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Chapter 1

Functions of Bounded Variation

1.1 Functions of Bounded Variation and Caccioppoli Sets

1.1.1 Definitions and Semicontinuity

Definition 1.1.1 (BV Functions). Let Q C R" be open set. f € L1(Q).
[ 11 i=sup( [ fdivgds |g € CHOE),o(w)] < 1) (1.1)
Q Q

fe€BV(Q) if [,|Df] <oo. BV(Q) is space of L*(2) functions of bounded variation in Q.

Example 1.1.1. If f € CY(Q), [, |Df| = [, |V fldx where V f € C(Q;R™) is classical gradient. If f € W1(Q),
Jo|Df] = [ |V flde where V f € L*(Q;R™) is weak gradient.

1 r€eEF

0 zcR"\E characteristic on E with C? boundary.

Example 1.1.2. We study ¢g(x) = {

o If E is bounded, ||¢pll11 o) = [ENQ| <00 sopp € LY (). But Vg distributional derivative is vector-

valued Radon measure instead of L'(Q) function, hence o ¢ WH1(Q). But on the other hand, we may
compute [, |Deg|. Let g € C§(Q;R™) s.t. |g| <1, so by Gauss-Green formula

/(pEdivgdm: / divgda::/ g-vdH, 1 < H, 1(0ENQN) (1.2)
Q E OE

for v outer unit normal to OE. Taking supremum in g yields [, |Dyg| < oo. Thus W (Q) C BV ().

o We in fact prove [, |Dop| = H,—1(0ENQ). Since E C* boundary, v € C*(0E;R™) with |v| = 1. Since
OF is closed in R™ and R™ is normal, we may apply Tietze Extension to extend v to N € C1(R";R"™)
with |N| < 1. By Urysohn’s there exists n € C§°(Q) s.t. |n| <1, so let g =nN € C}H(Q;R")

/@Edivgdﬂc:/ divgdx:/ ’I7N~VdHn_1=/ ndH,_1
Q E OF OE

Take supremum in g on LHS and in n on RHS yields (due to H,_1.0F is Radon measure on R™)
[ Deel > s [ nat, -y [ne CF@).Inl < 1} = Hya (08 00) (13)
Hence (1.2) and (1.3) together gives, for E C? boundary
/Q |Dog| = H,—1L.0E(Q) := H,—1(0ENQ) (1.4)

A side remark: (1.4) is true in fact for E with C* boundary.

Remark 1.1.1. For f € BV (Q), the duality pairing (Df, g) :== — fQ fdivgdz defines the distributional gradient

Df € (C5(Q;R™)) because [, |Df] = SUPgecl (QiRn) % < 0o. By Riesz, the bounded linear functional D f
on Cj(4;R™) defines a vector-valued Radon measure Df on Q with [, |Df| the total variation of Df on .
Since |Df| is a Borel measure over Q, one may measure [, |Df| for A C Q not necessarily open. In particular,
if f = pg for some E bounded and C? so that o € BV (QQ), since the two Borel measures |Dog| and H,,_1.0F

agrees on all open sets as in (1.4), they agree on all Borel sets.

1



2 CHAPTER 1. FUNCTIONS OF BOUNDED VARIATION

Definition 1.1.2 (Perimeter & Caccioppoli Set). Let 2 C R™ be open and E a Borel set. The Perimeter of E
in § is
P(E.S) = [ |Dpe| =suw{ [ divgds | g € CHOUR",lgl < 1) (15)
Q E

If Q =R"™ write P(F) := P(E,R™). The Borel set E is a Caccioppoli Set if it has locally finite perimeter, i.e.,
P(E,Q) < oo for each bounded open @ C R™.

Remark 1.1.2. One has characterisations for Caccioppoli Sets E
e FE is a Caccioppoli Set iff there exist vector-valued Radon measure w over R™ s.t.

1. w has locally finite variation, i.e., for each bounded open Q C R™, |w|()) < oo
2. for all g € C§(R™) s.t. |g| <1, one has [, divgde = [g-dw

Proof. = Since for each Q bounded and open, P(E,Q) = [, [Deg| < x iff op € BV(Q2), Dyg defines
a vector-valued Radon measure with locally finite variation over R". Let w = —Dyp, so for each fixed (2,

/g~dw=—<Dng,g>:/LpEdivgdx:/divgdx
Q E

<= Suppose such w exists. Then for any g € CZ(;R") s.t. [g] <1
/ divgdz = /g cdw < w|(Q2) < oo
E

take supremum in g on LHS gives P(E,Q) = [, |Dyg| < |w|(Q) < oco. O

Definition 1.1.3 (Gauss-Green Measure Dyg). For E Caccioppoli, the vector-valued Radon measure
Depr on R™ with locally finite variation that satisfies the above is called the Gauss-Green measure of E.

e For E any Borel Set, suppDypgr C OF where
suppDyg = R™\ U {A open | Vg € Cy(A4;R"), |g] <1 = /g ‘Do = O}

Proof. For any = ¢ OF, there exists A open neighbor of = s.t. either A C F or A C E°. If A C E°,
¢op =0on A, so for any g € C}(4;R"), |g| < 1 one indeed has [g-Dpp = — [ ppdivgdz =0. f AC E,
¢p =1on A, sofor such g, [g-Dpp = — [, divgdr = — [divgdx = 0 since g is compactly supported
and one apply the divergence theorem. Thus for any = ¢ JF, © ¢ suppDypg. O

o FE is a Caccioppoli Set iff the Gauss-Green formula holds in a generalized sense, i.e., for any  C R™ open
and bounded, and for any g € C}H(Q;R") s.t. |g] <1

/divgdaj:—/ g-Dyg (1.6)
E OF

Proof. = follows directly. <= By the previous item, [, . ¢ Dop = [g- Dyp. Indeed, w := —Dyp
has bounded variation on each open bounded 2. Use the first item that characterises Caccioppoli set. [

e Given Caccioppoli set E, one has useful identification of o € BV
Corollary 1.1.1. For E Caccioppoli, and Q C R™ open. If either E or Q is bounded, ¢ € BV ().

Proof. Since either E or € is bounded, ||¢g| 11 q) = [E N Q| < oo hence g € L'(Q). Now one compute

fQ |Dyg|, and may proceed in 2 directions. If € itself is bounded, since E Caccioppoli gives locally finite
perimeter, indeed [, [Dyg| < co. If on the other hand, E is bounded, for any g € C§(;R™) s.t. |g] < 1,

using (1.6)
/@Edngdarz/divgdx:—/ g-Dyg
Q E oF

OF is bounded and closed, hence compact. Then one may cover OF using sufficient large open ball Bg,
and since FE is Caccioppoli, |[Dyg| defines locally finite variation positive measure

—/ Q'DQOES/ |Dyg| < oo
oOFE BrN
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Theorem 1.1.1 (Semi-continuity). Let @ C R"™ open. {f;} C BV(Q) s.t. f; — f in L}, .(2), then

[ 11 <tmint [ (D) (1.7

Q Iz Ja
Proof. For any g € C3(Q;R") s.t. |g| <1
/fdivgdx: lim / fidivgdr < liminf/ |D f;l
Q j—oo Jq j—oo  Jo

take supremum in g on LHS. O
Remark 1.1.3. The equality in (1.7) may not be achieved. Let Q@ = (0, 2m) and f;(z) = %sin(jx). Note

f% |1 sin(jz)|dx < 27r — 0 so fj = 0in L'(0,27). But fj(x) = cos(jx) and fo% |Df;| = fO% | cos(jx)|dx = 4.

Example 1.1.3 (Ratlonal Balls). One has some wvery interesting example set E, whose boundary |0F| =
H,_1(0E) = oo yet P(E) = [|Dyg| < co. In particular, this tells us [ |Dog| = H,_1(9F) is not true for
non-smooth boundaries. We construct the rational balls E :=J;=, B; s.t.

B; := B (x;) where {x;} truncates all rationals in R™
3

one may first calculate the measure of E
1., Wn,
Bl <Y 1Bl = wnl5)" = 75— <0

Then since E = R™, we conclude |0F| = H,_1(0F) = co. But on the other hand let Ej, = Uf:o B; so g, = ¢E
in L'(R™). Notice Ey, has piecewise smooth boundary so H,_1(0Ey) = [|Dyg,|, and moreover

k k
1 1
H, 1(0FE) < E 0B;) = E nwn(i)”_1 < nwnm < 0 uniformly in k
i=0 i=0

By semicontinuity

1
P(E) = [ |Dyg| <liminf [ |Dyg,|=liminf H,_1(0F) < nw,———— < 00
k—oo k—o00 1—21-n

So E is a Caccioppoli Set.
Proposition 1.1.1. For Q C R™ open, BV (Q) with norm ||f| gy = |1l + [o |Df| is a Banach Space.

Proof. That ||f|| gy defines a norm follows from L' norm and homogeneity, subadditivity of total variation.
To see BV () is complete, take Cauchy sequence {f;} in BV (). Since {f;} is already Cauchy in L'(f2),
there exists f € LY(Q) s.t. ||f — f;]| . — 0. Also, there exits N s.t. Vm,n > N, [, |D(fm — fn)| < 1, one has
JoIDfj < max Jo | D fil41 uniformly bounded. Hence (1.7) semicontinuity gives [, |Df| < coso f € BV ().

