Onsager’s Conjecture for admissible weak solutions Notes

Mark Ma professor Vlad Vicol

January 4, 2024

1 Problem Setting [1]

we consider the incompressible Euler equations

ow+v-Vuo+Vp=0

(1.1)
dive =0,

in the periodic setting x € T? = R\ Z3, where v is a vector field representing the velocity of the fluid and p is

the pressure. We study weak (distributional) solutions v which are Hélder continuous in space, i.e. such that
lo(z,t) —v(y,t)| < Clz —y|® forall t € [0,T] (1.2)

for some constant C' which is independent of time t. On the other hand, we will write v € C#(T? x [0, T]) when

v is Holder continuous in the whole space-time. We wish to prove

Theorem 1.1. Assume e : [0,T] — R is a strictly positive smooth function. Then for any 0 < 8 < 1/3 there
ezists a weak solution v € CP(T? x [0,T]) to (1.1) such that

lo(z, ) dz = e(t).
TS

Moreover, we have stronger version, namely the h-principle, saying any smooth strict subsolution can be suitably
approximated by C? solutions for any 3 < 1/3.

Definition 1.1. A smooth strict subsolution of (1.1) on T?x[0,T] is a smooth triple (v, p, R) with R a symmetric
2-tensor, such that
O + div(t ® 0) + Vp = —div R
(1.3)
divo = 0,

and R(x,t) is positive definite for all (x,t). ‘Smooth’ comes from smootheness of the triple, ‘subsolution’ comes
from the right-hand-side — div R and that R > 0 a.e., and ‘strict’ comes from the requirement R > 0 a.e..

Theorem 1.2 (h-principle). Let (v,p, R) be a smooth strict subsolution of the Euler equations on T3 x [0, 7]
and let 3 < 1/3. Then there exists a sequence (vg,py,) of weak solutions of (1.1) such that vy € CP(T? x [0,T7),

* — * — — = .
vy =0 and vy Q@up U0+ R in L=

uniformly in time, and furthermore for all t € [0, T

/|Uk|2dm:/ (Jo + tr R) de. (1.4)
T3 T3



2  Outline

2.1 Inductive Proposition

Proposition 2.1. There is a universal constant M with the following property. Assume 0 < < 1/3 and

1-p
l<b< ——. 2.1
o (21)
Then there exists an og depending on [ and b, such that for any 0 < a < ag there exists an ag depending on
B, b, a and M, such that for any a > ag the following holds: Given a strictly positive energy function
e:10,T] — R satisfying

sup |4e(t)| <1 (2.2)
te[0,T]

o

and a triple (vq, Ry, p,) solving the Euler-Reynolds system (1.3), namely such that
Orvg + div(vg ® vg) + Vpg = div ]o%q

divv, =0,

to which we add the constraints that
tr éq =0 (2.4)

and that
/ pg(z,t)de =0 (2.5)
T3

(which uniquely determines the pressure) and satisfying the estimates

Hfzq R (2.6)

loglly < M6 (2.7)

loglly < 1 =6, (2.8)

Sy < elt) = [ ol do < 6,0 (2.9)

T
where the size of the approrimate solution vy and the error }O‘Bq are measured by a and an
given by
= 21[a®")] (2.10)
= (2.11)

where [z] denotes the smallest integer n > = (as required, a > 1 is a large parameter, b > 1 is close to 1 and

both a and b are related to 0 < B < 1/3). Then there exists a solution (vgi+1,R411,P4+1) to (2.3)-(2.5)
satisfying the estimates (2.6)—(2.9) with q replaced by q + 1. Moreover, we have

1 1
loass = vally + 5= leasa = vally < M3 (2.12)
q

2.2 Proof of Theorem 1.1

e First fix Holder exponent 8 < 1/3, fix b satisfying (2.1) and then fix « smaller than threshold ag. By
Proposition 2.1, ag exists depending on 3,b, a, M. But we’re free to choose a > ag. In particular, we first
choose a > 1.



e Claim: We may further assume the energy profile satisfies

inf e(t) > 6105, supe(t) <41, and supe'(t) <1, (2.13)
t t

provided the parameter a is chosen sufficiently large.
Proof. Note that the Euler equations are invariant under the transformation
v(x,t) — To(z,Tt) and p(z,t) — D?p(z,Tt).
so the stated problem reduces to finding a solution with the energy profile given by

é(t) = T2e(I't),

1/a
I = (51> ,
sup; e(t)

51 iIlft e(Ft) - - 51 5/
—_— t) <46 d ") < | ——— "(T't).
wpe)  CPEOSh amd )< () e

Choose

so we have
iItlf é(t) >
If @ is chosen sufficiently large, i.e., A\g large and §; small, we have

>\ ¢

3/2 .
supé’(t) < (%) supe’(Tt) <1, and inf; e(I't) o

t sup, e t sup, e(t)
O

e Apply Proposition 2.1 iteratively starting with (vg, Ro,po) = (0,0,0). Indeed the pair (v, Rp) trivially
satisfies (2.6)—(2.8), whereas the estimate (2.9) and (2.2) follows as our assumption on energy profile (2.13).
So the result of Proposition 2.1 says there exists sequence of solutions (vg, ]o%q, Pq) to (2.3)-(2.5) satisfying
the estimates (2.6)—(2.9), along with (2.12).

e Note as ¢ — 00, 0, — 0, so (2.12) says v, converges uniformly to some continuous v. Note the pressure is
determined by
Ap, =V - Vp, = divdiv(—v, @ v, + R,) (2.14)

and(2.5) and thus p, is also converging to some pressure p (for the moment only in L" for every r < 00).

Since éq — 0 uniformly, the pair (v, p) solves the Euler equations. Now we show regularity of v.

e Spatial Regularity. Observe that using (2.12) we also infer for all 8’ < 8 < 1/3, by (A.3) !

oo
- 2
Z vg+1 — UqHﬁ/ ~ Z [vg+1 — Uq”o ||Uq+1 - Uq||1 Z(Sq-fl ( q+1 q+1) S Z)‘q+1 f <o
q=0 q=0

due to choice of a, b >1 = >.°2 1 <00V e>0,s0 v, is uniformly bounded in COCB for all 8" < .

q0q+

e Time Regularity. Fix a smooth standard mollifier ¢ in space and define vy(x) = ¢3¢ (z€~1). Let ¢ € N,
and consider U, := v * ¢5—¢. From standard mollification estimates (A.4) we have

20 — olly S llolly 2797, (2.15)

IThroughout the manuscript we use the the notation x < y to denote z < Cy, for a sufficiently large constant C' > 0, which is
independent of a, b, and ¢, but may change from line to line.



and thus 9, — v — 0 uniformly as ¢ — co. Moreover, 0, obeys the following equation
O0g + div (v @ v) * g—a + Vp s thg—q = 0.

Next, since
—Ap *thy—q = divdiv(v @ v) x Yg—q ,

using Schauder’s estimates, for any fixed ¢ > 0 we get
IVp % a-allo < VD # fa-alle S [lo® ]| gr290 =75 < ol 200+,
(where the constant in the estimate depends on & but not on ¢). Similarly,
_ 2 _
I(v ® v) % a-ally S o @5 29077 S o]l 29077
Hence
10eqllg = ldiv (v @ v) * o + Vp & tho—a [l S [|0]|3 290 F=7F7) . (2.16)
Next, for 5" < (', again by standard interpolation (A.3), we conclude from (2.15) and (2.16) that
B B _ N 17ﬁ// B 5 ﬂ”
19 = Bg11ll o S (I8 = vllg + 1g41 = vll,) (19evqllg + 10eg+11l,)
1+// _ 11 _ R " % 1+// _ ’_ "
< ||v||ﬂ,ﬁ 9—af'(1=p")9aB" (1+=p") _ HU”ng 9—a(8'=(1+¢)p")
1+B” —qe
Slvllg™ 2

with choice of £ > 0 sufficiently small in terms of 5’ and 8” so that that 8’ — (1 +¢)B” > e. Thus, the

series

v =79+ Z(ﬁq-i-l — ’LN)q)

q=0

converges in Cng//. Since we already know v € COCFP’, we obtain that v € C#”([0,T] x T?) as desired,
with " < 8/ < 8 < 1/3 arbitrary.

e Finally, since §441 — 0 as ¢ — oo, from (2.9) we have

/1r3 lv]? dz = e(t),

which completes the proof of the theorem.

2.3 Stages

The majority of paper is devoted to the proof of Proposition 2.1. Note with conditions given for Proposition
2.1, we fix M, 3, and b, and the proof lies in choosing threshold «g so that a < «q is sufficiently small. Then
depending also on o < ag, we can choose threshold ay so that a > ag is sufficiently large. Hence we’re free to

make assumptions on ‘smallness’ of «, and ‘largeness’ of a that, recalling (2.10), (2.11)

e « is small enough so we have

5, \7* A
da < 4 < Zatl 2.1
)\q N <5q+1) N /\q ’ ( 7)

e which also require that a is large enough to absorb any constant appearing from the ratio A,/ a®) | for



which we have the elementary bounds

<Ar. (2.18)

The proof consists of three stages, in each of which we modify v,. Roughly speaking, the stages are as follows:

(i) Mollification: (vg, Ry) — (ve, Re);

o

(ii) Gluing: (w,fzz) — (@q,ﬁq);
—

(iii) Perturbation: (7, ﬁq) (vg+1, Rg11)-

o

3 Mollification step (vy, R;) — (vy, Ré)

The first stage is mollification: we mollify v, at length scale ¢ in order to handle the loss of derivative
problem, typical of convex integration schemes. To this aim, we fix a standard mollification kernel ¥ in space

and introduce the
52

- g+1
= 5(11/2)\;+3a/2 ) (3.1)

and define, recalling ¥y (x) = £=3¢(x¢~"), and f®g is the traceless part of the tensor f ® g.

