r>(�)�1
w during computations in w (realized similarly in Algorithm 3),

then compute the Lw

data

Lw

data
(w,G✓(w0)) ⌘ Lw

data(w,w✓) := ↵ku�u✓k2
L2([0,T);Ḣ1((0,`)2))+�ku�u✓k

2
L1([0,T);L2((0,`)2)) (3.6)

and to add time derivative norm to Lw,t

data

Lw,t

data
(w,G✓(w0)) ⌘ Lw,t

data(w,w✓) := ↵ku� u✓k2
L2([0,T);Ḣ1((0,`)2)) + �ku� u✓k2L1([0,T);L2((0,`)2))

(3.7)

+ �k@tu� @tu✓k2
L2([0,T);Ḣ�1((0,`)2)) (3.8)

We provide with Algorithm 4 that computes H�1 using the weighted L
2 norm in Fourier Space

as in (1.5) at each fixed time step.

Algorithm 4 Compute Inverse H Norm
procedure H_Inverse_Norm(f)

Extract dimension nx from f

Initialize wavenumbers kx, ky for x, y dimensions:
4: k_max nx//2

Generate wavenumber tensors kx and ky

Compute squared wave numbers ksquared k
2
x + k

2
y

Avoid division by zero at zero frequency by setting ksquared[0, 0, 0] 1
8: Compute the Fourier transform of f :

Ff 2D FFT of f over x, y dimensions
Compute the weighted L2 norm in Fourier space for each time step:
weighted_L2_per_timestep

P⇣
|Ff |2

ksquared

⌘
over x, y dimensions

12: Subtract the zero-frequency component for each time step:
zero_frequency_norm |Ff [:, 0, 0]|2
weighted_L2_per_timestep weighted_L2_per_timestep�zero_frequency_norm

Return weighted_L2_per_timestep

16: end procedure

17

4 Experiment and Results

With all 4 Norms Ls

data (3.2), L⇤
pde (3.3), Lw

data (3.6) and Lw,t

data (3.8), we set up numerical

experiments.

4.1 Data Explanation and Training Setup

We have a large Data Set of size 4000, each data having spatial resolution 64⇥64, and temporal

resolution 64 (including both end points, so 65 time steps indexing from 0 to 64), with resolution

based on unit cube of [0, 1]⇥ [0, 1]⇥ [0, 1] (See Fig. 2 as example of a first training data at sample

position 0 with time step 1). The 4000 data are taken from one whole simulation, where the 64th

time step for one data is the 0th time step for the next one.

Figure 2: A training data sample at position 1 and time step 1

The training set samples 400 data from the beginning while the testing set samples the last 400.

By setting t_interval =0.5 scale, we pre-process data by using data loader that sub-divides unit

time interval into size of [0, 0.5], [0.25, 0.75], [0.5, 1.0], [0.75, 1.25] where the last interval takes

[0, 0.25] from the next data and attaches to [0, 75, 1.0] for the previous one. Hence each data,

with spatial resolution fixed, are modified into size of (64, 64, 33). And while training, for each

epoch, we train the model once, but test the errors on 4 consecutive data that were chopped off

with overlapping time intervals. This procedure not only increases training data set size, but also

incorporates some ‘continuous’ information one can convey to the loss functions, agreeing with

18

the dynamical system. For testing data, we use similar chopping procedure via dataloader, but

only take 2 consecutive data to compute the testing errors and then take its average. We expect

the testing data loss to fluctuate, even for the original model design with original loss functions

(2.5), (2.6), so that we can make sharper comparisons.