Tt suffices to show Jo|ID(f = f;)| = 0. For any e > 0, there exists N s.t. for any j,k > N, [, |D(f; — fr)| < e.
Fix j, apply (1.7) semicontinuity to {f; — fr}x so [, |D(f; — f)| < likminf Jo|D(fj — fr)| < e. Takee to 0. [
— 00

Proposition 1.1.2. Let Q@ C R"™ open. f, f; € BV(Q) s.t. f; — f in L}, (Q) and [, |Df| = lim [, |Df;|.
j—o0

Then for any A C Q open, one has certain reverse direction to (1.7)

/ |Df|zlimsup/ |D f;]
ANnQ j—=0  JANQ

in particular, if faAﬁQ |Df| =0, one has
[ 1pfi=1im [ Dg (18)
7—0

Proof. Let B :=Q\ A so B C Q open. By semicontinuity (1.7)

/|Df|§liminf/ |D f;] /|Df|<hm1nf/ |Df;]
A i=0 Ja
one calculate

| o+ [ pri= [ 1ps1= i [ D

Zlimsup/ |ij|—|—liminf/ |Df;l >hmsup/ |ij|+/ |Df]
ANQ J7ee JB AnQ B

j—0 j—0

since f € BV (Q), indeed [, |Df| < oo so one may cancel out. To see (1.8), one notice A C €2. O
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1.1.2 Approximation by smooth functions

ne G RY) b0
Definition 1.1.4. n(z) is mollifier if < suppn C By If moreover, { - 7 s positive symmetric.
A n(x) = p(la)

0 |z| > 1
Standard example for such positive symmetric mollifier is n = — where vy(x) := -
ple f p y fier is 1 = Tz V() {exp(|m21_1) 2| < 1

Definition 1.1.5. Given a positive symmetric mollifier n, the rescaled mollifier n.(x) = Ein(g) satisfies
supp7n. C B.. Given f € L} (), define its mollification f. :=n * f

loc

@) =5 [ o E 01w dy= (0 [ n@fe-edi= [ a@ferend 1)

gn €
Lemma 1.1.1. One has tools from mollification
o f.€C®R"), f- — fin L} (). If f € LY(Q), f- = f in L}(Q).
o I[f A< f(z) < B for anyx € Q, then A < f.(x) < B for any z € Q.
o If f,g € L"(R"), then [y, fogdz = [g, fgedx.
o If f e CYR"), then (2 f)e = 32 (f:) fori=1,--- ,n.

e supp f:={x € R" | f £0} C A, then supp f. C A := {z | dist(z, A) < e}.

Proposition 1.1.3. Q C R"™ open, f € BV (2). For A CC ) open s.t. faA |Df| =0, one has

[ 101 =1 [ Do (1.10)

Proof. Since f € L*(Q), f. — f in L*(£2), by semicontinuity (1.7), one has [, |Df| < lim i(I)lf J 4 IDf-]. Tt suffices
e—
to prove [, [Df| > limsup [, |Df.|. For any g € Cj(A;R") s.t. |g| < 1, using tools from mollification
e—0
/ fedivgdr = / f(divg)e dx = / fdiv(g.) dx
A A A

lg| <1 = |g:| <1 and suppg C A = suppg. C A.. Hence taking supremum in g

[ o1 /A DS

Take limsup on LHS and use continuity from above on RHS (f € BV (Q) defines a Radon measure |D f|)

limsup/ |Df| Slim/ |Df] :/ [Df|
e—=0 Ja A, A

Now by our assumption, RHS equals [, [Df]. O

Remark 1.1.4. Note in (1.10) we require A CC 2 not because we need boundedness, but because we wish that
A and A: do not touch ). And this problem is resolved for taking 2 = R™, and indeed, one may do so for
A=A, =R" (0A =0R" =@). Now for any f € BV(R"), one has

/ |Df| = lim/ |Df.|dx (1.11)
Rn e—=0 Jpn

Indeed for E bounded Caccioppoli, o € BV (R™) by Corollary 1.1.1, so (1.11) applies to ¢g.

(1.10) motivates our approximation of f € BV(2) using smooth functions. Note approximation in BV norm
should not be expected since the BV -closure of C°°() is WH1(Q) € BV (Q).

Theorem 1.1.2 (Approximation using C*). Q C R™ open, f € BV(Q). There exists {f;} C C>(Q) s.t.

lim/ﬂ\fj—f\dxzo (1.12)

j—o0

i [ pfide = [ 101] (1.13)
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Proof. Since f € BV (Q), |Df| on Q is finite measure, so V € > 0, there exists m € N s.t. fQ\Qo |Df| < e where

Qp = {:c € Q| dist(z,0Q) > } k>0 (1.14)

m+k
Define sequence {A;}i>1 s.t. A1 1= Qo, A; = Qi \ Q;_; for i > 2. Note A; are open and Q C U;>1 Ai- There
exists smooth partition of unity {¢;} subordinate to the cover {A;} s.t. B

¢ €CE(A), 0<o;<1, > =1
=1

Note for any z € , at most 2 of the A; covers z, hence Y, ¢; is finite sum pointwise, thus f = >"°, f¢;. One
wish to construct certain mollification of f so that our desired approximation holds, and a common method is
to mollify each f¢; with €; chose for each ¢ > 1 then sum them up. Each ¢; needs to satisfy (let Q_; := @)

supp(ne, * (féi)) C Qira \ Qig (1.15)
[ne: * (foi) = fPill 1) < e/2! (1.16)
ne, % (fDé3) = FDGill 1oy < €/2° (1.17)

and define f. := Y77 0., * (f¢;). Note f. € C>(€2) since at each € , at most 4 supports from (1.15) covers
z, hence finite sum of smooth functions gives smoothness. One immediately has from (1.16)

/Q\fe ~ flde < ZI/Q e, % (f0) — ol di <

hence (1.12) holds. And by semicontinuity (1.7), one has [, |[Df| < limiglf Jo|Dfe|. Tt suffices to prove
e—
Jo |Df| > limsup [, [Df-|. For any g € Cj(;R™) s.t. [g] <1,
e—0

[ gdivgde =Y [ v (Fodivgdo =3 [ foudiv (e +g)ds
Q —Ja —Ja
notice

div(¢ine, x g) = Dé; - (ne, * g) + ¢ div (e, * g)
hence

/Q frdivge =3 / £ [div(6: e, * g) — Dbi - (e, + g)] da
— /chuv(qs1 Ne, % g) dx + ;/Qfdiv(qbi Ne, % g) da — ; /Q fDo; - (12, * g) dz

= /Qfdiv(qbl Ney * g) da + Z/Qfdiv(qbi N, * g) da — Z /Q Ne, * (fD¢y) - g dz
notice the pointwise finite sum implies = -
i@:l = iD@:O
hence one may ad(llz‘;ack the sum olf: ;radients
[ petivade = [ gastoin »g)dos 3 [ gaivtonne c9)de =3 [ s (4D0) 16

now by direct estimate, (1.15) and (1.17) respectively
[ saiviorn., <g)de < [ |y
Q Q

i/ﬂfdiv(gﬁmsi*g)dx<3/ﬂ |IDf] < 3¢

\Q0

;/Q[nai*(fD¢i)—fD¢i]'gdx<€

Hence taking supremum in g on LHS gives

[ o< [ipsi+e = tmsw [ 1021 < [ D5
Q Q =0 Jo Q
and (1.13) immediately follows. O



6 CHAPTER 1. FUNCTIONS OF BOUNDED VARIATION

Remark 1.1.5 (Boundary Behavior of Smooth Approximation). Q@ C R™ open, f € BV (Q)). For every e > 0,
N >0 and xg € 09, let f. be as above

1
hm—/ |fe = fldz =0 (1.18)
p—0 pN B, (x0)NQ

Proof. For € > 0, choose m € N, Q as in (1.14) and f. as in Theorem 1.1.2. One wish to determine ig w.r.t. p
so that for any « € B,(z¢) N, one may write

o0 o0

fe(a (e % (fi) = fi) = Y (e, * (F0) — 1)
=1 =19
Making use of (1.15), one needs 4o to be the smallest integer ¢ s.t. 9B,(xo) N 2 touches suppne, * (f¢;), i.e
1 <p< ! = i [1] 2
—_— —_— 1 = —_ —m —
mtio+t2 - mtig+1 o=,

thus via (1.16), for some constant C' independent of p

[ A1 < 3 o (00 = ey < 02 = €2
x)N

’Llo

where 277 goes to 0 exponentially fast. Hence multiplying both sides by and sending p — 0 gives (1.18). O

1.1.3 Compactness Theorem and Existence of Minimizing Caccioppoli sets
One shall recall the GNS type Sobolev Embedding and Rellich Theorem from Sobolev Spaces.

Lemma 1.1.2 (Sobolev Embedding). Q C R™ bounded open. O Lipschitz continuous. 1 < p < mn. Then
np

WP(Q) CLYUQ)  VY1<g< (1.19)
n—p
i.e., for any such 1 <q < - there exists C = C(n, p, q, Q) s.t.
1flle < Clfllwrs (1.20)

Lemma 1.1.3 (Rellich-Kondrachov). © C R™ bounded open. 9Q Lipschitz continuous. 1 < p < n. Then
WP(Q) cC LIQ)  V1<g< n"—_pp (1.21)

i.e., each uniformly bounded sequence {f;} in W'P(Q) norm has a convergent subsequence { f;.} in L1(2) norm

for each q € [1, ;75).

Using above lemmas, one may show for the corresponding BV Embedding and a Compactness Theorem.

Theorem 1.1.3 (GNS-type BV Embedding). Q C R™ bounded open. 0Q Lipschitz continuous. Then

n

BV(Q) CLP(©)  V1sps _— (1.22)
n—
i.e., for any such 1 <p < 25 there exists C = C(n, p, Q) s.t.
1fllze < Cllfllpy (1.23)

Proof. For any f € BV (), by smooth approximation Theorem 1.1.2, choose {f;} C C*(Q) s.t. |[f; — fll;. = 0
and [, |Df| = lin(1)|ij| Then there exists M large enough st. | fillgy < M unlformly Since C* () C
J—

Wh1(Q), by Sobolev Embedding (1.19), for any 1 < p < -+, there exists C' = C(n, p, Q) s.t.

£l < C (Il + ||ij||L1) <CM

uniformly in j. If p = 1, by definition of BV norm there’s nothing to prove. For 1 < p < -5, the uniform
boundedness of f; in LP implies, from reflexivity of LP and Banach Alaoglu, a weakly convergent subsequence
in LP. Still denoting f;, ones has fo € L s.t. f; = foin Lp Since 2 is bounded, by Holder, a priori one knows

fis fo € L(2), and for any g € (L1(2))* = L>(Q2) (so g7 e (Q))

[t = faldo =1 [ (5 f0g'5* g¥lao <] [ (8~ fo

— 0
L= (Q)
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hence one has f; — fo in L'. But since we already know f; — f in L', by uniqueness of L' strong limit, fo = f.
Finally, by lower semicontinuity of weak convergence,

e < liminf £, < C'lim inf (fill + 1Dl 0) = C Nl v

Theorem 1.1.4 (Compactness). Q C R™ bounded open. 9 Lipschitz continuous. Then

BV(Q)cCLP(Q) V1<p< % (1.24)

i.e., each uniformly bounded sequence {f;} in BV (Q) norm has a convergent subsequence {f;. } in L*(Q) norm
for each p € [1, -2=). Moreover, the limiting function f € BV (Q).