Vg =g * Py

Ry ::}ﬂfq * g + (V,QVg) * Yy — V@V

(ve, }oig) obey the equation
Opvp + diV(”Ug ® ”Ug) + Vpy = div Ry

(3.2)
divv, =0,
in view of (2.3). Observe, again
e choosing « sufficiently small and a sufficiently large we can assume
5.7
—3/2 _ q+1 -1
A gLWgAq , (3.3)
a g
which will be applied repeatedly in order to simplify the statements of several estimates.
From (3.3), standard mollification estimates (A.4) and Proposition A.1 we obtain the following bounds?
Proposition 3.1.
loe = vlly S 3,510 (3.4)
||W||N+1 S 5;/2)‘q€_N VN >0,
HP%H <OtV YN >0. (3.6)
N+ao
[l = 1o o] < e (37)
T3
Proof of Proposition 3.1. The bounds (3.4) and (3.5) follow from the estimate using (A.4), (2.7), (2.17)
— vgllo = — gl < R YO WA S
e = vgllo = llvg * e = vgllo < llvgllil S 6, Agl S 6,512
2In the following, when considering higher order norms || - |5 or || - || N+1, the symbol < will imply that the constant in the

inequality might also depend on N.



and again using (2.7)
loellv+1 < llogllllellv < llogllie™ < 6220677 .

Next, applying Proposition A.1, using (2.6), (2.7) to estimate size of || Ry|lo, ||vgll1, and then assumptions (3.3),
followed by (2.17)

|, S el + 1(0s0v) * e = vevelvsa

rg”éq”ngNfa + ||UQH%£27N7Q S/ 5q+1)\;3a€7N7a + 5q>\3£2£7N7a 5 5q+1>\(;3a€7N7a

)

on the other hand, by (3.3) A;3* < £2*, from which (3.6) follows. Similarly, by Proposition A.1,

2 2 2 2
ol = 1ot da| =| [l = o a
T3 T3

which implies (3.7). O

2 2 2
< [[oale = e[|, S eallf 2,

o

4 Gluing Step (vy, Ry) — (v, Ry)

We glue together exact solutions to the Euler equations in order to produce a new 7, close to v,

whose associated Reynolds stress error ﬁq has support in pairwise disjoint temporal regions of ,

where 2
= —. (4.1)
5\
Note hence we have the CFL-like condition
35
Tallvell s S Teb/ Al SO < 1 (4.2)

as long as a is sufficiently large.

4.1 Stability Estimate for Classical Exact Solutions
4.1.1 Classical solutions

For each i, let ¢; = 74, and consider smooth solutions v; of the Euler equations with ¢; as initial time and v, at

time ¢; as initial value
8tvi + diV(’Ui X Ui) + sz =0

dive; =0 (4.3)

V(1) = ve(e,t5)

defined over their own maximal interval of existence.

Proposition 4.1. For any a > 0 there exists a constant ¢ = c(a) > 0 with the following property. Given any
initial data vo € C, and T < c|lvolly ., there exists a unique solution v : R® x [=T,T] — R® to the Euler
equation

0w +div(v ® v) + Vp =0

dive =0,

v(+,0) =g



Moreover, v obeys the higher-order bounds

10l N pa S 00l vta (4.4)

for all N > 1, where the implicit constant depends on N and a > 0.

Proof of Proposition 4.1. The existence of a unique solution follows from the restriction 7" < c|vgll;,,- The

higher-order bounds (4.4) are obtained as follows: For any multi-index 6 with || = N, let commutator
(0,0 V]v:=9(w-V)v—v-V (0%)

we have
9,0% +v -V +[8°,v- Vv + Vdp = 0.

Using the equation for the pressure —Ap = Vv - Vv and Schauder estimates we obtain
IVO’plla S IVPln+a S V- Volln-1ta S [vli+allvlvra.
Therefore, after applying (C.3) to [0%,v - V]v, we're left with
10 +v - V) 0]l S l[v1+allollv+a-

Hence by applying (B.3)

T T
Jollva S 100l 10%0lla + [ 1@:+ v 7) - 9100 (.7 ladr S lenllvsa + [ [olisallollvsadr
0 0

and Gronwall’s inequality we recover (4.4). O

Corollary 4.1 (Length-scale for v;). If a is sufficiently large, for |t —t;| < 74, we have

(4.1)
Hvi||N+a < 5;/2)\q€1_N_0‘ < Tq_lﬁl_N+°‘ for any N > 1. (4.5)
Proof of Corollary 4.1. We apply Proposition 4.1 and using assumption |t — ¢;| < 7, with

(42) 7 ||W||1+a S 771(5;/2)‘t1€_a SOl = |t—t ||W||1+a <1
to satisfy assumption for (B.3), from which the higher-order estimates of Proposition 4.1 says

[vill vta S J0i(t) [N ta = [lve(ti)]| N ta

for any N > 1. From
(3.5) ||W||N+1 S 5;/2>‘q£7N

we then deduce the estimate (4.5). O

4.1.2 Stability and estimates on v; — v,

We will now show that for |¢; —t| < 7, v; is close to v, and by the identity
Vi — Vg1 = (Ui - W) - (Uz'+1 - Ue),

the vector field v; is also close to v;41.



Proposition 4.2. For |t —t;| <7, and N > 0 we have

[|vi — W”N+a 57q5q+1£_N_1+a ) 4.6
||V(pg *Pi)HN-m S 5q+1€7N71+a ) (4-7)
[1Dte(vi = ve)ll g o S Sgrn ™71, (4.8)
where we write
Dig=0:+v,-V (4.9)

for the transport derivative.

Proof of Proposition 4.2. e Let us first consider (4.6) with N = 0. From the system (3.2) that v, solves and
the system (4.3) that v; solves, we have

875(1)@ — 'Ui) + (’Ug . V)(’U@ - ’Ui) = Dt7g(’l)g — ’Ui) = (Ui — ’Ug) . VUZ' - V(pg — pi) + div Re. (4.10)
In particular, using
Ape —pi) = div(Vw(ve — vl)) + diV(V’Ui(’Ug — vi)) + divdiv Rg, (4.11)

along with estimates
(3.6) Hdiv Ry

S|, s ot
« 1+«

~ ~

(35) Vel S lvelliva S 8207 (45) [ Voilly S lvillya S 62207

and Proposition C.1 (recall that 9;0;(—A)~! is given by 1/34;; + a Calderén-Zygmund operator), we
conclude
IV (pe = pi) (5 D)l < 02 Agl™ v = vell + 8gn 0717

Thus, using (3.6) and the definition of 7, = , we have

Z2a
5a/* N

| Dye(ve — v3)ll,, = H(Ui —wg) - Vv, — V(pe — pi) + div Ry

SO o =il (412)

[e3%

Note D,y = 0; + vg - V, and we again have by combining [t — ¢;| < 7, and

(4.2) 7 llvell e S qué/z)\qfo‘ SO = t=tillvl,,, <1

~

to satisfy assumptions for (B.3). Hence by having D, ; acting on vy — v;, we obtain from (B.3)

t t
1(ve = v) (- B)llo SO+ [ [ Dre(ve—vi)lly ds S|t —tal dgin ™+ +/ 7o e —vi)(9)ll, ds.
ti ti

Applying Gronwall’s inequality and using the assumption |t — ¢;| < 7, we obtain
lvi = velly S Tagal ™, (4.13)

i.e. (4.6) for the case N = 0. Then, as a consequence of (4.12) we obtain (4.8) for the case N = 0.

e Next, consider the case N > 1 and let # be a multiindex with || = N. Commuting the derivative 9? with



the material derivative D; ¢ = 0y + v¢ - V we have
1D0,60° (v = vi) o S 110° Dee(ve = vi) o + [[oe - V, 0N (0 — 03) [l

< 102Dy e(ve — vi)lla + vell v+allve = villisa + lvelliallve — villNta

S 10°Deo(ve = vi)lla + llvellv1+allve = villa + [[vell14allve — vill Nta

where in the last inequality we used the standard interpolation inequalities on Holder norms, cf. (A.1).
On the other hand differentiating 67

(4.10) Dy (v —v;) = O(ve — vi) + (ve - V) (vp — v;) = (v; —vg) - Vo, — V(pe — pi) + div Ry.
leads to

10° Dy.e(ve = vi)lla S llve — vill nvrallvillica + [[ve = villallvil N14a + 1P = Pill v +14a + | RellNt14a
(4.5)(4.13)(3.6)

< Tq_lgaHW - Ui||N+oc + 7-tl(sq-&-1€_1—~_(¥7-¢z_1£_N+OL + ||V(pz - pi)||N+a + 6q+1£_N_1+a
(4.14)
S 7y ve = vill v o+ 6g01 N T+ V(e — i) | v ta - (4.15)
Furthermore, from
(4.11) A(pe —pi) = diV(va(vg — Uz)) + div(Vvi(vg — vz)) + div div 1324
we also obtain, using Corollary 4.1 and (4.13)
[V(pe = pi)lInta S (lvellvsi+a + il v14a) [ve = villa
+ ([[velli+a + [Jvilli+a)lve — villv+a + (| Rell N 140
SOV 7 o — vil v - (4.16)

Summarizing, for any multiindex 6 with |§| = N we obtain

1D¢,60° (ve = vi)lla S Squr N7 + 77 Jog — vil| Mo

~

Therefore, invoking once more (B.3) we deduce
t
(00 =0 e Ol S 7dyia N4 [ wn = )8 s,
t;

and hence, using Gronwall’s inequality and the assumption |t — ¢;| < 7, we obtain (4.6). From (4.16) and
(4.15) we then also conclude (4.7) and (4.8).

O
4.1.3 Estimates on vector potentials
Define the vector potentials to the solutions v;, i.e., stream function as
2 = Bu; := (=A) 7! curl v, (4.17)
where B is the Biot-Savart operator, so that
divz; =0 and curl z; = v;. (4.18)



Our aim is to obtain estimates for the differences z; — z;11. The heuristic is as follows: from Proposition 4.2 we

obtain

—N—-14+« —N—-14+«
/ l .