Furthermore, for each epoch, we train model once, but test on 4 consecutive data, and hence call

loss.backwards() with optimizer.step() 4 times. So for each epoch, each data iteration inherits

loss function optimization from the previous data iteration, hence we manually push to model to

‘correct’ prediction for each consecutive 4 data as a whole. Now for this step, the original model

uses Ldata (2.6) and Lpde (2.5) to record L
2
tL

2
x data loss and PDE loss. The loss they essentially

updates are linear combinations of the 3 terms: lossl2 from Ldata, lossf and lossic from Lpde,

the latter denoting equation f loss and initial condition loss (recall we don’t care about boundary

data loss as we’re dealing with periodic box T2). The linear coefficients sitting at the front are

weights, as hyper-parameters, all set to 1. For consistency issues, when we try replacing Ldata

(2.6) and Lpde (2.5), we keep their corresponding weight summation the same. For instance when

we do Strong solution norm Ls

data
(3.2) which introduces both L

2
tH

1
x and L

1
t L

2
x norms, we take

weight 4/5 for L
2
tH

1
x and 1/5 for L

1
t L

2
x, which adds up to 1.

At each epoch, after 4 iterations of loss function optimization using data, which is semi-

supervised, we add one more purely unsupervised iteration which only deals with PDE loss,

using random initial data. We generate an online data loader using Gaussian Free Fields with

chosen size (as suggested by Dr. Li et al. in [3]), use our model trained at this epoch to predict

using this initial data, and plug in Lpde loss. Call eqnloss.backward() and optimizer.step() for

1 iteration. In particular, the random initial data and model predictions are of higher spatial

resolution (128, 128) which deals with degradation issues if only low-resolution training data is

provided, as wrote in Section 2.1. This work is one of the major contributions to combine FNO

and PINN.

4.2 Experimental Setup

We mainly conducted 3 sets of experiments.

• Experiment 1. We code all 4 loss functions Ls

data (3.2), L⇤
pde (3.3), Lw

data (3.6) and Lw,t

data

(3.8), and try different weight combinations with a short time epoch = 160, batch size = 1.

We then fixed the weight combination for each norm for later computations. After getting

familiar with the training loss behavior for each loss function, we compared finite difference

19

method with Fourier Differentiation using Ls

data and made the decision to implement Fourier

Differentiation for future H
1 calculations.

• Experiment 2. We wish to study how the 4 original training losses provided in [3] behave

using our newly designed 4 methods. The losses are:

1. Data L
2
tL

2
x error (Ldata (2.6))

2. Data f error (first term in Lpde(2.5))

3. Data IC L2 error (second term in Lpde(2.5))

4. Random IC Train equation loss (sum of both terms in Lpde(2.5) with w0 random initial

data generated by Gaussian Free Field, see last paragraph of Section 4.1)

In addition to the losses, we keep track of Time Cost Average, computed by: total time up

to a given epoch divided by the given epoch. So

Time Cost Average⇥ the current epoch = Total time usage up to the current epoch

This reflects the efficiency of methods. In particular, we try to ensure a more stable con-

vergence in general by the following 2 approaches: enlarging the batch size to 4; setting up

a scheduler milestone that decreases the learning rate by half per 40 epochs.

• Experiment 3. We collect 3 test losses evaluated at test sample (the last 400 data), and

keep the Random IC Train equation loss:

1. TEST Data L
2
tL

2
x error (Ldata (2.6))

2. TEST Data f error (first term in Lpde(2.5))

3. TEST Data IC L2 error (second term in Lpde(2.5))

4. Random IC Train equation loss

This time we reduce batch size back to 1, and do not change base learning rate as epochs

increase (since the suggested milestone in fact requires more epoch than our experiment

epoch). We expect to see actual learning outcome of the models guided by our Methods.

Finally we plot the testing data indexing at epoch 559 time step 32, and at epoch 599 time

step 16, then compare the different actual predictions of our Methods.

20

4.3 Experiment 1

In philosophy, our original purpose of modifying loss functions is to approach the mathematics

nature in Navier-Stokes Equations. Hence among the 4 original training loss, we particularly care

about Data f error and Random IC Train equation loss, which are mainly information encoded

within the PDE itself. The main comparison threshold for weights combinations and algorithm

to calculate H
1 in the first Experiment thus lies in minimizing and witnessing a more stable

convergence in Data f error and Random IC Train equation loss.

For finding the suitable weights combination, we provide an example for Method 1 Ls

data
(3.2).

At this stage, all weights are tested with the finite difference method dx = 0.01 to compute for

H
1. In table 1, Data L

2
tH

1
x error weight corresponds to ↵ in Ls

data (3.2), Data L
1
t L

2
x error weight

to � in (3.2), while Data L
2
tL

2
x error weight is ↵ in Ldata (2.6).