? n—1
Proof. Let {f;} € BV () uniformly bounded by ”fj”BV(Q) < M. By smooth approximation Theorem 1.1.2,
V4, choose f; € C°(9) s.t.

_ 1 _
/Wﬁ—m<<, /unmng+z
Q J Q

Now since {f;} € C>(Q) is uniformly bounded in W'(Q) norm, by Rellich (1.21), there exists convergent
subsequence, still denoting fj, in LP for any 1 < p < -"5. Fix any such p, let f € LP(Q) s.t. Hf] — fH — 0.
Lp

Note € is bounded, hence Hélder inequality gives convergence in L' (p’ Hélder conjugate w.r.t p)

fi=fide<([1r-gras) 107 0
Q Q

and then one may apply semicontinuity (1.7) which gives
/ |Df| < liminf |Dfj|dz < M +2 < oo
to conclude f € BV (2). It suffices to show ||f; — f[/,;, — 0. But by Minkowski

15 = Sl < |55 = 5], + 5 - 1],

where the former term convergence due to BV Embedding (1.22) and DCT
- B <P AP e 2@ = 5- £ o0
and the latter term converges by Rellich (1.21)

O

Theorem 1.1.5 (Existence of Minimizing Caccioppoli Set). Let @ C R™ be bounded open, and let L be a
Caccioppoli Set. Then there exists a Caccioppoli set E s.t. E = L outside 2 and

/|D<,0E| = inf{/ |Dop|| F = L outside Q}

i.e., 4 E Caccioppoli s.t. E = L outside Q) and

/|D90E| S/IDsaFI (1.25)

for any FF C R™ Borel s.t. F = L outside ).

Proof. One wish to use compactness that extracts a convergent subsequence in L'. But notice we have no
information about regularity of 92, hence we first take R > 0 large s.t. Q@ CC Bg(0) ball of radius R and we
work with Br. Take a minimizing sequence of sets {E;} s.t. E; = L outside Q for any j and

lim |Dog;| = inf{/ |Dorp| | F = L outside Q} (1.26)
BR BR

Jj—o0

notice L itself agrees with L outside € and since L is a Caccioppoli set, on Br bounded open, [ Br |Der| < oo.
Hence the RHS of (1.26) < co. Now we may take M large enough so fBR |Dog,;| < M uniformly bounded.
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And since Bg are bounded, g, € L'(Bg) for any j, and in particular, HgoEj HLl < |Bg| < oo uniformly,

(Br)
so {¢g;} C BV(Bgr) is uniformly bounded in BV norm. Bpg has smooth boundary, so Theorem 1.1.4 gives
a convergent subsequence pg, — f in L'(Bgr). Again passing to subsequence, ¢vp;, — f pointwise a.e., but
¢p,; are characteristic functions, so f = pg agrees with characteristic function of some Borel set E a.e. Indeed
E = Ej = L outside Q. And since g, — ¢p in L'(Bg), by semicontinuity (1.7), [ [Dyp| < ]lggo s, 1D¥¢E;]|

/ |Dyg| = inf{/ |Dpr| | F = L outside Q}
Br Br

Finally we recover estimate on R™ from Bp. For any F' C R™ Borel s.t. F' = L outside {2

[10oel= [ Dl+ [ 1Derl= [ iDerl+ [ Do
Br BS, Br BS,
S/ |D</9F|+/ \D<PL|=/ |D<PF|+/ |D<PF|=/|D<PF|

Since one may take F' = L to be the Caccioppoli Set, E is a Caccioppoli Set. O

Remark 1.1.6. One has information for the minimizing set E from Theorem 1.1.5.

o [ determines boundary values for E. Since Dpg is supported within OF, or more particularly, imagine F
smooth so [, |Dep| = Hy,—1(0ENQ) really measures the surface area of OF within ), then (1.25) indicates
that ‘OF within ’ minimizes the surface area for all ‘sets within Q that has boundary OL N ON°.

e Imagine OL N ON) fized, then it determines a surface spanning OL N OS). But now curve the portion QN L
towards §2, it serves as obstacle forcing ‘OF within Q’ away from the minimal surface spanned by OLNOSY.

1.1.4 Coarea formula and Smooth Approximation of Caccioppolis sets

One shall recall Coarea formula for Lipschitz functions

Lemma 1.1.4 (Coarea Formula). Let f : R™ — R™ Lipschitz for n > m. Then for any A C R™ Borel

/\/det Df*Df)(z dx—/ Hy o (AN () dy (1.27)

With the Classical Coarea formula, one may prove for BV functions.

Theorem 1.1.6 (Coarea Formula). Q C R™ open. f € BV (). Denote F; :={x € Q| f(x) < t}, then

/Q'Df' - (o) a2

Proof. <. First let f > 0. Vo € Q, f(z) = [ @pedt = [[°(1 - ¢p,)dt, so Vg € CF(LR) st |g] <1

/fdivgdm:/ (/ (1—<ppt)dt) dngd:r::/ </ divgdx—/wptdivgdx) dt
Q a \Jo 0 Q Q

By Fubini, and then note compact support of g

o0 o0
0 Q 0 Q

Then let f <0.Vz e Q, f(z) = — [ pr di,s0Yg € CHQGR) s.t. |g] <1

0 0 0
/ fdivgdm:f/ </ ©OF, dt) divgda::—/ </ ©F, divgdm) dtg/ / |Dop,| dt
Q Q —o0 —o0 Q —o0 JQ

Hence for any f € BV(Q), write f = fT — f~ for f*, f~ >0, so

/Qfdivgdxg/g(ﬁff*) divgd:cﬁ/o;/Q|D<th|dt

taking supremum in g gives [, [Df| < [7 [, |Dor, | dt.
>. One first show (1.28) for f € C(£2) continuous piecewise linear function. Let Q = Ui\]:l Q; for Q; disjoint,
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open where f(x) = (a;, z) + b; for a; € R, b; € R, x € Q;. Then [, [Df| = Zi\;l |a;||€2;]. On the other hand,
F; now has piecewise smooth boundary, so

/ |D(th| = anl(aFt N Ql) =H, 4 {LL’ eQ; | f(l‘) = t} =H,_4 {,T eQ; | (ai, .’E> +b; = t}
Q;
Hence integrating w.r.t. ¢t and by change of coordinates

/ / |D<)0F,f|dt = / Hn—l {LL’ € Qz ‘ <(ZZ', .’L‘> + bz = t} dt
—oo J —oo
> i b; t t
:/ i oy {x ety B } ! <)
—oo |ai lai|  a;l |ai
> 79 b’L
—o0 ‘ai| |a’1‘

using Classical Coarea formula (1.27) with m =1

= |ai|/ 1dx = |a;]|€4]
Q;

hence for f € C(Q) piecewise linear, (1.28) holds

N N o0 (o)
[0A=Ytali0d =3 [ [ pertat=[ [ Dor|ar
Q i=1 =17 —00 J —oo JQ

Now take any f € C°°(2), approximate using sequence of { f;} C C(€2) continuous piecewise linear functions in
W11(Q) norm. In particular, one has

I = Sillpaey = 0 1D sy = lm 1D s (1.29)

where the latter follows from ||Df — ij||L1(Q) — 0 and DCT. Denoting Fj; := {x € Q| f;(z) < t}, one has

1@ - @l = [

— 00

(ore) = er @Idt = 1 = Ll = [ [ lon(@) = pr, @) dedt >0

hence there exists a subsequence ¢, , = ¢p, in L'(Q) a.e. t. Since (1.28) holds for each f;,

/\Dﬂ::mn/WDfﬂzlmg/ t/\Dmedt
Q =0 Jq =0/ _xJa

o)
o 7j—0 Q ’

then apply semicontinuity (1.7) for BV function

(oo}
2/ / |Der, | dt
—o0 JQ

and we conclude (1.28) for f € C°°(2). But notice, we've really only used (1.29) in the above argument. Hence
for any f € BV(Q), by Theorem 1.1.2, one may choose {f;} C C°°(Q) s.t. (1.29) holds. Then run the argument
again, we conclude (1.28) for f € BV (Q).

one apply Fatou w.r.t. ¢

O

To show for smooth approximation of sets, one needs Sard’s lemma for smooth boundary construction.

Lemma 1.1.5 (Sard’s Lemma). f:R" — R™ C* where k > max{n —m + 1, 1}. Let

Vi
X:={zeR"|Jf(x):=| --- | (z) has rank < m}
Vfm

denote the set of critical points of f. Then the image f(X) has Lebesgue measure 0 in R™. In particular, if
m =1, then given C* map f:R™ — R for k > n, one has

oz eR™ | f(x) <t} ={x €R"| f(x) =t} C* boundary for a.e. t € R (1.30)



10 CHAPTER 1. FUNCTIONS OF BOUNDED VARIATION

Theorem 1.1.7 (Smooth approximation of Caccioppoli Set). For E C R™ bounded Caccioppoli set, there exists
E; sets with C* boundary s.t.