(4.6) |lvi — W||N+a S Tq0g+1 = [Jvi = vit1llNta S Tq0q+1

Since the characteristic length-scale of the vectorfields v; is ¢ (cf. Corollary 4.1), we expect to gain a factor ¢

when passing to first order potentials.
Proposition 4.3. For |t —t;| < 7,, we have that
Izi = zitally o S TaSqrr ™ VH, (4.19)
[De(zi = zit 1)y y o S Sgr €N, (4.20)
where Dy g = 0y + v - V is as in (4.9).

Proof of Proposition 4.3. Set Z; := B(v; —vy) and observe that z; —z;41 = Z; — Z;+1. Hence, it suffices to estimate

Zi = B(v; —vg) = (=A)Leurl(v; — vy) in place of z; — z;+1. The estimate on IVZilly_14q for N > 1 follows

directly from

(4.6) llvi = vell y o S TaOgarl™ N7

and the fact that VB is a bounded operator on Holder spaces:
IVZill 110 = IVB = 00y 140 00 = vellyja S TadgrVH (4.21)
Next, observe that
Or(vi —vg) +vg - V(v; —ve) + (v; —ve) - Vo + V(p; — pe) + div Ry =0. (4.22)
Since v; — vy = curl Z; with div Z; = 0, we have?

vg - V(v; —vg) = curl( vg - V) l) + dlv( Zi X V)’Ug)
((v; — ve) - V) = div((% x V)v]),

so that we can write (4.22) as
curl(02; + (ve - V)Z) = —div((Z; x V)ve + (% x V)v]) — V(p; — pe) — div Ry. (4.23)

Taking the curl of (4.23) the pressure term drops out. Using in addition that div Z; = divv; = 0 and the identity

curlcurl = —A + V div, we then arrive at
—A(0% + (v - V)Z) = =V div ((Z - V)vg) — cwrldiv ((Z; x V) + (% x V)v]) — curldiv Ry.

Consequently using (3.5) [lvell g S 75 120N and (4.5) [Jvi|l yyq S 7q W
C. )
102 + (ve - V)Zillnta S (Ivillvrata + vel N r1a) 2l
+ (lvillia + l[vellira) |Zill v+ + [ Rel N 4o
Sy Nzl e + 7 N [ Zlla 4 Sgra T VEE (4.24)

~

Setting N = 0 and using (B.3) and Gronwall’s inequality we obtain ||Z;]la S 740q+1¢% , which together with

~

22030t — 2309201 220302 — 23002 220303 — 230903
3Here we denote [(z X V)v]¥ = ;128007 = | 23010 — 210501 230102 — 210302 230103 — 2103503 | for vector fields z, v.
210vt — 220101 21002 — 220102 2'9vd — 220103

10



(4.21) gives (4.19). Using (4.19) into (4.24) we conclude

10e2i + (ve - V)Zillv4a S Ggal VT

Finally commuting the derivatives in the N + a-norm with D;, as in the proof of Proposition 4.2 and using

again (4.19) we achieve (4.20).
O

4.2 Gluing Procedure

Now we glue the solutions v; together in order to construct 7,. The stability estimates above will be used in
order to ensure that 7, remains an approximate solution to the Euler equations.
4.2.1 Partition of Unity and definition of 7,

o Let
ti:iTq, Ii:[ti-i-%Tq,ti-i-%Tq]ﬂ[O,T], Ji:(ti—%Tq,ti—‘r%Tq)ﬂ[O,T].

Note that {I;, J;};is a decomposition of [0, T] into pairwise disjoint intervals.
e We define a partition of unity {x;};in time with the following properties:
— The cut-offs form a partition of unity
> xi=1 (4.25)
i
— supp x; Nsupp X;+2 = @ and moreover

supp x; C (ti — %Tqvti + %Tq)
xi(t) =1 forte J;

(4.26)

— For any ¢ and N we have

10 xilly S 7 - (4.27)

e We define
Vg = Z XiUq
f?él) = Z XiDi

observe that

(i) divyg, = 0.
(ii) If t € I;, then x; + xi+1 = 1 and x; = 0 for j # 4,i + 1, therefore on I;:

Tq = Xivi + (1 = X4)vig1
Y = xipi + (1 = Xa)pis

11



and

0yUg + div(T, @ Tg) + Vﬁgl) = xi0:v; + (1 — x43)0rvip1 + Orxi (v — vig1)
+div (X?Ui @ v+ (1 —x:)?vie1 ® Ui+1)
+ xi(1 — x3) div(v; ® vig1 + vig1 @ v;)
+XiVpi + (1 = Xi)Vpit1
= Oxi(vi — vig1) — xi(1 = x3) div ((v; — vig1) ® (v — Vig1)) .

(iii) If t € J; then x; = 1 and x; = 0 for all j # i for all # sufficiently close to t (since .J; is open). Then

for all t € J; we have

6(] = Vs, ﬁgl) = Di,

and, from (4.3),
0474 + div(v, ®7,) + VB = 0.

4.2.2 New Reynolds Tensor ﬁq

Definition 4.1 (Inverse Divergence Operator for symmetric tracefree 2-tensors).

(Rf)T = RIE [

1

L B N P e P Py (4.28)
R 2A azajak+2A Onbij — AT10;0, — AT1;6u.

when acting on vectors f € C™ ('H‘?’;R?’) with zero mean on T3, i.e. fw_ fdx =0.

Proposition 4.4. The tensor R defined in (4.28) is symmetric, and we have

div(Rf) = f

for any f with zero mean on T3. So the above inverse divergence operator has the property that Rf(z) is a
symmetric trace-free matriz for each x € T3, and R is an right inverse of the div operator, i.e. div(Rf) = f.
When f does not obey fIrS fdx =0, we overload notation and denote Rf := R(f — fﬂ,3 fdx).

e We define

Ry = 0:xiR(vi — vig1) — xi(1 = x3) (v — vi41)®(vi — vig1)
P = —xi(1 = xi)|vs — viga |,

for t € I; and R, = 0, p2) = 0 for t ¢ |, I,.
o Weset p, = ﬁ(ll) +T?¢(12)

e It follows from the preceding discussion and Proposition 4.4 that

— R, is a smooth symmetric and traceless 2-tensor;

— For all (z,t) € T3 x [0,T)
vg + div(vy ® Tg) + VP, = div Ry,

divo, = 0;

- suppﬁq C T3 x U, L.
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4.2.3 Estimates on 7,

Next, we estimate the various Hoélder norms of v,.

Proposition 4.5. The velocity field v, satisfies the following estimates

— 1 o
15 = vell, S 0514 (4.29)
1T — vl y o S Tabqerl N (4.30)
HqulJrN < 5;/2)&1@71\, (4.31)

for all N > 0.

Proof of Proposition 4.5. By definition

Ty — Vg = in(vi — vp).
i

Therefore Proposition 4.2 (4.6) [lvi — vell v o S Tq0g+1£~ N 1T implies

Hﬁq - UEHNJra < 7—q(qurlg_l_N-i_oz- (432)
61/2 2a
Note that using the definition of ¢ := 761/2;1113(1/2 in (3.1) and 7, := 761[/2/\ in (4.1) and the comparison (3.3)
q q q q
STl = PN < AP < (4.33)

Therefore we obtain (4.29), and furthermore, for any N > 0
||Eq —vellitNta S 5q+17q£_N_2+a = 6;/2)‘q(£)‘q)3a€_N < 6;/2>‘q€_N-
Then it also follows using (3.5) [[ve|ly,; S 5;/2)\(16’1\[ that

Ballin Slhoellien + o = Tylhnsa S 0520 0

4.2.4 Estimates on stress tensor R,

We are now in a position to estimate the glued stress tensor R:

Proposition 4.6. The stress tensor Eq satisfies the following bounds for any N > 0:
Rif| . Soguae e 4.34
H q Nta ~ Ygq+1 ( )

|@+7-90R||

S g1 AN (4.35)
Proof of Proposition 4.6. Recall that v; = curl z;, so that we may write for t € I;:
Ry = 0ixi(Rewrl) (2 — zip1) — Xi(1 — Xi) (Vi — vig1)@(v; — vig1).

Note that R curl is zero-order operator. Therefore from Propositions 4.2 (4.6) ||v; — vell o S TgOg410 N 1

~

and 4.3 (4.19) [|zi — zit1 |l yaa S Tq0q+1€” VT for any N > 0 with ¢ € I;, using Holder product

~

. A2
IRgllvea S 75 2 — zigalIvsa + lvi = visa v sallvi — vigalla

S Oqr N 7 len PN TR S g N
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Here we used again (4.33). Next, we calculate

Dtygﬁq = 02xi(Reurl)(z; — 2ip1)
+ Ot (Reurl) Dy (2 — zie1) + Opxalv - V, Rocurl] (21 — zit1)
— 0 (xi(1 = x0)) (vi — vig1)@(vi — vig1)
= xi(l = xi)) ((Dt,e(vi = 0i41))@(i = Vit1) = (Vi = Vi1 )D (D e (vi — Uz‘+1)))7

where [v - V, R curl] denotes the commutator. Hence, using Proposition C.3 and Propositions 4.2 and 4.3 we

deduce

||Dt,€§q||N+a <10z — zivallNda + 7 HIDee(zi — zig1) | Nta
+ 75 Hvellallze = zirallvra + 74 Hvel N tallzi = zigala
+ 75 v — vigr N tallvi — vigalla
+ 1 Dee(vi — vigr) In+allvi = vigalla + lvi — viga [N+l Dee(vi — vigr) o

Ty 0N 4 (7204400727 g N R

T g N

S
<
~ 'q

Finally, we deduce using (4.30) [[Ug — vell y o S Tg0qr1l™ "N T

S e = Tg) - VRylIN+a + [ DeeRylln+a
N+«

(A-2) o o =
S e = TallvtalBalliva + lve = Tgllal Bl nt1+a + 1Dt Byl N ta

2 p—N-2+42a ; _—1 —N+a
Tq0q1l + 7, g1l

PRy MRV KT MO WAt

H(at +7,- V)R,

S
S

again using (4.33). O

4.2.5 Estimates on energy difference between v, and v,

To finish this section we show that T, has approximately the same energy as vy:

Proposition 4.7. The difference of the energies of v, and v, satisfies

\ [ 100l = ol
'H‘S

Proof of Proposition 4.7. Observe that for ¢t € I;

< Gy l® (4.36)

Tq ®@Tq = (Xivi + (1 — Xi)vit1) @ (xavi + (1 — xi)vig1)
= X0 @ v; + (1 = xa)vig1 @ vig1 — xa(1 — xa) (Vi — vig1) @ (vi — vig1),

so that, taking the trace:
[T [* = [vel® = xa(lvsl® = ve|*) + (1 = xa) ([vis1]? = [0e?) = xi (1 = xa)[vi = viga |

Next, recall that v; and v, are smooth solutions of (4.3) and (3.2) respectively, therefore

d . 5
& [ =t as| =| [ 9 feda] < 19ulol il
T3 T3

1 —
S 6P X011 S T Mgl
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where we have used (3.6) and (3.5). Moreover, v; = vy for t = t;. Therefore, after integrating in time we deduce

\/ oil? = Joe? da
’]I‘3

Furthermore, using (4.6) [|v; — vel| 0 S Tg0qe1 0™V 71+ and (4.33) 61/21Tq€_ = 62“)\3a/2 <\ <

< Ggpnl®.