Index Data L
2
tH

1
x error weight Data L

1
t L

2
x error weight Data L

2
tL

2
x error weight

weight 1 3/5 1/5 1/5
weight 2 1/5 1/5 3/5
weight 3 1/5 3/5 1/5
weight 4 4/5 1/5 -

Table 1: Experiment 1 weight combinations for each data error.

Figure 3: Data f error and Random IC Train equation loss to Table 1

As shown in Fig 3, the engagement of original Data loss design seems to distract the convergence

in both Data f error and Random IC Train equation loss as indicated by ‘weight 4’. And the fact

that ‘weight 1’ behaves the closest to ‘weight 4’ suggests the leading role of the first term in (3.2),

i.e., the L
2
tH

1
x norm. Hence we pick the weight combination 4/5 for ↵ and 1/5 for � in (3.2).

The other norms are treated likewise. We provide with the following weight choices Table 2 for

Data Loss and Table 3 for PDE Loss to are our Methods 1 - 4 fixed for future experiments. All

weights correspond to certain choice of hyper-parameters ↵, �, � from (2.6), (2.5), (3.2), (3.3),

21

(3.6), (3.8). In Table 3, f stands for ↵ in either (2.5) or (3.3), IC stands for � in either (2.5) or

(3.3).

Method L
2
tL

2
x L

2
tH

1
x L

1
t L

2
x weak L

2
t Ḣ

1
x weak L

1
t L

2
x weak L

2
t Ḣ

�1
x

Method 1 Ls

data - 4/5 1/5 - - -
Method 2 L⇤

pde 1 - - - - -
Method 3 Lw

data - - - 4/5 1/5 -
Method 4 Lw,t

data - - - 3/5 1/5 1/5

Table 2: Data error Ldata weights for Methods 1-4

Method f L2
tL

2
x ICL

2
x f L2

tH
1
x ICH

1
x

Method 1 Ls

data 1 1 - -
Method 2 L⇤

pde - - 1 1
Method 3 Lw

data 1 1 - -
Method 4 Lw,t

data 1 1 - -

Table 3: PDE error Lpde weights for Methods 1-4

With fixed choices for weight combinations, we select a method to compute for spatial deriva-

tives H
1
x. We conduct an experiment using Finite Difference Method Algorithm 1 dx = 1/100,

dx = 1/64 and Fourier Differentiation Algorithm 2, tracing Data f error and Random IC Train

equation losses, see Fig 4. The ‘fourier’ one indicated in both errors appear less than the results

for finite difference methods, whereas for different resolutions dx, we nearly see no difference.

Hence we propose keeping Fourier Differentiation as our tool to compute spatial H
1
x in later

experiments.

Figure 4: Data f error and Random IC Train equation loss to compute H
1
x

4.4 Experiment 2

We begin by justifying that choosing batch size = 4 indeed makes convergence more stable. As

typical example, we still used Method 1 whose spatial gradient computation incorporates great

22

fluctuations. This time we not only choose as usual Data f error, but also use Data train loss,

which is sum of Data f, Data IC and Data Loss (in Ls

data case, 4/5 L
2
tH

1
x + 1/5 L

1
t L

2
x). We

observe that in both errors, a batch of size 4 outperforms batch size 1 in stability, as in Fig 5.

Figure 5: Data f error and Data training loss for batch size = 1, 4

Now we present the training data losses along with Time Cost Average for the Original Method,

and Methods 1 - 4, see Fig 6, 7, 8, 9, 10. Notice we’re comparing the training loss, instead of

testing loss, hence the aim lies in comparing how well, how fast, and how stable our methods

fit the training data. We may extract the following information via comparison between these 5

figures:

Figure 6: Training Data L
2
tL

2
x error

• From Data L
2
tL

2
x error Fig 6 and Data IC L2 error Fig 8, we clearly observe the trend that

Method 1 Ls

data converges the poorest while the Original Method (2.5), (2.6) converges the

best. However, on the other hand, from Data f error Fig 7 and Random IC Train equation

loss Fig 9, we observe the opposite trend that Method 1 Ls

data converges the best while the

Original Method converges the poorest. This to a great extent matches our hypothesis that,

making use of Uniqueness and Existence Theorem assuming H
1 initial data u0, our energy

23

Figure 7: Training Data f error

Figure 8: Training Data IC L2 error

Figure 9: Random IC Train equation loss

24

Figure 10: Training Time Cost Average

class (3.1) shall be the correct function space to minimize norm in. This piece of information

inherited from PDE indeed ensures a better PDE error convergence, hence sacrificing Pure

Data error, even for initial condition.

• We compare the behavior of Method 1 Ls

data and Method 2 L⇤
pde in Fig 6 to 8, and observe

that their convergence behavior matches the most as epochs increase. However, in Random

IC Train equation loss Fig 9, we notice a great distinction, where Method 1 Ls

data way

outperforms Method 2. The phenomenon suggest that Method 1 Ls

data is better at dealing

with random initial data, hence learned more information about the PDE. On the other

hand, in fact, Sobolev Training with L⇤
pde does not give the model any more information

about the PDE itself, even though the first order gradient matching in the loss function

behaves well in Fig 6 to 8. It is their distinction in Fig 9 that justifies: it is the matter

of ‘lying in the correct energy class’ that ensures good convergence in Method 1 Ls

data, not

necessarily training with gradient matching. Also, due to direct gradient matching for both

Methods 1, and 2, Time Cost Average Fig 10 shows they cost the least training time.

• Whether our Method learns information well in the PDE is essentially reflected in its be-

havior on Random IC Train equation loss Fig 9. Notice except for Method 1, all other

methods seem to behave similar, even worse in terms of convergence. We focus on Method

3 Lw

data and Method 4 Lw,t

data, and notice they behave similarly on Fig 9 in terms of ‘not

catching information from PDE’. For Fig 6 and Fig 8, they lie somewhere in between the

Original Method and Method 1, indicating a certain improvement(compared to Method 1)

in capturing actual data loss yet not to the level of original Method. Method 3 and 4 did

25

show a distinction in Fig 7, where Method 4 Lw,t

data behaves worse in capturing data f error,

even up to the level of the Original Method. This does reflect the original purpose of defin-

ing Weak Norms, which are to sacrifice regularity for integrability, so they should behave

less sharp and more stable. However in the training losses, we did not see an enhancement

in fitting to the PDE, so we question the working eligibility of Method 3 and 4 for now.

And do observe, due to applying Biot-Savart that translated back from vorticity to velocity

at each epoch, the Time Cost Averages behave terrible for both methods.

4.5 Experiment 3

We reduce batch size = 1 and keep the learning rate fixed for the first 600 epochs. This

corresponds to the original setup in [3]. Strictly following weight combinations in Table 2 and

Table 3, we obtain Figure 11, 12, 13, 14 and 15.

Figure 11: TEST Data L
2
tL

2
x error

We add a few more observations to the loss functions:

• As shown in Random IC Train equation loss Fig 14, after around 350-400 epochs, expect

for Method 2, all other Methods term to converge to the same behavior, with Method 1

performing a bit better, but Methods 3 and 4 are not ‘worse’, turning a negative answer

to what was suggested in the previous experiment. Methods 3 and 4 indeed behave more

stable and lie between the Original Method and Method 1 in TEST Data L
2
tL

2
x error Fig 11

and TEST Data IC L2 error Fig 13, indicating an adaptation from PDE theorems to

the supervised learning Model, and indeed preserve learning outcomes on the PDE itself.

However, both Methods 3 and 4, in general, perform not as good as the Original Method,

26

Figure 15: Time Cost Average

while remaining high in Time Cost Average Fig 15. Hence they themselves are not suitable

loss functions to train a PINO model with.

• Meanwhile, Method 2 ‘unexpectedly’ remains high in Random IC Train equation loss Fig 14,

indicating Sobolev Training modification to the equation itself does not learn much infor-

mation about the PDE itself. Combine with its poor Time cost Average behavior in Fig 15,

we conclude as well that Method 2 itself is not suitable loss functions to train a PINO model

with.