[lee, —puitz >0 [1Dgr| = tim [ 1Dgs| (1.31)

Proof. Let 7. be positive symmetric mollifier. For E Caccioppoli, one look at the mollification (¢g). = - *pg.
Since (pg)e smooth and compactly supported, indeed (¢g). € BV (R™). Observe 0 < (pg). < 1 as inherited
from g, and denoting the set E.; := {x € R" | (pg):(x) < t}, one has, by Coarea formula (1.28)

[ pteerd = | 1 ( [ wEE,J) dt (1.32)

But since F is bounded Caccioppoli, Corollary 1.1.1 gives ¢ € BV (R™). One may thus apply global mollifica-

tion approximation (1.11)
1
[ 1peel = i [ 1061 =i [ [1D¢5..1) at
e—0 e—0 0

One now aims for the following claim. One wish to show for any 0 < ¢ < 1,

/|(pEc —pp|ldr < m{l n t}/| YE)e — pE|dx (1.33)

To do so, observe

(pE)e —pE >t on EZ,\ E
op—(pe)e>1-1  on B\EL,

Hence

/|<wE>e ~oplds :/ (o5)e — ¢E|dz+/ (o5)e — 5| do
EZN\E E\E¢ ,
> ¢[BE \ Bl + (1= ) [B\ B | 2 minfL— .4} [ loez, - pelds

which gives (1.33). By mollification, since ¢ € L'(R™) C BV(R"), |(¢g): — ¢E|l;: — 0, hence RHS of
(1.33) converges to 0 as € — 0 for each ¢, implying HQPE;,, — QDEHL1 — 0 for each t. But since £ bounded,

E¢, ={z | (pE)e >t} is also bounded for any 0 < ¢ < 1. And because OEZ, = {z | (pg). = t} is smooth, from
example 1.1.2, one has pg:, € BV(R™). Hence for 0 <t < 1, one has semicontinuity (1.7)

liminf/|D<pEc |2/|D<pE|
e—0 et

But because suppDypge, C OEC ;, under total variation, one has S/ |Doge | = [ |D¢E

1
[ 1pesl = i [ 106w =i [ [1D¢s..1) at
e—=0 e—0 0
By Fatou w.r.t. ¢
1 1
2/ <1iminf/|D<pE”|) dt:/ (liminf/|D<pEc |> dt2/|Dg0E|
0 e—0 " 0 e—0 et

hglﬁiglfﬂD@E;J > [ |Deg|
Ly . B
Jy (Hminf [ 1Dz 1) dt = [ |Dgx|

liminf/|D<pEc |:/|D<pE|
e—0 &t

Now one is ready to apply Sard’s lemma (1.30) to the set OEZ, = {x € R" | (pg). = t}, resulting in smooth
boundary of OE¢; for a.e. 0 <t < 1. Take one such ¢. we have obtained

So

E,t|'

now combining one must have for a.e. 0 <t <1

OEZ,  smooth
o o 0
liminf ['|Dppe | = [ | Dl

Take subsequence ¢; s.t. £; — 0 as j — oo and [ |Dyg| = ljn&f |Dy$; | Define E; := E¢ _,. O
j— et j
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Remark 1.1.7. Notice E; bounded and smooth ensures pp, C BV (R"™), and E bounded Caccioppoli ensures
vr € BV(R™). Hence one may apply (1.8), so that for any A C R™ open

/ Dgg| = lim / Do,
A i=0 /4

1.1.5 Isoperimetric Inequality
One shall first recall from Sobolev Space the GNS inequality as the tool from (1.19) and Poincaré Lemma
Lemma 1.1.6 (GNS Inequality). 1 < p < n. Then there exists C = C(n, p) s.t.

171, 22 gy < CNDF oy ¥ F € CHRY) (134)

Lemma 1.1.7 (Poincaré).  C R™ open, bounded, connected. 92 Lipschitz continuous. 1 < p < oo. There
there exists C = C(n, p, Q) s.t.

- fro

Corollary 1.1.2. There exists C; = C1(n) and Cy = Ca(n) s.t.
£l gy < CuIDS sy ¥ F € CF(RY) (1.36)
£ = Folly s ) < ColDflpags,y ¥ F € C=(B,) (137)

where f, := pr fdy = ﬁpr fdy.
Proof. Apply (1.34) with p = 1 yields (1.36). Apply (1.19) with Q = B,, p=1 and ¢ = "5 gives

SCOIDfllpoay  YfeWHP(Q) (1.35)
Lr(Q)

If = f”HLﬁ(B,J) <C|f- fp”Wl,l(Bp) =C (”f - fp”Ll(Bp) + ”Df”Ll(Bp)) <Gy ||Df||L1(Bp)
where the last inequality uses (1.35). O

One immediately has Sobolev Inequalities for BV function.

Theorem 1.1.8 (Sobolev for BV). There exists C; = C1(n) and Cy = C2(n) s.t.

”f”Lﬁ(Rn) <y / |Df] vV f € BV(R") and suppf compact (1.38)

£ = Foll ey < Co [ IDSI VS e BV(B) (1.39)

where f, = pr fdy = ﬁpr fdy.

Proof. One mimic the proof in (1.23). For f € BV(R™) with suppf compact, by smooth approximation
Theorem 1.1.2, there exists {f;} C C§°(R") with uniform compact support s.t. [|f; = fll 1 g.) — 0 and

[IDf| = lim [|Dfjldz. Now Df; is uniformly bounded in L' on R™, say by M. So one has from (1.36),
j—o0

Hfj”Ln’ll(Rn) < ||Df]-||L1(Rn) < ;M uniformly bounded. Since L7T is Reflexive, a uniformly bounded

sequence in L#T has a weakly convergent subsequence by Banach Alaoglu, say fi = foin L7=7. But with

uniform compact support for f; and fo, one has f; — fo in L' by Holder. Since we already know f; — fin L',

fo = f. Now by lower semicontinuity of weak convergence

n—1 n—1
(finrm=ae) " < i ([1s=ac) T <ot 105l =1 [ 1D1]

thus we’ve proved (1.38). For f € BV(B,), by smooth approximation Theorem 1.1.2, there exists {f;} C
C>(B,) s.t. || f; — f||L1(BP) — 0 and pr IDf| = jlggo pr |D f;|dx, so ||ij||L1(Bp) is uniformly bounded, and

by (1.37), {f; — (fj),} is uniformly bounded in L7-7(B,). Hence there exists weakly convergent subsequence
fi — (fj)p = fo in L#1(B,), thus since B, bounded, f; — (f;), — fo weakly in L'(B,) via Holder. But
fi—(fi)p = f—f,in L', so f — f, = fo. Again by the lower semicontinuity one has (1.39)

(/Bp|f—fp|”n1d$>nn1 <j1Lr{30(/jB

n—1
n

Ifj—(fj>p|”"'1drc> < Ca tiw |DSyl5, = C2 [ IDS
j—o0 B,

P
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Theorem 1.1.9 (Isoperimetric Inequality). For E C R™ bounded Caccioppoli, there exists C; = Ci(n) and
Cy = Cy(n) s.t. for any open ball B, C R™ with radius p

B <C1 [ 1Dl = G P(E) (1.40)

min{|EN B,|, |[E°NB,|}"+ < 02/ |Dygr| = CoP(E, B,) (1.41)

P

Proof. Since E bounded Caccioppoli, ¢ € BV (R") and supppr = E is compact, one apply (1.38) and so
(1.40) holds. Now let f = ¢, then f, = ﬁ pr Yp = %, SO

/|f—fp\ﬁdx=/ |1—fp|ﬁdx+/ £, da
B, B,NE B,NE*

|ECN B[\ ™ [EN B[\
=|B,NE| ( +|B, N E°| | ==&
’ B, ’ By

ENB,|\" " ENB,[\" T
> min{|B, N E|, |B, N E°|} (1—|p|) +(|p>
By Byl

Hence taking “=1 power gives

n o o ENB.|\ T EAB.|\ T o
/‘f‘fﬂ'ﬁdx > min{|B, N El, | B, N E°[} " (1_|,)|> +(p|)
Bp |BP‘ |Bp|

Notice for any 6 > 1 and a, b > 0, one has elementary inequality (a + b)? < 2° (a9 + be). Letting 0 = 25,

|[ENB,| |ENB,|
a=1— "= and b = -2
[B,l |B|

, SO

n—1
L ENB\TT L (ENB,[\TT T > (27 1)"79,1
Ex 1B, - T2

independent of size of B,. Hence apply (1.39) one has (1.41).
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1.2 Traces of BV Function

1.2.1 preliminary lemmas

Lemma 1.2.1 (Lebesgue Differentiation). f € L*(R™). Then for a.e. x € R"

ti - [ 1f(e+9) - F@)]dy =0 (1.42)
B

p—0 p™ ,

One need Zorn’s lemma for a Covering argument.
Lemma 1.2.2 (Zorn’s Lemma). One needs a few definitions to make sense of Zorn’s lemma.
o A set P is partially ordered by < if

< is reflexive: x < x for any x € P
2. < is anti-symmetric: x <y and y < x implies x =y
<

1s transitive: x <y and y < z implies x < z

Note not all elements in P are required to be comparable. If a subset S C P that inherits the partial order
< has every pair of elements comparable, S is called totally ordered.

o An element m € P with partial order < is maximal if there does not exist s € P s.t. s #m and m < s.
Note ‘maximal’ here does not need m to be comparable with all other elements in P.

o Given subset S C P that inherits the partial order <. An element u € P is an upper bound of S if for any
se s, s<u.

Zorn’s Lemma claims: Given a nonempty partially order set (P,<). If every nonempty subset S C P that
inherits the order < and is totally bounded has an upper bound uw € P, then P contains at least one maximal
element m with order <.