(4.33)
/3 v — v de S oy —viga |2 S 770007272 S 8,
T

\ JIR

which concludes the proof. O

Therefore
5 5q+ 1 - )

5 Perturbation Step (@q,ﬁq) — (Vg1 Ry1) [2]

The gluing procedure can localize the Reynolds stress error R, to small disjoint temporal regions, but it cannot

completely eliminate the error. We will outline the construction of the perturbation wq;1, where
Vg+1 1= Wgt1 + Vg,

wq+1 is highly oscillatory and will be based on the Mikado flows, which are designed to cancel the low frequency

error R, and are Lie-advected by the mean flow of ;.
e First note that as a corollary of (2.9) §,11A;* < e(t) — [1s lvg|? dz < 841 and | [ [vg]? — [Tg[?| S Ggu1t®

as result from (3.7) ‘ng lvg? = |ve|? dx’ < g1l & (4.36) | [rs [0g]% = [vel*da| S 64410 , by choosing a
sufficiently large we can ensure that

dqr1 e(t) — / T,|° dz < 20,41 . (5.1)
2)\0‘ T3

5.1 Mikado flows

Lemma 5.1 (Linear Algebra). Denote by Bij,(Id) the closed ball of radius 1/2 around the identity matriz, in
the space of symmetric 3 x 3 matrices. There exist mutually disjoint sets {A;}i—o.1 C S*NQ3 such that for each
§ € A; there exist C°° smooth functions e : By (Id) — R which obey

R=Y %R

gen;
for every symmetric matriz R satisfying |R — Id| < /2, and for each i € {0,1}.

o For a sufficiently large geometric constant Cp > 1, to be chosen precisely in Section 5.3.3 below, we define

the constant
M=C, sup (el co + Vel o) (5.2)

which appears in (2.7).

o Moreover, fori € {0,1}, and each & € A;, let us define A¢ € S2NQ? to be an orthogonal vector to . Then
for each & € A;, we have that {&, A¢, & x Ac} € S2N Q3 form an orthonormal basis for R3.

15



o Furthermore, similarly to the constant n, of Proposition D.2, we label by n, the smallest natural such that
{n. &, naAg, n & x Agy C 7P (5.3)

for every & € A; and for every i € {0,1}. That is, n, is the l.c.m. of the denominators of the rational
numbers £, Ag, and € x Ag.

(i) For 5 > 0, to be chosen later in terms of the set A;, let ¥ : R> — R be a C*° smooth function with
support contained in a ball of radius €5 around the origin. We normalize ¥ such that ¢ = —AW obeys

(]52({171, .’EQ) d.’Eld.’EQ = 4’/T2 . (54)
R2

Moreover, as supp ¥, ¢ C T?, we abuse notation and denote by ¥, ¢ the T?-periodized versions of ¥ and ¢.
(ii) Then, for any large A € N and every £ € A;, we introduce the functions
\Il(g)(:v) = \Ifg,)\(fﬂ) = \Il(n*)\(x — Oég) : Ag,n*)\(x — Ozg) . (f X Ag)) y (55&)
be) (@) := Pea(x) = p(naA(m — ag) - Ag, na M — ag) - (§ X Ag)) (5.5b)
ag € R3 are shifts whose purpose is to ensure that the functions {¥(¢) }een, have mutually disjoint support.

e Since n.A¢ and n.& x A¢ € Z2, and X € N, the functions ¥ (¢, ¢ : R* — R are (T/x)3-periodic.

e By construction we have that {¢, A¢, & x A¢} are an orthonormal basis or R?, and hence £- VU ¢)(2) =
£ Vo (z) =0.

e From normalization of ¢ we have £ ¢%£)da: =1 and f(T/A)y, P(eydx =0, i.e., ¢y zero mean on (T/x)?.

e Since ¢ = —AV we have that (n.A)2d) = —AV ).

e Last, we emphasize that the existence of the shifts o, which ensure that the supports of V() are
mutually disjoint for £ € A;, is guaranteed by choosing ¢, sufficiently small solely in terms of the set
A;. Indeed, we can always ensure that the rational direction vectors in A; give (periodized) straight

lines which do not intersect, when shifted by suitably chosen vectors o.

(iii) With this notation, the Mikado building blocks We): T3 — R? are defined as
W({) (ZL') = Wg,)\(x) = f¢(§)($) . (56)
Since § - V¢(¢) = 0, we immediately deduce that
divWie =0  and  div(We) @ W) =0. (5.7)

e The Mikado flows are exact, smooth, pressure-less solutions of the stationary 3D Euler equations.
e By construction, the functions W¢) have zero mean on T? and are in fact (T/x)-periodic.

e Moreover, by our choice of a¢ we have that
Wiey®@ Wien =0 whenever E£E €Ay, (5.8)

for i € {0,1}, and our normalization of ¢ ) ensures that

]és Wey(x) @ Wiey(z)de =@ €. (5.9)
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e Lastly, using (5.9), the definition of the functions 7 in Lemma 5.1 and the L? normalization of the
functions ¢(¢) we have the spanning property of Mikado building blocks

> R ][ Wie)(x) @ Wiey (z)dz = R (5.10)

EEN;
for every i € {0,1} and any symmetric matrix R € Bi,(Id).
We summarize properties (5.7)—(5.10) of the Mikado building blocks defined in (5.6) in the following result:

Lemma 5.2. Given a symmetric matriz R € §1/2(Id) and X € N, the Mikado flow

ZW& ) We ()

EeN;

obeys

divww =0, divioV @ W) =0, Wdz =0, WeWdz =R
T3 T3

That is, W is a zero mean, presureless, solution of the stationary 3D FEuler equations, which may be used to

cancel the stress R.

Figure 1: Example of a Mikado flow W restricted to one of the (T/x)* periodic boxes.

To conclude this section we note that W) may be written as the curl of a vector field, a fact which is useful in

defining the incompressibility corrector in Section 5.3.2. Indeed, since § - VW (¢) = 0, and since by definition we

have that — Wy ) AV ¢y = ¢(¢) we obtain
1 1 1
curl WV\II(Q X f = curl (n*)\)Q curl(glll(g)) = —f WA\II(E) = W(g) . (511)
For notational simplicity, we define V(¢) the potential
1
Vi = ()2 ——az VP % ¢ (5.12)
so that curl Vig) = W) With this notation we have the bounds for N >0
Wl y + At Vil S A (5.13)
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5.2 Squiggling stripes and the stress tensor RW-

Recall that Roq is supported in the set T? x |, I;, whereas, from (4.26) it follows that [0, T\ U, I; = U, Ji, where
the open intervals J; have length |.J;| = %Tq each, except for the first and last one, which might be shortened by
the intersection with [0, 7], more precisely J; = (t; — 374, t; + 574) N [0, 7).

We define smooth non-negative cut-off functions 7; = n;(x,t) with properties

(i) n; € C°(T3 x [0,T]) with 0 < n;(x,t) <1 for all (x,t);

(ii) suppn; Nsuppn; = 0 for i # j;

)
)

(iii) T2 x I; C {(z,t) : ni(x,t) = 1};

(iv) suppmi C T® x LU J; U Jipr = T2 X (£ — §7, tiga + 574) N[0, T, we set [; = (t; — $74, tis1 + 574) N[0, TY;
)

(v) There exists a positive geometric constant ¢y > 0 such that for any ¢ € [0, T
2(2m)3 >Z/ n?(x,t) dx > co.