• Finally, for Method 1, we observe similar performance on Data f error Fig 12 and Random

IC Train equation loss Fig 14 compared with its behavior on training losses in Experiment 2.

Among the 4 Methods we’ve studied, Strong Solution norm Ls

pde (3.2) captured the most on

PDE information, outperforming the Original Method, and deserves a further investigation.

Now we plot the actual prediction for Original Method and Method 1 at test sample 559 time

step 32, see Figure 16. Due to a relatively early stage in training, we see both the Original

Method and Method 1 does not perform well in learning the true data, yet there are differences

lying between the Model Predictions for Original Method and Method 1. In particular, our

Method 1 sees clearer the following curves compared with Original Method

• x-dimension around 20 and y-dimension 50-60

• x-dimension 50-60 and y-dimension 10-20

• the boundary between 2 curves at x-dimension 20-30 and y-dimension 20-30

28

Figure 12: TEST Data f error

Figure 13: TEST Data IC L2 error

Figure 14: Random IC Train equation loss

27

Figure 16: Test Sample 559 at time step 32 (True Data, Original Method, Method 1)

29

Further demonstrating the difference, we include another set at Test Sample 599, but at an

earlier time step 16, see Fig 17. An earlier time step prediction, in principle, shall be easier to

capture flows. Indeed, we again make observations that our Method 1 sees clearer the following

curves compared with Original Method

• x-dimension 20-40, y-dimension 0-20

• x-dimension 40-60, y-dimension 30-50

• the boundary between 2 curves at x-dimension 0-20, y-dimension 30-40

However, also note that the Original Method sees a sharper color contrast in Fig 17, which

matches more with the True Data, meaning the overall ‘values’ are predicted better. On the other

hand, Method 1 overall appears ‘darker’, but did see ‘thinner’ and clearer curves that matches

more with the True Data. This observation agrees with our loss function trackings in both training

data and testing data, and further justifies our hypothesis that: Making use of Strong solution

norm, i.e., inheriting more information from PDE to the data loss function design, really does

give better predictions in data that captures physical movement in turbulence.

For matters of completion, we post model predictions on same data Test Sample 559, time step

32, and on Test Sample 599, time step 16, using Methods 2, 3, 4. One can be careful and observe

that the model predictions are in general blurred and doe not give good predictions as Method

1. See Fig 18 and Fig 19 for comparison over all methods.

30

Figure 17: Test Sample 599 at time step 16 (True Data, Original Method, Method 1)

31

Figure 18: Test Sample 559 at time step 32 (True Data, Original Method, Methods 1-4)

32

Figure 19: Test Sample 599 at time step 16 (True Data, Original Method, Methods 1-4)

33

5 Discussion

Though we’ve justified using training data loss, testing data loss and actual model predictions

that Method 1 Ls

data behaves well in capturing mathematics nature, there are certain concerns.

1. In Time Cost Average for Experiment 3 Fig 15, we actually see an increase in time cost after

a similar turning point for all 4 methods, yet the Original Method still decreases. We’re yet

unable to explain such an ‘increase’ in time cost, but suggests it has something to do with

the ‘over-fitting’ for gradient matching at the early training stage. To illustrate further on

such an issue, more experiments can be conducted via re-designing base learning rates or

milestones to reduce learning rates while training.

2. All 4 methods, as shown in weight combinations from Table 2 and Table 3 are chosen

separated based on each Norm design. While training the model, we keep them independent

of each other, so we have not yet tried to combine different Methods together, for example,

use Data Loss function from Method 1 Ls

data but also put certain weights on PDE Loss

function from Method 2 L⇤
pde. Further experiments shall be conducted to exhaust as many

mixed weight combinations as possible to back up our result.

3. The number of epochs we’ve run are quite limited due to certain limitations and technical

issues, only up to 600. Hence if further experiments are to be conducted, we expect to

train with HPC and see results lasting for tens of thousands of epochs and see how well our

Method 1 behaves then.