Lemma 1.2.3 (Covering Lemma). A CR". p: A — (0,1). Then there exists countable set {z;} C A s.t.
Bp(m)(xz) n BP(Ij)(xj) =g fori#j (143)

Ac | Bspan (1) (1.44)

=1

Proof. For k > 1, let Ay :={z € A| 55 < p(z) < 57— }. One wish to define a sequence of sets Ly, for each k. If
Ay = @, let Ly, := @. WLOG, assume A; # &. Let £ :={L C Ay |V, y € L, x #y, Bya)(x)NB,y,)(y) = 2}
For nonempty Aj, £ is indeed nonempty because both the empty set and singletons are elements of £1. Now
order £1 with inclusion. For any subcollection of £; totally ordered with inclusion, indeed their union is element
of £1 and is upper bounded. Hence £; contains a maximal element via Zorn’s lemma, call it L. Now assume for
Ly,---, Ly, one obtain Ly via taking the maximal element of the following collection ordered with inclusion

£k+1 = {L C Ak+1 |V r,ye Lt ULyU-- UL UL, x 7& Y, Bp(x)(x) ﬂBp(y)(y) = @}

Notice @ € Lj41 is always true so Zorn’s lemma applies. Lgyq could be empty even if Apy; is nonempty.
Moreover, for each Ly, for any M C R™ compact, M N L must contain finitely many elements otherwise
{B,()()}remnL, as open cover of M N Ly, does not have finite subcover, contradicting compactness of M N L.
Hence let M truncate collections of balls {Ej} with radius 7 € N, so each Ej N Ly, is finite for any j. Thus
pass j to oo, Ly is countable. So L := (Jy—, Li is countable set satisfying (1.43). To see (1.44), take any
z € A =Jpo; Ar. There must exist k s.t. z € Aj. Now since L, is maximal element of Ly, Ly U {z} ¢ Ly.
Hence there must exist x € Ly U---U Lg s.t. @ # 2z and Bj,)(z) N B,y (2) # @. Note by definition of Ag,
7 < p(z) < z=r, and by definition of Ly U---U Ly, o < p(z) < 1. Hence $p(z) < p(x). But the balls

ok
Bp(ac) (iL’) n Bp(z)(z) 75 J,80 z € B3p($)(.’£). O

Using the covering lemma, one obtains a boundary differentiation lemma analogous to Lemma 1.2.1.
e B.(z) :={z € R"| |z — z| < r} ball with center x radius r in R”
o B,(y) :={t € R"||y—t| <p} ball with center y radius p in R"~!
o Let R} :={z € R" |z, >0}, y e R"™1 = OR", p > 0. Upper cylinder with center y radius and height p

Cr(y) :=={(z,t) e R" 1 x (0,00) | [y — 2| < p, 0 <t < p} = B,(y) x (0, p)
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Lemma 1.2.4. p positive Radon measure on R} with N(Rﬁ) < 0. Then for H,_1-a.e. y € R*1 = 8Ri,

m —p(CF (y)) = 0 (1.45)

p—)O P

Proof. 1t suffices to show Yk > 0, Ay := {y € R"~1 | limS(l)lp pn%l,u(C;r(y)) > +} is of H,_1 measure zero.
p—
Given € > 0. Note for any y € Ay, there exists p, < € s.t.

1

1 o
pn_lu(CZL(y)) > op == T <2k (G (y)
Y

Choose {y;} C Ay, as in Lemma 1.2.3 with p(y;) = py, so that %, (y;) are disjoint and A C Uj<, PBsp,,, (Y;5)-

H, 1 Alc SZ %3;)% yg))—wn IZ 3/)1/J n <wn 13" 12/432” y]))

j=1 Jj=1

But C’;ryj (y;) = ‘%Pyj (y;) % (0, py,) are disjoint, and since p,; < ¢ uniformly in j

H,_1(Ax) < wn_13" 12k p{r €eRY |0 <z, <e}
for any € > 0. But u(R%) < oo, so p{z € R} |0 <z, <e} - 0ase— 0, hence H,_1(Ax) =0 Yk > 0. O

1.2.2 Existence and Property of Trace on Cp
One first work with upper cylinder C% := C}(0) = Bg x (0, R). Also denote Cg := #r x (—R, R).
Theorem 1.2.1 (Construction of Trace). f € BV(C}). There exists f* € L'(Bg) s.t. for Hy_1-a.e. y € Br
1
— —f* dz = 1.4
i [ 1) = S Wl =0 (1.46)
and for any g € C3(Cr;R™), one has

fdivgde = —/C+<g7 Df) - S gndHy, o (1.47)

cf Br

Definition 1.2.1 (Trace of BV Function). f € BV(C}). f+ € LY(%gr) in Theorem 1.2.1 is trace of f on Bg.
Indeed (1.46) implies for H,_1-a.e. y € Br

10 = G L 7O (149

Proof. First suppose f € C’OO(C'E). Then for any 0 < ¢ < R, define f¢: Br — R as f¢(y) := f(y, €). Hence
denoting Q. . := $Br x (¢/, €) for 0 <&’ < e < R, one has from FTC

/ £ () — £ ()] dHues () < / Do (y,1)] didH,,_ (y) = / D, f| dx (1.49)
Br Br Je’ ’

ele

Since f smooth, RHS Cauchy in € gives LHS Cauchy in ¢, thus 3 f* € L1(%R) s.t. || — f+||L1(53R) — 0. Take
any g € C}(Cg;R™), Since f smooth, for any 0 < ¢ < R, and let v = (v!,--- , ™) denote unit normal w.r.t.
Br x {x, = €} and pointing downwards to R"~!, ie., v = (0,---,0,—1)

/ f divgdr = — / (9. Df) + / F, &) gy, €) - vdH1 ()
Qe R Qe.Rr Brx{xzn=c}

. / (9, D) - / F (. €) gnly, €) dHou_1 (y)
QR Brx{xn=c}

- / (9. Df) — [ 17 () 6i(y) dH1(v)
Qc.R Br

letting € — 0, one obtain (1.47) for f smooth. To see for (1.46), for any y € B and 0 < p < Rs.t. Cf (y) C ch

2)— f7F z = ’ — ft e
L @ =rrwla= [ [l - @), o)

+ +(n
</@(y)/ |f(n, t) = f(n)| dt dH -1 ( /5 (y)/ 1F( (y)| dt dH,,_(n)
:/ / |f(n, 1) —f+(n)|dthn,1(n)+p/ ) — £+ ()] dH ()
‘%’p(y) 0 %p(y)
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notice upon multiplying by p~", the second term goes to 0 for H,_j-a.e. y due to Lebesgue Differentiation
1.2.1. For the first term, use Fubini and mimic (1.49)

[ "\ F 1) — £ ()| dt dEy—y () = / ’ [ rtw -l
By(y) J0 0 JBo(y)

P t
< / / / D, f (. €)| dE dH,,_ (n) dt
0 @p(y) 0
p
<[ [ ipflasar<p | ips
0 JQo,t(y) C:r(y)

now multiplying by p~" and notice |Df| is Radon measure on C}; that is finite, one may use (1.45) with
w=|Df|. Hence for H,_1-a.e. y € Br

1 o 1
£6) = £ Wl < iy /C LR

P* I ()

n

1
pn—l

/ P @) = FH @) dHooa () = 0
%p(y)

and one concludes (1.46) for f smooth. In general for f € BV(C},), approximate using {f;} C C>®(C}) via
Theorem 1.1.2. Recall remark (1.18), for any j, given n and H,_1-a.e. y € $Br

1
lim — — fi(2)|dz =0
b, = C;(y)If(Z) fi(2)ldz

Hence combining with f; satisfying (1.46)

1 1 1

- [f(2) = £ (y)ldz < — \f(Z)—fj(Z)le+7/ fi(z) = ff ()| dz =0

e () Pt @) ey ()

for any j. Thus by uniqueness of L' limit, all traces f;’ coincide H,,_i-a.e. y € Br. So define f+ := fj+ for
any such trace. One has (1.46) for f € BV(C}). Finally, since | f — fill ey = 0 and fcjg |IDf;| — fcg |Df|,

one wish to deduce (1.47) from

/ fjdivgdxz—/ <g7ij>—/ FF gndH,
C; C}qu», Br

The first term converges due to || f — f; ||L1(C+) — 0 and the last term does not need to converge as f+ = f;r for
R
any j. For the second term, note fc+ |Df;| = f(ﬁ |D f| convergence ensures uniform boundedness of f(ﬁ |Df;.
R R R
By Banach Alaoglu, the closed unit ball in norm is compact in the weak* topology. Hence identifying f o+ | Df| as
R

norm, there exists subsequence s.t. D f; 2 Df. But the vague topology convergence fC; (g9, Df;) — foj; (g, Df)

is essentially the weak* topology convergence. Hence we’re done.
O

Proposition 1.2.1 (Approximation in BV implies Approximation in Trace). f € BV (C%). If {f;} € BV(CF)
s.t. fj — fin LY(C}) and

tim [ Dfl = / Df) (1.50)
ey ot
then
hm ‘f;’_ _f+|dHn—1(y) =0 (151)

Proof. For any 0 < § < R, consider Qo, g := #r x (0, B). Define fz: Br — R s.t. fg(y) := %foﬁ fy,t)dt for
any f € BV(C}). Then for a.e. 8

B
/% )~ sl 1) = /@ ) - % / £y, 1) dt| dH, 1 (3)

— 1 ? + 1 B
=5 [, s amawa <5 [ paas [ s
(1.52)

where the last line uses (1.49), initially shown for smooth f. To make sense of (1.49) for f € BV(C},), one
precisely needs smooth approximation from Theorem 1.1.2 where || f. — f]| Li(ch) implies for a.e. ¢

/ W) = oy, )] dHar () — / £ @) — F, D) dHn1 ()
Br Br
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and [+ [Dfe| = [o+ |Df| implies via (1.8) (f%RX{t} |Df| = 0 for a.e. t otherwise uncountably many disjoint
R R
summing up contradicts f € BV(C})) that Joo., IPfel = g, , |Df|. Hence for {f;} C BV(C}) as assumed

/@ S () < /ﬁ S = (sl ) + /J
using (1.52)

(F1)5 — ol dHor (y) + /@ s — FFdH,_\(y)

R

<[ s+ [ 16~ fsldtaw + [ 1Dr
Qo. Br Qo, 8
the middle term writes, using || f; — f||L1(C;) —0

I 1
[, 00s = gstdtam =5 [ 15w 0~ s ol aa @ =5 [ 1= e 0

R

Thus, since for a.e. 8, [, DSl = Joo , |1Df|, one has
tmsup [ | = st dH, @ <2 [ (Df
j—oo JBR Qo, p

for a.e. 8. Thus using f € BV (C}) so fQo . |Df| — 0 as 8 — 0, one arrives at (1.51). O

Note for Cf := Bpr x (—R,0), one may similarly define f~ € L'(%g) as trace for the function f € BV (Cy)

via Theorem 1.2.1.