Lemma 5.3. There exists cut-off functions {n;}; with the properties (i)-(v) above and such that for any i and

n,m >0

10 il m < C(n,m)T, ™

where C(n,m) are geometric constants depending only upon m and n.
Proof of Lemma 5.3. First of all we consider the sharp cutoffs 7; defined by
i =1g,

Q; = {(z,t): t; + Z(sin(2rz1) + 3) <t < b1 + E(sin(2mz1) — 3)}

Next we fix a standard mollifier s¢ in time and the standard mollifier ¢ in space already used so far. Hence we

define n; by mollifying 7); in space and time as follows:

mie.t) = [ il s)0 (‘”;y> < <t6;> dyds
q

where ¢; and ¢y are positive geometric constants. One may check that a suitable choice of ¢; and cs yields the

desired conclusions (see Figure 2). O

z1

Figure 2: The support of R, is given by the blue regions. The support of the cut-off functions 7;, which marks the region
where the convex integration perturbation is supported, is given by the region between two consecutive red squiggling
stripes.
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e 5.2.1 Cutoffs py(z,1)

Define p,(t) which measures the remaining energy profile error after the gluing step, and after leaving

ourselves room for adding a future velocity increment

pult)i= 3 (e = 252 = [ oy o)

and the last cutoff function combining 7; and p,

2
b (:L', t)
pgi(T,t) = Pq(t)
! Z_j fTs 77]2'(1,/7 t)dy !
Lemma 5.4. For any N >0
St <54 Il 4
|\ — pq(t)‘ = Ug+1 fora t> (51 )
q
Og+1
[Pg,illg < : (5.15)
Co
[pg.illy < 6g+1, (5.16)
191pqllg S Sq416Aq s (5.17)
10:pg,illy S Ogr7y - (5.18)

Proof of Lemma 5.4. Note that (5.14) is a trivial consequence of estimate (5.1)

5
It < o(t) — / T,|” dz < 20,11
']1‘3

and the inequality 49,12 < d441. Note that by the definition of the cut-off functions #;

< J(y,t)d 5.19
CO_XiI/TSm(y,)y (5.19)
and hence we obtain (5.15). Since |[V¥n;| < 1, the bound (5.16) also follows. Finally, to prove (5.18) we

first note that
d [ _ 2
& [ 0

10:p4llg S Sq+10* A

S Gq+16,*2q

‘2/wq.équ

Thus

Then, since [|0y;||n < 7, ' and 63/2)\q < 7!, using (5.19), the estimate (5.18) follows. O

¢ 5.2.2 Flow Maps 9,

Define the backward flows ®;for the velocity field v, as the solution of the transport equation

(8t + g - V)(I)Z =0

(I)i (.li,ti) =xT.
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for all (x,t) € supp(n;) C T? x I;. Tt is convenient to denote the material derivative as Dy ,, that is
Dt,q = 8t +@q . Vm

Lemma 5.5.

1
Ve —Idfo < 5 fort & supp(i). (5.20)
Foranytefi, N>0
[(V®:) ™y + VOl y S, (5.21)
1Dy g Vil < 0,/ Al (5.22)

£ and using (4.31)

Proof of Lemma 5.5. For every t € I; we have |t — t;| < 27,, where (4.1) 7, = 1725
q q

||17q|\1+N < 5;/2/\q£_N, we have

74 |Vl S P < 1

Hence assumptions for (B.5) |[V®(t) —Id||, < [t][v]1 is satisfied, so we obtain

IVO; —1d|, S 746,/2Ag = 2 <

N | —

Hence (V®;)~! is a well-defined object on I;. Again from (4.31), (B.5) and (B.6) [®(t)]x < |t| [v]xy YN > 2
we obtain
IV@illy S 1474 DTl S 1+ 70,200

Using the fact that (5.20) |[V®; —Id||p < 1/2, the estimate (5.21) follows (indeed it gives the slightly better
estimate < 1+ £~N*29 but the other is still enough for our purposes). Finally observe that

Dy ,V®; = —V&,; Dy,
In particular, by Holder product inequality (A.2)
[Dt,qVOilln S IV illolvgllvtr + [V il w[[Tglls -

Thus (5.22) follows from (4.31) and (5.21). O

5.2.3 Stress Tensor R, ;

Since n; =1 on T3 x I;, n;n; =0 for i # j, and since Supp(ﬁaq) C T3 x U;I;, we have that
S R, = R,. (5.23)

Moreover, the cutoff functions 7; already incorporate in them a temporal cutoff (recall that supp(n;) C
T3 x I;), and thus it is convenient to define

o

Ry = pgild — n?R,

which is a stress supported in supp(7;), and which obeys >, R:”- = —R,. For reasons which will become
apparent only later (cf. (5.37)), we also define the symmetric tensor for all (z,t) € supp(n;)

_ VOR,,(VE,)T °R
Ry = VR (VR)T 1y (Ve; ve! —1d) - ve, e vl (5.24)

Pqi Pq,i
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We summarize the following led by properties (ii)-(iv) of 7,

— supp Ry, C suppn; and on suppn; we have Ry ; = pg41,:1d — ﬁq;
— supp Ry C T3 x (t; — 3Tg g1 + 374) = T x I;;
— supp Ry,; Nsupp R, ; = 0 for all i # j.

Lemma 5.6. For a > 1 sufficiently large,

~ 1 -
HRq,z'(wt)—IdHOf,Ea < 5 for all tel,,

or equivalently, for all (x,t)

Ryi(x,t) € Bip(1d),
where Bij,(1d) is the metric ball of radius 1/2 around the identity 1d in the space of 8 by 3 symmetric
matrices. Fort € fi and any N >0

HRq,i LS (5.25)
|Draf| s 7™ (5.26)
Proof of Lemma 5.6. By definition we have
» Ry T T
R,;—1d=V®, | /= —-1d | V®; + VP, VD; —1Id
Pqi
VR
=V, 1vel 4+ Vo, VO] —1d
Pq,i
Using (4.34) HEQHN < 0y 07N we see that
+a
25 .
Biflo) o 1 R 5o
Pq.i Og+1
Consequently we obtain
Ry —1d] S 02
512 ~
so that, recalling (3.1) ¢ := —z%5-%, so by choosing a sufficiently large, we ensure that Ry ;(z,t) is

6;/2)\34-3(1/27

contained in the ball of symmetric matrices Bij,(Id). Recalling property (iv) of 7; we see that p,; is a
function of ¢ only on supp Ry, i.e.
i (2, 1)

Pail®:t) = > e 2 (y,t) dyp‘Z(t)'

Thus,

@ —Id — Zj f’]l‘3 njz(yv t)dy =

Pq,i Pq(t) -

(5.27)

50 that by (5.14) 351 < |, (£)] < 6,41 and (4.34) Hﬁq

o
q

< 0g4107 VT we obtain
N4«

<14 &

N 5q+1

i

N N <N (5.28)

s
Pq,i
where we have applied the crude estimate < 1+ || Ryl n+aX00, 0 S 1+ (mNraze SN,

g7 g+l ~
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Therefore, using Lemma 5.5 and property (v) >, [1s 07 (x,t) dz > co:

VO,R,(V®;)T

_ H Rq,i
N Pq,i

q,t

| o S IVl IVl + 7.

N

SVl [V®ill + H

N

The estimate (5.25) then follows from (5.21).
Next, we observe that
Dy,qpq,i = Oepq,i + Vg - Vg

and thus we can estimate

1Dt.qpq.illNv S 10epqilln + logillv+1llTgllo + 10l v [l g,ill1-

Recall that [|04]l0 < llvello + llve — vgllo S 1 S 7' and so from (4.31) we conclude [|v,]lx < 7,07V,

Combining the latter estimate with (5.16) [|pg.ill y S 6g+1 and (5.18) [|0¢pg.ill y S dg417, ' we achieve
1Dt,gpg,illn S dgamy N (5.29)

Differentiating (5.27) we have

pal®) oty Dl (5:30)

th(pq R )_ (ath f’]I‘S U?(y,t)dy> ch— Zj f']rs n?(y,t)dy o

< Sg164 Al N0

Thus we can estimate, using (4.34) ‘ R, . < Gy 07N and (4.35) H (O + 74 - V)Roq Nin

1Dealppt Ra)lv S 67010, N 2 Ryl + 75 0 X I Rally + 0708 [ D Tl
S S A PR AR PV O WA S PR (5.31)

Differentiating (5.24) we achieve
Dt,qRq,i = Dt,qv@i(p;gRq,i)vq)iT + vq)iDt,q(P;}Rq,i)V‘I)iT + vq)i(ﬂ;%Rq,i)(anvq)i)T
Thus we can estimate

||Dt,qRq,i| N

A<J|‘Dt’qvq)i||N”(p;leq,i)HO + HDt’qV(I)i”O”(pq zRL] )lv
D1, V@illoll(pg; Ryi) ol V@illn + | Deq(pgi Rai) I + | Deq(pgi Rai) o[V il -

Using (5.22), (5.31), (5.28) and (5.21), we conclude (5.26). O

5.2.4 Amplitudes a ;) (z,1)

/

Since Rq,i obeys the conditions of Lemma 5.1 on supp(;), and since Pq.; 1s a multiple of 7;, we may define

the amplitude functions

ag(z,t) = pq7i(33,t)1/2 Vg(Rq,i) (5.32)

where the 7¢ are the functions from Lemma 5.1. Note importantly that the amplitude functions already
include a temporal cutoff, which shows that supp(a ;) C supp(7;). The amplitude functions a¢) inherit

the CV bounds, material derivative bounds from lemma 5.4, 5.6, and the product at the chain rules

laces |y + 7a | Praacen]ly S 85167 ¥ N >0 (5.33)
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5.3 Perturbation v,
5.3.1 Principal Part of the Velocity Increment w((fjr)l (z,t)

For the remainder of the paper we consider Mikado building blocks as defined in (5.6) with A = Ag41, i.e.

Wiey(@) = We a1 () = Een 1 (7) = Ed(nudga(z — ag) - Ag,nudgia(z — ag) - (€ % Ag)) .