4. To justify our claim in ‘Approaching Mathematics Nature in Fluid Mechanics’, I believe

we need to test on more equations, such as Burger’s, Kolmogorov Flows, Euler and etc.

Navier-Stokes Equations are indeed a set of PDEs of high difficulty, so one may expect

certain norms inherited from regularity theory for these PDEs to work out better and

clearer.

34

6 Conclusion

In this project, we modified the original Data Loss Ldata (2.6) and PDE Loss functions Lpde

(2.5) in PINO that aims to train the FNO Model to learn a PDE operator (2.1), which predicts

future behaviors of turbulence given an initial state, as governed by 2D Incompressible Navier-

Stokes vorticity formulation (2.2). Based on Uniqueness and Existence Theory 2.1, 2.2 in [4] and

Sobolev Training in [5], we designed 4 Methods to modify the Loss functions:

• Ls

data Strong Solution Norm (3.2)

• L⇤
pde Sobolev PDE Loss (3.3)

• Lw

data Weak Leray-Hopf Solution Norm (3.6)

• Lw,t

data Weak Leray-Hopf Solution Norm with time regularity (3.8)

We tested all 4 methods with a dataset as explained in Section 4.1, and by comparing training

data losses, testing data losses, and actual model predictions in Experiment 2 and 3, we’ve justified

that Method 1 Ls

data Strong Solution Norm (3.2) captures the best physics phenomenon governed

by Navier-Stokes, even outperforming the Original Method in [3]. Hence we’re honored to have

introduced a new perspective in designing Data Loss Functions to Neural Operators, which is

to encode proper PDE energy class (regularity) choice. This finding leverages the mathematics

nature in machine learning to a greater extent, and sheds lights on more future collaborations

between mathematical PDE analysts (like me) with data scientists.

35

References

[1] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar, “Neural operator: Graph kernel network for partial differential equations,” 2020.

[2] ——, “Fourier neural operator for parametric partial differential equations,” 2021.

[3] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anand-
kumar, “Physics-informed neural operator for learning partial differential equations,” 2023.

[4] J. Bedrossian and V. Vicol, The mathematical analysis of the incompressible
Euler and Navier-Stokes equations : an introduction, ser. Graduate studies in
mathematics. American Mathematical Society, 2022. [Online]. Available: https:
//cir.nii.ac.jp/crid/1130012225924137482

[5] H. Son, J. W. Jang, W. J. Han, and H. J. Hwang, “Sobolev training for physics informed
neural networks,” 2021.

[6] G. Folland, Real Analysis: Modern Techniques and Their Applications, ser. Pure and
Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 1999.
[Online]. Available: https://books.google.com/books?id=N8jVDwAAQBAJ

[7] L. C. Evans, Partial differential equations. Providence, R.I.: American Mathematical Soci-
ety, 2010.

[8] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, ser. Cambridge Texts in
Applied Mathematics. Cambridge University Press, 2001.

[9] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu, “Sobolev
training for neural networks,” CoRR, vol. abs/1706.04859, 2017. [Online]. Available:
http://arxiv.org/abs/1706.04859

[10] T. Buckmaster and V. Vicol, “Convex integration and phenomenologies in turbulence,” 2019.

36

https://cir.nii.ac.jp/crid/1130012225924137482
https://cir.nii.ac.jp/crid/1130012225924137482
https://books.google.com/books?id=N8jVDwAAQBAJ
http://arxiv.org/abs/1706.04859

	Introduction
	context
	objective
	contributions

	Related Work and Backgrounds
	Model - PINO
	PDE - 2D Incompressible Navier-Stokes Cauchy Problem vorticity fomulation

	Norm Design - Ldatas, Lpde*, Ldataw, and Ldataw, t
	Method 1 - Ldatas Strong Solution Norm
	Method 2 - Lpde* Sobolev PDE Loss function
	Method 3 & 4 - Ldataw, Ldataw,t Weak Solution norm (and with time regularity)

	Experiment and Results
	Data Explanation and Training Setup
	Experimental Setup
	Experiment 1
	Experiment 2
	Experiment 3

	Discussion
	Conclusion