Proposition 1.2.2 (Extension Property for BV). For f; € BV(C}) and fo € BV(CR), let f*, f~ € LY(%g)
be their trace respectively. Then for f : Cr = Br X (—R, R) — R defined as f := 2 EZ gﬁ,
f € BV(CRg) and

one has

/ [ fl A (y) = / Df| (1.53)
Br Br

Proof. Note from (1.47) applied to f; and f, respectively, one has for any g € C3(Cr;R™)

| aivgae == [ t.0p)~ [ 1t gudt,
CR

cf Br

/ fadivgdx = —/ (g9, Df2) + [T gndHy_y
cn fops

R Br
Notice on C}, while deriving (1.47) for smooth f, one take unit normal v = (0,---,0,1) pointing upwards to
R"~!. Hence the last term involving g, has opposite signs. One take sum of the above to obtain
| paivgae=~ [ to.0n)~ [ 008~ [ (= ) gndt (154)
Cr ol Cp Br

Now if require |g| < 1, one has

[ saigas < [ ol [ gl+ [ IfaH [ 15 dH <o
Cr ol Cy Br Br
Hence f € BV(Cg). But on the other hand, by definition of distributional gradient D f

/CRfdivgdx:—/CR(% Df>=—/cg<97 Df)—/CR<g, Df>—/{@R<g7 Df)

Notice f coincides with f; and f5 respectively on C’E and CF, hence
fagde =~ [ to.00)~ [ to.08)~ [ (0.0 (1.55)
Cr cf Cr Br
Now combining (1.54) and (1.55) gives
| Gt =gt = [ o)
Br

R

SO
/ Dfl= sw | [ @DHl= sw || (FF—f)gndHu| = / = dH
BR geCH(Cr;R™) J Br 9geCH(Cr;R™) J Br Br
lgl<1 lgl<1

where the last equality holds by Riesz Representation. Hence we're done with (1.53). O
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1.2.3 Trace on Lipschitz Domains

One has systematic tools to reduce a Domain to Cr. Let  C R™ open with 09 Lipschitz.

e Since 0N Lipschitz, for any zg € 02, there exists a neighborhood around zg s.t. the intersection of 9f)
and the neighborhood is locally the graph of a Lipschitz function. Due to topology in R™, one is in fact
free to choose the neighborhood as simple geometric objects. Via translation, one may first put zp = 0

as the origin, then rotate 92 so that one may choose a cylinder C(R) = %Br x (—&, &) with Zp radius
R > 0 and height §7 as well as a local Lipschitz function w : Zr C R*™1 — (—%, %) where the local
boundary and interior writes
R R
AN C(R) = {(y, 1) € O(R) = B x (—3, ) | £ = w(y)) (1.56)
QNC(R) ={(y, t) e C(R) | t > w(y)} (1.57)
e One may further flatten out the local boundary by introducing the variables

(v, 7) = (y, t —w(y)) € Cf = Br x (0, R)

hence for f € BV (2N C(R)), one may further define for g € BV (C}) via
gly, )= fly, wly) +7) = f(y, t) (1.58)

e Apply Theorem 1.2.1 to g € BV(C}), there exists trace g* € L'(%g). One define f* € L'(02N C(R))
for f € BV(Q2NC(R)) as the trace on local Lipschitz boundary via

Hy, wy) =g"(y) (1.59)

Theorem 1.2.2 (Construction of Trace). © C R™ open and bounded with 02 Lipschitz. f € BV (Q). Then
there exists trace ¢ € LY(9S) s.t. for H,_1-a.e. x € 9Q

lim —/ [f(z) —p(x)|dz=0 (1.60)
B, (z)NQ
And for any g € C}(R™;R™) one has, denoting v outer unit normal w.r.t. O

| paivgde == [ (0. 07+ [ oto. )t (1.61)

Proof. For @ C R™ bounded, 0 is compact. Hence consider open cover {Cy(R)}scoa where Cy(R) is the
cylinder s.t. upon translation and rotation, (1.56) and (1.57) holds for x positioned at the origin. There exists
finite subcover {C,,(R;)},. Given f € BV(Q), upon defining local trace f;" € L'(9Q N Cy,(R;)) for each

(]
f|CI.(Ri) as in (1.59), one observe that on their overlaps they must agree H, _j-a.e. due to uniqueness of L'

limit. Hence p(z) = f;"(x) for i s.t. @ € Cp,(R;) is a well-defined L'(092) function. Note for any = € 92, and
for i s.t. @ € Cy, (R;), there exists p < &= s.t. B,(z) C Cy,(R;). Hence (1.60) follows directly from (1.46) as
a local behavior. To derive (1.61), one needs partition of unity. Denote T'; := C,(R;) for i > 1 and I’y CC 2
chosen s.t. Q C U'f\;O I'; is open cover. One may choose a smooth partition of unity subordinate to {T';}} s.t.

N
0<¢; <1, supps; CTy, > ¢i=1in0Q
=0

Hence f = Zi\io fo; in Q and p = Zil p@; on 0f2 since I'y CC €. By definition of distributional derivative
D(f¢o) € D" and that suppfpg C Ty CC €, for any g € C}(R"™;R")

[ #oudivgds = [ fondivgds = [ (g, Dson) = = [ to. Dison) (1.62)

while for i = 1,--- , N, one apply flattening boundary and then (1.47) on each C’Ei to obtain

/ fordivgde = — / (g, D(f6:)) + / o6ilg, v) dH,_y (1.63)
Q Q o0

Hence summing up (1.62) and (1.63) gives (1.61). O
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Proposition 1.2.3 (Approximation in BV implies Approximation in Trace). @ C R™ open and bounded, 9S
Lipschitz. f € BV(Q). If {f;} € BV(Q) s.t. fj — f in L'() and

Jm [ pg1= [ pr (160

then, letting ¢; be trace for f; and ¢ trace for f

lim loj —¢|dHp—1 =0 (1.65)

Jj—o0 Jo0
Remark 1.2.1. Let Q C R™ open and bounded, O Lipschitz. f € BV (Q).

e By smooth approzimation Theorem 1.1.2, there exists {f;} C C®(Q) s.t. |f; —f||L1(Q) — 0 and
l_ir% fQ |Df;|ldx = fQ |Df|. As in Proposition 1.2.1, or essentially (1.18), letting ¢; be trace for f; and ¢
J1—

trace for f, one has ¢; = ¢ for any j.

o Let A CC Q) open with A Lipschitz. Then f|, € BV(A) and f|Q\Z7 hence denote fy, f1 € L*(0A) as
their trace respectively.

1. One has immediately via differentiation (1.60) that for H,,_1-a.e. x € A

i [ i@ - fr@ld =0 g ()= Fi@ldz=0  (166)
B,(z)NA

p—0 p™t /Bp(z)ﬁ(Q\A)

2. Via Eaxtension property for BV Proposition 1.2.2, denoting v as outer unit normal w.r.t. 0A, one
has important characterisation for the measures |Df| and Df on 0A

/ Df| = / £ = F3 ) dH () (1.67)

0A O0A

[ pr= [ (t-50) var, (1.68)
OA O0A

In particular, let Q@ = Bg and A = B, for p < R, and denote f,, f;r € LY(8B,) as trace for f|Bp and
f‘BR\Ep respectively. One has, for some N1, Ny C R set measure 0

Jim [ f(te) — £y (pr)| dHuoa(x) =0l [ |f(tn) = £ (pr)| dHaoa(2) =0 (169)
;}gl 8B, thJ@ 8B,

Proof. It suffices to prove for f,. Notice, by a change of variables, for any f<t<p

/ F(t2) = £ (o) (2) = — [ 1f(Ee) = f; (@) dH 1 ()
dB, P JoB,

p
11
— — f, ()| dz H,—
aArEDT /t?Bp /32<p_t><z)mgp|f(z) o (@1dz @)

where the last inequality holds for a.e. t. Denote the set that it fails by N;. Now since f € L'(Bg), one
may apply DCT and use the inner part of (1.66)

. _ . 1 1 ~
imswp [ 1f(t2) ~ f; (o) dHy 1 (2) < sy = [ T /| g O @l @)

t—=p~ t—p— P
t¢ Ny t¢g Ny
<1 lim — / F(2) — f5 (@) dz | Hoor(2)
< — im z) — )| dz n_1(x
r" JoB, o0 (P =" JBy, (@B, r

=0
O

Also, since f € BV (Q), |Df] is of finite measure. Due to countable additivity of measure for |Df|, for
a.e. p, one has faB,, |IDf| =0, hence

f(x) = fz) = f, (2) for H,_1 — a.e. x € 0B, for a.e. p (1.70)
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o Let A C Q open with QA Lipschitz, and f € BV (A). One may extend f to Q by F := {f in A hence

0 inQ\A
denoting Fy, FX € LY(A) as trace for F|,, F|Q\Z> one has Fy = fy as trace of f on A, and Ff = 0.

1. from (1.67)

[ipri= [psi= [ pri= [ i3, (1.71)
Q A QoA QoA
2. from (1.68), denoting v as inner unit normal w.r.t. A
/DF—/ Df:/ DF = favdH, (1.72)
Q A QnoA QoA

In particular, one may further compute 3 perimeters for subsets of Caccioppoli set w.r.t. some ball. Let
Q= Bgr and A= B, for p < R, and f = ¢p for E C R" Caccioppoli. Then F' = ppnp,. Due to (1.70),
for a.e. p, op = CE.p for Hy,_1-a.e. x € 0B,. Note 0B, N B = 0B, so

1. from (1.71)

P(ENB,, Br)=P(E, B,)+ H,_1(EN0JB,) for a.e. p s.t. (1.70) holds (1.73)

2. similarily, from (1.72), denoting v as inner unit normal w.r.t. 0B,

DygnB, :/ Dyg +/ ppvdH, 1 for a.e. p s.t. (1.70) holds (1.74)
Br B, a8,

Now let A= Bg\ B,, then F = CEN(BR\E,) 5O for a.e. p, o = @EW for H,_q-a.e. x € 0B,
P(E\ B,, Br) = P(E, Bg \ B,) + H,—1(ENdB,) for a.e. p s.t. (1.70) holds (1.75)

Furthermore for A as above, Bg\ (EN(Br\ B,)) = (BrR\ E)N(Br\ B,), then using that mutual disjoint
sets share same perimeter

P((Br\ E)N(Br\ B,), Br) = P(EN (Br\ B,), Br) = P(E\ B,, Br)
one has, again by mutual disjoint sets sharing same perimeter

P(EUB,, Br) = P(Br\ (EUB,), Br) = P(Br \ E) N (Br\ B,), Br) = P(E\ B,, Br)
= P(E, BR\ B,) + H,_1(EN9B,) for a.e. p s.t. (1.70) holds (1.76)

Hence one may measure perimeter of subsets for E in big ball using perimeter of E in small balls and the
boundary quantity H,_1(E N 0B,) via (1.73), (1.75) and (1.76).