Recall: for the index sets A; of Lemma 5.1, we overload notation and write A; = Ag for 7 even, and A; = Ay for

i odd. With this notation, we now define the principal part of the velocity increment as

() = D7D e (@ ) (V8w 1) 7 Wiey (@il ). (5.34)

i EEN;

e We notice the presence of (V®;)~!. The reason for this modification is as follows. At time t = t;, we have
Qi(x,t;) =z, V®; = Id, and by (5.7) div W(¢) = 0 we have that the vector field

Uie = (Vi) We) (9:)

is incompressible at t = t;.

e We then notice that U, ¢ is Lie-advected by the flow of the incompressible vector field v, in the sense that
Dy gUie = (Uig - Vg = (V) Use . (5.35)

This implies directly that D, 4(divU;¢) = 0, and thus the divergence free nature of U; ¢ is carried from
t =t; to all ¢ close to ;. This shows that the function wéﬁ_)l defined in (5.34) is to leading order in Ayt

divergence-free (i.e. the incompressibility corrector will turn out to be small).

e We also explain why R, ; isn’t just normalized by p,; but also conjugated with V®;, and (V®;)7, in or-
der to obtain Rq,i (cf. (5.24)). Using the spanning property of the Mikado building blocks (5.10), the
fact that they have mutually disjoint support (5.8), identity

> pai(VO:) 'Ry i(VE;) (Z Pa.i ) d-R,, (5.36)

which is useful in cancelling the glued stress, and the fact that n; have mutually disjoint supports, we get

wih @l =373 afe (VO™ (Wiey 0 ®1) © (Wigy 0 20)) (V)"

i EEN;
= Z% (V)™ | D 22 (Ra) (Wiey @ Wig) 0 @) | (Vi)~T
EeA;
=S TR R (T8 Y Y (9807 (Baal¥i © W) o) (78T
RINY
(Z Pa. ) =By + 30 3 af (V)7 (Pos,0a(Wie) @ Wigy)) 0 @) (V1) (5.37)
i EEN;
where we have denoted by P f(z ng y)dy, the projection of f onto its nonzero frequencies. We

have also used that since W) ®W(§ is (T//\qﬂ) -periodic, the identity P_o(Wie)y @ Wig)) = P, (Wi ®
W(e)) holds. The calculation (5.37) shows that by design, the low frequency part of wéﬁ_)l ® wéﬁ_)l cancels

the glued stress Rq, modulo a multiple of the identity, which is then used to correct the energy profile and

which contributes a pressure term to the equation.
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5.3.2 Incompressibility corrector wéjzl(x,t)

Based on the definition (5.34) of the principal part of the velocity increment, we construct an incompressibility

corrector. For any smooth vector field V', we have the identity
(V®) ™ ((curl V) o ®;) = curl ((V@i)T(V 0 ®;)) .

Recalling identity

1 1 1
(5.11) curl (WV\P(@ X £> = curl ((n*/\)Q curl(flll(g))) =-¢ <(n*/\)2A\Ij(£)> =W

and the definition (5.12) Vi¢) = ﬁV\II@) x &, we may write W) = curl V{¢) and thus the above identity
shows that

(V@)™ (Wiey 0 ®;) = curl (V®;)" (Vigy 0 @5)) .
From the above identity and (5.34), it follows that if we define the incompressibility corrector as

Wl (2, 0) =30 Vag s (a,1) x (Vi(e, )T (Vie) (@il 1)) (5.38)

i EEA;
then the total velocity increment wq41 obeys
Wqt1 = wé_,_)l + w¢(1-21 = curl Z Z age.i) (V)T (Vigy o @) (5.39)
i geA;

due to identity curlab = acurlb+ Va x b for a scalar and b vector. Hence wq4; is automatically incompressible.

5.3.3 Velocity inductive estimates

The velocity field at level ¢ + 1 is constructed as

Vg1 = Vg + Wat1 = Vg + (Ve — vg) + (Vg — V) + wg1- (5.40)

Corollary 5.1. Assuming a is sufficiently large, the perturbations wéﬁ_)l, w<(;21 and wqi1 satisfy the following

estimates
1
le(li)lH Agr1 le(lﬁ?lHl 75q/+21 (5.41a)
-1
R A 5th
qu+1 0+ Nyt Wat1||, ~ q+l)\ ot (5.41b)
1 M .y,
lwgallg + Mot wg+ll; < 75q/+1 (5.41c)
q

Hence (2.12) from Proposition 2.1 is satisfied
1 1/2
HUqul - Uq”o + E HUqul - Uq||1 < M6q+1
s0 as bounds

1
(27) [[vgsally, € MO A

(2.8) [lvgslly <1 - 062,
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Proof of Corollary 5.1. Recall (5.2) M = Cx supgen, ([[7ellco + Vel oo) and (5.32) ae i (2, 1) = pai(x, 1) ye(Ry)

qu“H HZ D P, 1) Ye(Ry ) (VO (,8) ™ Wiy (i (x, 1))

EEA; 0

Using (5.15) ||pq.illy < %1 and (5.20) ||[V®; — Id||o < 1V tesupp(n) = [[(VP) 1H0 < 2 on supp(n;) and

co
that 7; have disjoint supports, once a is sufficiently large we obtain

214l [0l cn .,
qu'HHo = TC«AM(SQ +1="g 5q—il
(p) 4|Ai[n |9l o 1/ M 1/
qu+1H1 < C;ﬁTM(Sq—H)‘ 3 6q+1)\q+1

by choosing the parameter Cy from (5.2) to be large enough. Note that Cx only depends on the cardinality of
A;, on the universal constant cy, the geometric integer n,, and on the C'' norm of the function ¢, which in turn
depends solely on the geometric constant ey .

For the incompressibility corrector

[0, = 32 3 Vaien (@6 x (9 )7 (Vig (®1(2,1)

i EENA; 0

we lose a factor of /=1 from the gradient landing on a.i), but we gain a factor of A;y1 because we have V(¢

instead of Wg) (recall (5.12) V() = (n*l)\)ZV\II(f) x & so that curl Vigy = W(¢)). Therefore, we may show that
vy 71
il 5, el = 8
Ag1

Ag+1
We note that by choosing « to be sufficiently small in therms of b and 3, we have

-1 61/2>\1+3c¥/2 )\1—,84-30/2 ]
M 6o eSO VAL S Y S ¥ (5.43)
q+1 5 Ag+1 Agr1

and thus by choosing a sufficiently large we may ensure that the velocity increment

1 1
gl + M+wwm_2¢1

By writing vg41 as

Vg1 = Vg + Wat1 = Vg + (Vg = vg) + (Vg — ve) + wgs1

and using velocity error estimate from mollification step (3.4) |lv, — vql|, < 6 5.2 A, %, and estimate from gluing

q+1
step (4.29) |5, — vell, < 8,714 we obtain

1 !
qu+1 - UQHO + )\ qu+1 - Uq”l < M(Sq{il
q+1

Combining requirement on the original size of v (2.7) [Jvg|l, < M(Stl/zx\q7 (2.8) |lvgllg <1 - 6;/2 we have

2.7) Jvgarlly € M8 Agia

1
(28) llvgsilly <1 - 6.7,
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5.4 Reynolds Stress }D%qﬂ

Recall that the pair (7,, R,) solves the Euler-Reynolds system (2.3), and that v,1 is defined in (5.40). In this
subsection we define the new Reynolds stress }D%qH, and show that it obeys the estimate

1/2 1/2
£ _ 0510d A
q+1 ~ )\1 —4da

« a+1

(5.44)

e The above bound immediately implies the desired estimate (2.6) H}O{qﬂ H < 6q+2)\qff‘ at level ¢ + 1, upon
0

noting that the following parameter inequality holds (after taking « sufficiently small and a sufficiently

large)
526N 8
+1 q +2
q/\1 1< )\‘ia . (5.45)
q+1 q+1
The remaining power of )\;fl is used to absorb the implicit constant in (5.44).
In order to define J%qH? we write
div Ryt — Vpgrt = Degw®, + div(w! @ L R) 4 wesr - VT
q+1 Pg+1 = Lit,qWeiq viw q+1 Qwy iy + Rg) +Wet1 - Vg
———
div(Rtransport) diV(Roscillation)+Vposcillati0n div(Rth)
+ Dyl + div (wy @ wesn + 0l @ wl, ) -5, (5.46)

div(Recorrector)+VPcorrector

The various traceless symmetric stresses present implicitly in (5.46) are defined using the inverse divergence
operator R (4.28)

(Rf)¥ = RFf*
g 1 1
Rk = —iA—%iajak + 5A-lakaij — AT19;65 — AT1004.

and by recalling the identity (5.37)

wlh e wf) = <Z hut ) =Ry + Y Y ak o (V27 (B Wie) © Wig) © 1) (V)
i EEA;

(for the oscillation error) as

Rtransport =R (Dt qw((erl) (547&)
Rogeitation = »_ Y Riv (afe ) (VO:) ™" (P (Wiey @ We))) 0 ®;) (V)" (5.47h)
oscillation (5,,) ) > q+1/2 (g) (g) i 7
i EEN;
Ryash = R (wq+1 : v@q> (547C)
Reorrector = R (Dt,qwéil) + ( 1(121@)’11)((1421 + w((]?l l(lzjr)l + w((;jr)l ((]21> (547d)
Whlle the pressure terms are given by Doscillation — Zi pq,i and DPcorrector = 2’[1)[(121 . (p)l + |w((1i)1‘2 Wlth thlS

notation we have Pg+1 = ﬁq — Poscillation — Pcorrector and

Rq+1 = Rtransport + Roscillation + RNash + Rcorrector . (548)
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5.4.1 Inverse divergence and stationary phase bounds

Prior to estimating the above stresses, it is convenient to adapt the stationary phase bounds from Beltrami flows
to Mikado flows.

e We decompose the function ¢(¢) which defines Wiy = £¢(¢) in (5.6) as a Fourier series. Recall that ¢
defined in (5.5) is (T/r.41)? periodic and has zero mean. Additionally, the function ¢ is C°° smooth.

Therefore, we may decompose

Se) (%) = ber,i (1) = Y felk)eParikrmed) (5.49)

kez3\{0}

where the complex numbers f¢ (k) are the Fourier series coefficients of the C* smooth, mean-zero T? peri-
odic function z +— ¢(n.z- Ag, .z (§ X A¢)). The shift x — x — a, has no effect on the estimates. Moreover,
the Fourier coefficients decay arbitrarily fast. For any m € N we have |f¢(k)| = | fe(k)ePPat1kae] < Olk|=™
where the constant C' depends on m and on geometric parameters of the construction, such as n,, the sets
A;, the shifts a¢, and norms of the bump function ¢(z1,22). Thus, C is independent of A,y 1, or any other

g-dependent parameter.

e A similar Fourier series decomposition applies to the function VU = (V¥)(g) which is used in

(5.12) to define the potential V(¢) = WV\IJ(@ x €. For this function we also obtain that its Fourier series

n)\+1

coefficients decay arbitrarily fast, with constants that are bounded independently of ¢ (and hence Agy1).

e Therefore, for a smooth function a(z,t), in order to estimate R(a W) o ®;), we use identity (5.49), and
apply Lemma E.1 for each k individually, and then sum in k using the fast decay of the Fourier coefficients
fe(k). Without giving all the details, we summarize this procedure as follows. Let a € C°([0, T]; C™(T?))
be such that supp(a) C supp(n;), which ensures that the phase ®; obeys the conditions of Lemma E.1 by
(5.20) |[V®; —Id||o < § for ¢ € supp(n;). Also using (5.21) ||(V®:) 7|, + Vil y S €7V, we obtain from
Lemma E.1 that

iy

llal lallgm .o + llallgo 7M™
IR (a (Wie) 0 @)l +Aa1 [R (@ (Vigy 0 @0))l| e S S5 + e . (5:50)
q+1 q+1
where the implicit constant is independent of q.
e Recalling that W) @ Wy = (€ ® §)¢(5 and using that the function szq“/ﬁé) is also zero mean
(T/xq51)3-periodic, a sunllar argument shows that
a a||pm.o + ||@]| o €7
[R (o (B2t @ Wiep) o)), < 1ler y Ioleme +lele 551
Aq—i—l q+1

holds. The above estimate is useful for estimating the oscillation error.

5.4.2 Estimate for R,

In this section we show that the stresses defined in (5.48) obey (5.44)
q+174

~ 1—4a
* Agti

1 1
5.2 6,7

=

The Nash error and the corrector error are in a sense lower order, and they can be treated similarly (or using
similar bounds) to the transport and oscillation errors. Because of this, we omit the details for estimating Rnash

and Rcorrector .
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e Transport error. Recalling the definition of (5.34)

Wl =373 age i (@, )(VPi(,1) " Wie) (i(a, 1)
i EEN;

and the Lie-advection identity (5.35) Dt (U e = (Ui - V), = (VU,)TU; ¢, we obtain that the transport
stress Riransport = R (meflﬁ)l) in (5.47a) is given by

Rtransport = Z Z R (a(gvi)(V@q)T(VQDi)_IW(g) ((I)Z)) +R ((Dt’qa(gﬂ')) (V@l)_lW(g)(fI)l)) . (552)
i EEN;

In order to bound the terms in (5.52) we use (5.50) to gain a factor of )\;ﬁra from the operator R acting

on the highest frequency term W) o ®;. The derivatives of a ;), V4, and (V®,;)~! are estimated using
(5.33), (4.31), and (5.21) respectively. These bounds show that each additional spacial derivatives costs a
power of £~1. We obtain from (5.50) that

8./2184° A gmea\ g g-m-a
||Rtransport||ca S —atld 74 1+ + e+l g 14+ .

l1-«a m—1 l1-—a m—1
Agi1 Agt1 Ag+1 A1

Recalling (5.43), we have that (fA,1)~! < A, "~ 7”2 and thus upon taking the parameter m in to

be sufficiently large (in terms of 8 and b), we obtain that R ansport indeed is bounded by the right side of
(5.44), as desired.

e Oscillation error. For Roscillation =  _; deAi R div (a%&i)(vfbi)_l ((PZAHI/Q(W(E) ® W(g))) ) CIJi) (VCI%)_T)
defined in (5.47b), the main observation is that when the div operator lands on the highest frequency term,
namely (PZAq Wy ® W(E))) o®;, due to certain cancellations this term vanishes. Since by construction
we have (£ - V)@ = 0 it also follows that (§ - V)Psx,, s ( %5)) = 0. Therefore,

div (af (V) ™ (Por,p(Wie) @ Wie))) 0 ;) (V)7
— div (a%&i)(V@)_l(ﬁ ® €)(Vd;) T ((PZAQ+1/2(¢§§))) o <1>i))
= ((Porgra(0e))) 0 @) div (o) (V) T (€2 €) (VD) T)

+af o (V2) (€@ (VR T ((V0)T (TPoran(6f)) 0 @)

=0

The above identity shows that

Roscillation = Z Z R (((szq+1/2<W(§) & W(g))) o q)z) div (a%&i) (vq)z)_1(§ & 5)(V®z)_T)) )
i LEA;

at which point we may appeal to the stationary phase estimate (5.51) combined with the bounds (5.33)
1 p— — —_ .
||a(57i)’|N + 7 ||Dt7qa(5)i)||N < 5q{i1£ N and (5.21) ||(V‘I>Z) 1||N +[|[V®;]| y S €7V to obtain

||ROSCillatiOnHCo¢ 5 /\1—04 )\m—l 150/

q+1 q+1 q+1

dgp1l™" <1 N émO“) < 5;4%15;/2%

. . . 5L .
Here we have again taken m sufficiently large, and have recalled the definition of ¢ = mﬁ in (3.1).

Thus the oscillation error is also bounded by the right side of (5.44).
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5.5 Energy Increment

To conclude the proof of Proposition 2.1, it remains to show that (2.9) holds with ¢ replaced by ¢ + 1. In order

to prove this bound we show that

2 ¢l/2y142a
) 0,/v 104 Ag
‘k/mlvq+10utn2dx—— e (5.53)
T 2 Ag+1
. . 61/2 61 2)\ (S . .
holds. Recalling the parameter estimate (5.45) ‘”/\1171& < /\‘31:52, and taking a sufficiently large to absorb all

the implicit constants, it is clear that (5.53) implies the bound (2 9) at level g + 1.

Proof of (5.53). The principal observation is the following. Taking the trace of (5.37)

wlh e wf) = <Z Pasi ) =R+ 3ty (VO) ™ (Porern(Wie) © W) 0 @) (V)7

i EEN;

since R, is traceless we obtain

/TS |wl(]1-7i-)1|2d:c = 32/3 Pq,idz

+ZZ/ afe ytr (VO)"HE@E (VD)) (Porgsrss(Wie) @ Wie))) 0 ;) dov.

i EEN;

The second term in the above identity can be made arbitrarily small, since it is the L? inner product of a

function whose oscillation frequency is < ¢=1 (cf. (5.33) Ha(E»i)HN + 7y HDtﬁqa(E»i)HN < 5;f1€ N and (5.21)
H(V@ -1 HN + [[V®;]| y < ¢~V ) and a function which is A\j+1 periodic and zero mean. On the other hand, by

the design of the functions p,; = %pq( ), where pg(t) = % (e(t) _ 5q+z o [ d:v) we have
T J

32/%M—%0%0j? [ oo,

Since v441 = Vg + Wq41, the above identity implies that

)
e(t) —/ [Vgt1 (2, t)|?dx — a2 —2/ ﬂq-wq+1d3§—2/ w(ﬁ_l w 21da: / |w +1| dx .
- 2 s . a q
The corrector terms in the above give estimates consistent with (5.53) by appealing to

M .
< 255 (5.411) HwéleOJr

1/2 ¢t
‘1_ g atl

w, 1H ~ 1
H q+ q+ >\+1

() 1 )
(5.41a) qulil ‘o * Ag+1 qulil

Ag+1

and (5.43) < Q < 1. For the first term on the right side of the above we recall (cf. (5.39)) that w,41 may be

written as the curl of a vector field whose size is (5q +1)\q_+1

Wet1 = wé_,_)l + wéﬁl = curl Z Z ae,i) V(E) o d,)
i EEN;

Integrating by parts the curl and using (4.31) [[v4[l;, 5 < 51 AN with N = 0 we conclude the proof of (5.53),

and hence of Proposition 2.1.
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6 An h-principle
In order to prove Theorem 1.2, let us first state an already-known theorem

Theorem 6.1. Let (v,p, R) be a smooth strict subsolution of the Euler equations on T3 x [0,T] and fir 0 < v < 1.

Then there exists g > 0 such that for any e < €g, and for any sufficiently large A depending on €¢ and (v, p, R),
we have the following: There exists a smooth solution (v,p, R) of (1.3)

0w +diviv ® v) + Vp=—divR

dive =0,
satisfying the estimates

lv =0l g-r < CA7

lollo + 27 oy < C
[v@v+R-v®@0—R|, , <CX*
|Rllo < CX*!

ltr Rllp <&,

where C' depends solely on (v,p, R), and R is the traceless part of R. Moreover setting
e(t) == |5 + tr Rdx (6.1)
T3

for any t € [0,T] we have

‘< e(t) — lv|?dr < e.
2 -

We now prove Theorem 1.2.

Theorem 6.2 (h-principle Theorem 1.2). Let (7,p, R) be a smooth strict subsolution of the Euler equations on
T3 x [0,T] and let 3 < 1/3. Then there exists a sequence (vy,px) of weak solutions of

oww+v-Vu+Vp=0
(1.1)

dive =0,

such that v, € CP(T3 x [0,T),
v =0 and vy Quy ~TRV+R in L™
uniformly in time, and furthermore for all t € [0,T]
(1.4) / |og|? da z/ (|o]* + tr R) da.
T3 T3

Proof of Theorem 1.2. e Fix £ > 1 and let g < gg. We'll later use € to iterate, satisfying V e, < gq

assumption. We apply Theorem 6.1 with v = o and A = A\g, where here (a, Ag) are given in the statement

of Proposition 2.1, and where we take a sufficiently large such that \g is sufficiently large (in terms of g,
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and (9,p, R)), so that the hypothesis of Theorem 6.1 is satisfied. We obtain (v, p, R) satisfying

lo =Tl -2 <CA (6.2)

lvllo + A5 vl <C (6.3)
[v@v+R-—v®0— R, , <CA~" (6.4)
IRllo <CAG ™ (6.5)

[tr Ry <ew, (6.6)

and the function e(t) = [1; |0|* + tr Rdz as defined by (6.1) obeys

<e(t)— [ |v]?de<ep. (6.7)

€k
2 T

e Analogous to the proof of Theorem 1.1, we set

5,

1/2
€k

I' =

and rescale (v, p, R) to obtain
To(z,t) :=To(z,Tt),  Pola,t) :=I?p(z,Tt) and  Ro(z,t):=T>R(x,Tt),

so that (Tg, Po, Ro) also solves (1.3). Moreover, we have the estimates

~ e Csy?
[@ollo + A H[Tollx < T (6.8)
€k
CHy
Ek/\(l)_a ’

1ollo <

Choosing « sufficiently small and choosing a sufficiently large depending on ¢, C, and M, we obtain

1/2

C(lsl < rnin(M(Séﬁ7 1—14p) and L_ <A
& AT

Ek 1 24%)

from which we obtain (2.6), (2.7), and (2.8).