1.2.4 Converse to Trace Construction

Theorem 1.2.3 (Converse to Trace Construction). Let ¢ € L'(%g) for R > 0 and compactly supported. For
any € > 0, there exists f € WHL(CR) s.t. ¢ is trace of f and

[ e <e [ el w71)
cf Br

[ ipnide<@ss) [ jpla,y (1.78)
ol Br
Proof. There exists {p;} C C*°(#g) s.t. [l0; = @ll11(z,) = 0 with w0 =0, [|9jll 11 (z,) < 211€ll11(,) and
; € = €
[ tei=emldtna <297 (14 5) [ leldHuy = 3105~ ¢llisan < (14 5) 19l
Br Br =0

Now one may construct f with support on neighborhood of Zr. Let {t;} C (0,R) be strictly decreasing
sequence to 0. Define [ : C’E — Rs.t. for x € Bgr, t € (0,R)

th—tr41 te—Tr41

T )= ot () 4 i () if 1> 8>ty for k>0
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Hence one may calculate for any t, >t > tx4q1 for £ >0
1Dif| < |Digr(2)] + [Digppia(z)] 1<i<n-—1

1
Duf] < ——loul@) = prn (@)
k — Vk+1

Hence one calculate [+ |f|dx and [+ |Df|dz s.t.
R R

/|f|dm—// (1 dH, () dt = Z// 1 dH, - (x) dt

< Z (Norllzs oy + Iomt1ll i) 4t = D (Ierlr gy + I0kt1ll gy ) (o = tas)

bt k=0

<4 H‘PHLl(UER) Z te — tr1) = 4to ||‘P||L1(33R)

/ |Df|dx—2/tk+l/@R|Df|dHn . dt<2/tk+lz 1/ D f| dH,y 1 () dt

tr

n— 1
1
Z ( 1 ”DiSDkHLl((@R) + ||D’L'90k+1||L1(95R)> S ok — sok+1|L1<ggR)> dt

thr1 \ j=

NgER

<3 ((IDekl L1 gy + 1D @k 1 g ) (i = i) + ok = Pl )

i
(=)

NE

< (IDekll )+ 1PPk41 3 gy ) (e = trr) + (14 5 ) 1l

>
Il
=)

But one is left to choose t freely. Hence choose t; s.t. 4tg < ¢ and for k£ >0

€ ||90||L1(g5 )
(te — ths1) < = 27k2
1+ Dokl (zp) + 1Dk+1l 11 (0

Hence one obtain (1.77) and (1.78), whence f € WH1(C}). To see ¢ really is trace for f, denote fi(z) := f(z,t)

and compute for ¢y >t > tyy1, following construction in Theorem 1.2.1 and DCT

| @ -e@ldtn @ < [ 1T g )l dHa @ 1 g (o) ()] (o) 0
Br Br

k= bkt Zn bk =tk

Hence by uniqueness of L! limits, ¢ is indeed trace for f.
O

Theorem 1.2.4 (Converse to Trace Construction). Q C R™ open bounded, OQ Lipschitz. ¢ € L*(9). Then
for any € > 0, there exists f € WH1(Q) s.t. ¢ is trace of f and

/|f|dx§a/ o dH, - (1.79)
Q o0
[psla<af jelam, . (1.80)
Q o0

for A = A(0Q) but independent of f, ¢, €. If moreover 9§ is C, one may choose A = (1+¢). Also, f may be
taken to be supported on arbitrary small neighborhood of OS2 by controlling ty via €.
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Reduced Boundary

2.1 Construction and Properties
As a preliminary, one finds substitution for general Borel sets so that their measure theoretic boundary and
topological boundary agree. We work with sets satisfying Lemma 2.1.1 from later on.

Lemma 2.1.1. Let E C R Borel. Then there exists E Borel s.t. |EAE| = 0 differ by Lebesgue measure 0 and
0 < |ENB,(x)| <wnp™ for any p>0 and = € IE (2.1)

Proof. Define

Ey:={x € R" | there exists p >0 s.t. |[EN B,(x)| =0}

Ei :={x € R"| there exists p >0 s.t. |[ENB,(x)| = |B,(z)] = wnp™}
One see both Ey and E; are open. For x € Ejy, take p > 0 s.t. |E N B,(z)] = 0. Then for any y € B,(x),
let po := p — |z —y|, so Bp,(y) C By(x) hence |E N B,,(y)| = 0. Due to existence of pg, y € Ey, i.e., the
neighborhood B,(x) C Ey. So Ep open. For x € Ej, there exists p > 0 s.t. |EN By(x)| = |By(x)|, ie.,
|B,(z) N E°| = 0. Again, for any y € B,(x), let pg := p — |z — y|, so B,,(y) C B,(x), thus |B,,(y) N E°| = 0.
Hence y € E, we have B,(xz) C E4, so E; is open. One may further show that |[Ey N E| = 0. Since for any

x € Ep, one may choose p, s.t. |[EN B, (z)| = 0, and it indeed covers Ey C U,cp, Bp. (), we may choose
sequence {z;} C Ey as index for covering. One compute, due to [B,, (z;) N E| =0 for any j

BN Bl < || By, () N E <Y |B,. ()N E| =0

Jj=1 Jj=1

Similarly, |Ey \ E| = 0 by replacing E in above computation with £°. Since Fy, E; open, E = (FEUE)\ Ey
is Borel. And indeed one has |[EAE| = 0 via the following

IE\E|=|EN((EUE)\ Eo)| =|EN(EUE)UEy) | =|(ENE°NES)U(ENE)| =|EyNE| =0
E\E|=|(EUE)NESNE®| = |(ENESNE?) U (B, NESNES)| < B\ E|=0

Now for any z € dE, since Ey, F) open, z ¢ EyU E;. Hence for any p > 0, (2.1) holds. O

2.1.1 Reduced Boundary and Uniform Density Estimate
Definition 2.1.1 (Reduced Boundary). Given E C R™ Caccioppoli. x € 0*E reduced boundary if

/ |Dog| >0 forany p>0 (2.2)
B, (z)
and hence, defining
» PeE
vp(z) i= fB”()i for any p>0 (2.3)
fBﬂ(I) ‘D¢E|
One require the limits lin%) v(z) exists and has length 1
p—
o PyE
v(z) := lim v(x) = lim L (2.4)
p—0 p—0 pr(z) |[Dyg]
v(z)| =1 (2.5)

21
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i.e.,

O"E :={x € OFE | (2.2) holds for any p > 0, and the limiting object (2.3) satisfies (2.4) and (2.5)}
We call v the (measure-theoretical) inner unit normal.
Recall the Lebesgue-Besicovitch differentiation.

Lemma 2.1.2 (Lebesgue-Besicovitch differentiation). u1, pe Borel measures on R™, then

o (Be(x))
Dy = ,Pi% m

is defined pa-a.e. on R™, and D,,p1 € L}, (R™, p2). If furthermore, py < o, i.e., pu1 is absolutely continuous

w.r.t. po in the sense that us(E) = 0 implies p1 (E) for any E C R™ Borel, then we write
p1 = Dy, i1 - pio on all Borel sets

Remark 2.1.1. Note Dyg is indeed absolutely continuous w.r.t. |Dyg|. Hence apply Lemma 2.1.2, one has

) pr(:c) Dop . n
v(z) = lim ———— exists and |v(x)| =1 |Dog| —a.e. z€R (2.6)
=0 [, () |DeE
and the following measures agree
Dyg =v|Dyg| on all Borel sets (2.7
In particular,Dpr = v|Dyg| on OF, and the set OF \ 0*E has |Dyg|-measure zero.

Example 2.1.1. One has 2 examples. One for smooth boundary and one for Lipschitz.

e Let E C R" be bounded, Caccioppoli with C' boundary OF. Then 0*E = OF.
Proof. Let A =F and f = ¢g in (1.68), one has via Extension property for ¢y € BV (R™) that (for this

step, OF Lipschitz suffices)
Dyg =vdH,_1.0F on Borel sets (2.8)

where v denote the classical inner unit normal w.r.t. 0F. And because suppDygr C OF, one writes

for any p > 0
/ Dypp = / vdH, 1
B, (x) B, (2)n0E

while C!' boundary ensure via (1.4) that
/ |D(PE'| = anl(BpCL‘) n 8E)
By (z)

hence one has explicit formula for v,

V() = pr(ac)ﬁaE vdH,
P Hp—1(By(x) NOE)

for any x € OF
Since v € C(OFE;R™), differentiation gives lir% v,(z) = v(z) for any x € OF. Hence |v| = 1 as inherited. O
p—

e Let E=(0,1) x (0,1) C R2. Notice except for the four corners, the boundaries are piecewise C*, hence
these parts belong to O*E. Now for any corner x, one may compute

p—=0 pr(w) |Dog| \ﬁ
Hence the four corners do not belong to 0*E.

One has Uniform Density estimates, which says bounded oscillation in normal directions at a given boundary
point = € OF prevents densities of £ and E° from disappearing under blow-up limit. In particular, if x € 0*E,
it indeed satisfies our assumption, so uniform density estimate holds. For simplicity, let 0 € OF via translation.



2.1. CONSTRUCTION AND PROPERTIES 23

Theorem 2.1.1 (Uniform Density Estimates). E C R™ be Caccioppoli and 0 € OF. If there exists pg > 0 and
q > 0 constants s.t. for any p < po

[ 1Dgxl>0
BP
fB DSDE
o (0)] = |+ =9¢>0 (2.9)
P pr |D50E‘
Then for any p < po, one has uniform estimates on the density
ENB
|pnp| > Ci(n, q) >0 (2.10)
E°NB
B0 B o ol > Cs(n, q) >0 (2.11)
fB |D<PE|
0<C5(n, q) < ;77,771 < Cy(n, q) < 0 (2.12)

for constants C1, Cs, C3, Cy only relevant to n, q.