If in addition we set
é(t) = T2e(T't)

then from (6.7) we obtain

Ul §é(t)—/ To|? da < 6y,
2 T3

and hence we obtain (2.9) for ¢ = 0. Letting a be sufficiently large, we also obtain (2.2). Applying
Proposition 2.1 and arguing as was done in the proof of Theorem 1.1 we obtain a solution (v,p) to the

Euler equations satisfying

N |02 dz = é(t) . (6.9)

Moreover, by (2.12) we have the estimate

15— Bolly S 6, (6.10)
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e Lastly, we define (v, pr) by the rescaling back
v =T 7% (x, T71) and pp =T p(z, T 't).

Then (vg, pr) is a solution to the Euler equations, satisfying (1.4) as a consequence of rescaling (6.9). The

sequence vy, is uniformly bounded in C° since
lvelly < T 21BNl + 17— Toll) S €261 (6 + C8,%e, ) S e + C.

Thus (v ®vy) is also uniformly bounded in C°. By Banach-Alaoglu, vy and vi @y, have weak—x* convergent

subsequences.

e Moreover, by rescaling (6.10) and using (6.2) we have
lok =Bl S llow = vlly + o =llys ST +ONT S +ONT S8 (611)

by choosing a (and thus Ag) sufficiently large in terms of e;. Moreover, from (6.4)—(6.6), (6.8), and (6.10)
we obtain
vk @ve —v@v =R, Slve @ve —v @[y + |Rllg+ [[v@v+R-505— R,
ST 2[5 @7 — 5 ® oy + H}?HO +ltr R||, + CAe
S endy VOSP4 6 e+ ONT S C (6.12)
Since the H~! topology uniquely captures the weak—x limit, the theorem is completed upon passing £, — 0

in (6.11)~(6.12).
O
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A Holder spaces
m=0,1,2,..., « € (0,1), and 0 is a multi-index. We introduce the usual (spatial) Holder norms.
Definition A.1 (Holder Norms). (i) Supremum norm || f|lo := supgs (o 17 | f|

(i) Hélder seminorms

[fJm = max Do,

6]
[flm+a = max sup D (z.t) = D4 (y. )|
T eemay |z —yl

)

where D? are space derivatives only.

(iii) Holder norms

1flm = > _LF);

[fllmta = Iflm + [flmta-

Moreover, we write [f(t)]a and ||f(t)||o when the time t is fixed and the norms are computed for the restriction
of f to the t-time slice.

Theorem A.1 (Standard Interpolation Inequality). (i) forr >s>0,e>0
[fls < C(e"°[f1r + 7"l fllo) (A1)

(i) forr >0
[falr < C (A1 llgllo + 1 llolglr) (A.2)

(#ii) From (A.1) with e = ||f\|8/r[f];1/r we obtain the standard interpolation inequality for r > s >0
1=s/rt s /r
/1 < Clfle™ " (11 (A.3)

Theorem A.2 (Standard Mollification Estimate). Given Standard radial smooth mollifier ) in space R and
define o(x) = €739 (xl™Y) , then ¥V r € (0,1]

I1f *%e = fllo < ClFI-E" (A.4)
for constant C depending on r.

Proposition A.1 (Quadratic Commutator Estimate). Let f,g € C°(T? x T) and v a standard radial smooth
and compactly supported kernel. For any r > 0 we have the estimate

|7 ve)g o) = (Fg) x| < CETF il

where the constant C' depends only on r.
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B Estimates for transport equations

We recall some well known results regarding smooth solutions of the transport equation:

Of+v-Vf=g,
(B.1)

f(50) = fo,

where v = v(t,z) is a given smooth vector field. We will consider solutions on the entire space R® and treat

solutions on the torus simply as periodic solution in R3.

Proposition B.1 (Standard Estimates for solutions to Transport Equation). Assume [t|||v]; < 1. Then, any
solution f of (B.1) satisfies

17Ol < lollo + / lg( ) o dr, (B.2)

1@l <2 (Il / lot)l ar) (B.3)

for all0 < a <1, and, more generally, for any N > 1 and 0 < a <1

F®ln+a S olwsa+ [ Pln-ralfols + / (l9(M)n+a + (t = P)lolnsalg(): ) dr. (B.4)

Define ®(t,-) to be the inverse of the flur X of v starting at time to as the identity (i.e. d/arX = v(X,t) and

X(x,tg) = x). Under the same assumptions as above we have:

IV (t) — 1dlly < Jel o] (B.5)
@@y Sy YN > 2. (B.6)

C Potential theory estimates

We recall the definition of the standard class of periodic Calderén-Zygmund operators. Let K be an R? kernel
which obeys the properties

o K(z)=0Q (ﬁ) 12]73, for all z € R3\ {0}
e Qe (C(S?)
L Q2)dz =0,

From the R? kernel K, use Poisson summation to define the periodic kernel

Kpa(2) =K(2)+ > (K(z+10)—K(0)).

LeZ3\{0}

Then the operator
Ticf(a) = poo. [ sl =) f(0)dy

is a T3-periodic Calderén-Zygmund operator, acting on T3-periodic functions f with zero mean on T3. We first

have boundedness of periodic Calderén-Zygmund operators on periodic Holder spaces

Proposition C.1. Fiz « € (0,1). Periodic Calderdn-Zygmund operators are bounded on the space of zero mean

T3-periodic C functions.
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Second, we have simple consequence of classical stationary phase techniques.

Proposition C.2 (Updated Version Lemma E.1). Let o € (0,1) and N > 1. Let a € C*°(T3), ® € C>°(T?;R3)
be smooth functions and assume that

Cl<|ve|<C

holds on T3. Then

) (0]
/ a(x)ezk@ dx SJ ”aHN + H%\UO H ||N , (Cl)
T8 ||

and for the operator R defined in (4.28), we have

- llall lall xyo + llallg 19l x
HR (a(x)elk CI))Ha S |k|1—00¢ = WN—Z =

where the implicit constant depends on C’, a and N, but not on k.

Proposition C.3 (Commutators involving singular integrals). Let a € (0,1) and N > 0. Let Tk be a Calderdn-
Zygmund operator with kernel K. Let b € CN1L2(T3) q vectorfield. Then we have

11T, 0- VIfl N o S Nollga I lnga T 10051140 1]

for any f € CN+(T?), where the implicit constant depends on o, N and K.

D Beltrami Flows
Given € € S? N Q3 let A¢ € S2NQ? obey
Ac - £€=0, A_¢=A¢.

We define the complex vector

BgZ%(Ag—FifXAg).

By construction, the vector B¢ has the properties
‘BngL Bg-fzo, ifXBgZBg, B,g :E.
This implies that for any A € Z, such that A\¢ € Z3, the function
Wie)(x) := Wea(x) 1= Bee*™ (D.1)

is T? periodic, divergence free, and is an eigenfunction of the curl operator with eigenvalue A. That is, Wiy is a
complex Beltrami plane wave. The following lemma states a useful property for linear combinations of complex

Beltrami plane waves.

Proposition D.1. Let A be a given finite subset of S* N Q> such that —A = A, and let X\ € Z be such that
A\ C Z3. Then for any choice of coefficients a¢ € C with G = a_¢ the vector field

W(z) = Z agBeee® (D.2)
£eEN

is a real-valued, divergence-free Beltrami vector field curl W = AW, and thus it is a stationary solution of the

Euler equations
: L4
diviW e W)=V 5 (D.3)
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Furthermore, since B¢ @ B_¢ + B_¢ ® Be = 2P(Be ® B_¢) = 1d — £ ® €, we have

1
T3W®de=§§\|ag|2(1d—§®£). (D.4)

Figure 3: Example of a Beltrami flow W (x) as defined in (D.2).

Proposition D.2. There exists a sufficiently small c. > 0 with the following property. Let B.,(Id) denote the
closed ball of symmetric 3 X 3 matrices, centered at 1d, of radius c.. Then, there exist pairwise disjoint subsets

Ao C SPNQ3 ae{0,1},
and smooth positive functions
1 € CF(B(1)  ae{01}, €€ A,

such that the following hold. For every £ € A, we have —§ € A, and fyéa) = 'y(_‘?. For each R € B, (I1d) we have
the identity

R=3 Y () ta-cod). (D5)
€N,

We label by n, the smallest natural number such that n.A, C Z2 for all o € {1,2}.

It is sufficient to consider index sets Ag and A; in Proposition D.2 to have 12 elements. Moreover, by abuse of
notation, for j € Z we denote Aj = Ajnoq2. Also, it is convenient to denote by M a geometric constant such
that

(D.6)

2 |

§€ha

<
C1(Be, (1d))

holds for « € {0,1} and € € A,. This parameter is universal.
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E Stationary Phase Lemma

The operator R which acts on vector fields v with f']rS vdr = 0 as

1
(R0)™ = (A0 + 0pA™10) = 2 (re + 040, AT") div ATy (E.1)

for k,¢ € {1,2,3}. The above inverse divergence operator has the property that Rv(x) is a symmetric trace-free
matrix for each z € T3, and R is an right inverse of the div operator, i.e. div(Rv) = v. When v does not obey
f’]I‘3 vdx = 0, we overload notation and denote Rv := R(v — fw vdz). Note that VR is a Calderon-Zygmund
operator.

The following lemma makes rigorous the fact that R obeys the same elliptic regularity estimates as |V|~1.

Lemma E.1. Let X, € Z3, a € (0,1), and m > 1. Assume that a € C™*(T?) and ® € C™(T3;R3) are smooth
functions such that the phase function ® obeys

cl< Vel <o

on T3, for some constant C > 1. Then, with the inverse divergence operator R defined in (E.1) we have

< lallgo  Nlaligm« + llalgo IVl gm.

ca ™~ )\lfa Am—a )

(o)

where the implicit constant depends on C, o and m (in particular, not on the frequency ).
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