Proof. Since E Caccioppoli, g € BV (B,,). Denoting v as inner unit normal w.r.t. 9B, one has via (1.74)
/D@EOBP :/ Dyg —|—/ ppvdH, 1 for a.e. p < pgy
B, 4B,
evaluate the vector-valued measure on some constant unit vector e € S*~! gives, for p s.t. (1.74) holds

0=~ [ div(e) e, = [(e. Downn,) = [ (e Dpr)+ [ opv-cdtt,
B B

P 0B,

Hence for any e € S*~! projection is less than the Hausdorff measure

| te. Dex)

P

= |/ YCEUV: GdHn—l S / ©E dHn_l = Hn_l(EﬂaBp) S Cpn71
B 0B,

P

taking supremum on LHS and using Riesz Representation yields

/ Dop| < H,_1(EN3B,) (2.13)
BP

Using (2.13) and (2.9) further gives, bounding perimeter by the projection, hence the Hausdorff measure.

1
/ |D<PE|§*/ Dyg
B q\|\/B

3 P

< Cyp" Y forae. p<pg st (1.74) holds

Now using continuity from above of the measure |Dyg|, we conclude the second part to (2.12) for all p < po.
Now, using (1.73) and similar reasons as above, one has

P(ENB,)=P(E,B,) + H,_.1(ENJB,) forae. p<pg

1
B aB q oB,

3 P

Since E N B,, is bounded Caccioppoli, via isoperimetric inequality (1.40) and noting P(E N B,) = [ |Dygns, |

n— 1
|[ENB,|"" < (q +1) C(n)/ opdH,_ (2.14)
dB,

for some C(n) from (1.40). Notice by coarea formula, denoting g(p) = |E N B,|

R
g(R) = |E N Bg| =/ <PEd96=/ / ppdH,—1dp = g’(p)=/ opdH,
Br o Jos, 4B,

Hence (2.14) writes

n

1 |EN B,
<
C(n)n(%—i—l) P

I

o) < (+1)Cd ) = o< (3 +1) Clnglo
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n
denoting C; := <C(n)n1(1+1)> and using continuity from below of the measure |[E N B,| in p, one conclude
q

(2.10) for every p < po. Note for E¢, Dpgc = —Dpp due to for any g € C§(R™;R™)

[0 Des0) =~ [op-divtgyds =~ [(1= epyivigydo = [ epaivig)dr =~ [ (9. Dor)

whence |Dyg| = |Dyge| and the above same argument runs with Co = C1, resulting in (2.11). To see first part
0 (2.12), notice from (2.10) and (2.11), one has

n-1 ne
Cip" <min{|ENB,|, [E°NB,|} = C," p" ' <min{|ENB,|, |E°NB,|}"+
Hence applying Poincaré inequality (1.41) one has, for some C(n) > 0

o o1
Olnp"lscm)/ Dop| — 0< gpnl/ Do
BP

,,L,1

( ) yields the first part of (2.12). O

define C5 :=

2.1.2 Blow-up Limit
One define the tangent plane and half spaces for given z € 9*E (hence v(z) is well-defined and |v(z)| = 1)
e Tanget Hyperplane to 0*E at z is T(z) := {x € R™ | (v(2), x — z) = 0}
e Half spaces to 0*E at z on the same and opposite side with v(z) are respectively
TH(z) :=={x e R" | (v(2), = — 2) > 0}
T (z) ={z e R" | (v(2), z — z) < 0}

One may now show that the blowup limit of a point in reduced boundary actually converges to the half space
on the same side as the outer normal. For simplicity, via translation and rotation, one assume 0 € 0*F, and
the inner normal v(0) is parallel to the zi-axis that points towards —oo. One wish to obtain the limit 7% (0).
But before the proof, one needs a De La Vallée Poussin Theorem to guarantee convergence in LHS of (2.17)

given the L . convergence.

Lemma 2.1.3 (De La Vallée Poussin Theorem). Given E; sequence of Caccioppoli Sets in R™. Suppose
¢op, = ¢p n L, (R") and that [,, |Deg,| < M < oo the total variation is uniformly bounded. Then up to a
subsequence, the convergence holds in vague topology

/g-Dngj—>/g-DgoE VgECé(R”)
and for a.e. p

lim D@E —/ Dyg (2.15)

j—o0

Theorem 2.1.2 (Blow-up Limit of Reduced Boundary). E C R™ Caccioppoli. 0 € 0*F withv(0) = (-1, 0,---, 0).
For any t > 0, define the set for blowup
E,:={xeR" |tz e E} (2.16)

Then there exists a subsequence t; — 07 s.t. E; := By, — T :=T%(0) in L}

loc

open set A CR™ s.t. H,_1(0ANT(0)) =0 one has convergence in perimeter

(R™) sense. Moreover, for every

ti, [ Do, | = [ Dere] = Hua(T(O) 01 4 (2.17)
tj*)O A A

Proof. One wish to extract a convergent subsequence using compactness argument. First note in our setting,
the targeting limit is 7+ = {x € R" | z; < 0}. Fix p > 0. Now by change of variables, for any g € Cj(B,;R"),
write g(z) := g(z/t)

/B (9, Dog,) = /B div(g(2)) o, (x) do = /B div(§(te)) g (t) de

P P P

—/ tdiv(g)(tz) o (tz) de = —tnl_l / div(g)(y) ve(y) dy
B Bip

P

1 N 1
= tn_l/ (9, Dypr) = Dyp, = tn—_l/ Dyp (2.18)
Btp BP Btﬂ
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And by considering total variation, one has

1
/ Dpp,| = — / Do) (2.19)
Bp t By

P

With tools (2.18) and (2.19), one proceeds in two directions. First, making use of 0 € 9*E, in particular (2.4)

pr Dlngt —1

Iz D2¢r, Dyp 0
i [ TETETE Ly fBi = lim Ju, Der 0= . (2.20)
t—0 pr |D¢Et| : taO fB |D(10Et| t—=0 fB |D<pE| :

an DnSOEt 0

Second, one make an immediate observation that for each p > 0, {¢g, }+ C BV (B,) because E is Caccioppoli,
and for each ¢, By, is bounded, hence ¢ € BV (By,) and RHS of (2.19) is bounded. An immediate consequence
is that E; are Caccioppoli Set for any ¢t. Again, since 0 € 0*F, one has uniform density estimate. Applying
second part of (2.12), together with (2.19) yields

1
limsup/ |Dyg,| = limsup—l/ |Dpg| < C < oo (2.21)
t—o 1" Jp,

t—0 B, o

Hence the sequence of functions {pg,} is uniformly bounded in BV( ,) norm for each p > 0. Thus by
compactness theorem 1.1.4, there exists a subsequence {¢p,} where E; := By s.t. ¢p, — f in Lj, (R") (by
unique limit on each ball B,) and that f € BV (R"). Since f is L' limlt of characteristic functions, f = ¢
for some Borel set C C R™. Since ¢ € BV (R"), indeed C' is Caccioppoli. Moreover, by De La Vallée Poussin
Theorem (2.15), for a.e. p s.t. f@BP |Doc| = 0, one has approximation in vector-valued radon measure

hm/ Dy, 7/ Dyc (2.22)

hence combining with (2.20) gives, for the z; direction

i [, ol == i, P = = [ Pice
Now since g, — ¢c in Li,.(R™), by semicontinuity 1.1.1
/ |Doc| < 1im/ |Dog;| :—/ Dipc (2.23)
Bp tj*)O BF’ Bp

but since any other [, Djpc = 0 for i > 2 as in (2.20), the equality in (2.23) holds. Now by Lebesgue-
P
Besicovitch Differentiation 2.1.2

f D190
Dipe = | lim |Doc| = —|Dpc| on all Borel sets

=0 [ |Decl
-1
D I I, Dyc b 0 b I
o= tg]%f |D<p | [Dec| = f |Depc| on all Borel sets
0

Hence D;pc = 0 as Borel measure for ¢ > 2. Therefore ¢ depends only on 7 and Dipc < 0 implies ¢¢ is
non-increasing in x1. Thus C' = {z € R™ | 1 < A} a.e. for some A € R. One wish to determine A. Suppose
A <0, then we may construct ball By around 0 that does not intersect C, so using pg, — ¢¢ in Llloc(R”)

0=1|CnBpl :/ vo(x)dr = lim vg,(z)dr
Bl

t;—0 B

1
= lim — vp(tjr)d(t;z) = lim —/ vr(y)dy
t;=0 £ /Bm J J 20t By,
|[E 0 B, |
= 1 >
tljlino = >Cy>0
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for some C from (2.10), contradicting our assumption. If A > 0, use

0=[C°NByl= / poe(z)dr = lim ppe(z) de

By 20/ Byy
.1 BN By,

= thmo o pee(y)dy = tl-lmO ——2>202>0
i70 b IBa, i J

for some Cy from (2.11). Hence A = 0, and so C =T% = {z € R" | 1 < 0} a.e. It remains to show for any
open set A C R" s.t. H,_1(0ANT(0)) =0, (2.17) holds. First note that, since 7" has smooth boundary, one
use remark 1.1.1 so that |Dypp+| = H,_1.0T+ = H,,_1.T(0) as Borel measures. So if H,_1(0ANT(0)) = 0 for
some A open, in fact [, oa |Dor+| = 0. But this is condition for (1.8) where the equality in semicontinuity holds
in subdomains. Hence apply (1.8), one directly arrives at (2.17).

O
Corollary 2.1.1 (Density Estimates on single side of Tangent Plane to Reduced Boundary). Let £ C R™
Caccioppoli, and 0 € O*E with v(0) = (=1, 0,---, 0). Then the volumne density on single side vanishes
1
lim —|ENB,NT"|=0 (2.24)
p—0 p
1
. L + _
glg% o [(BL,L\NE)NTT| =0 (2.25)

and for any p, € > 0, denoting
Spe = B, N {z € B" | |((0), x)| < ep} = B, N {w € R" | |1 < ep}

the perimeter density takes up constant portion for any e > 0

/ [Dep| = wn—1 (2.26)

e Js,
where wy,_1 is volumne of n — 1-dim unit ball.
Proof. Under definition (2.16), T," = T and T, = T~ for any p > 0. By change of variables as in (2.18)
1 _ 1
BT = [ pet@er-@dr = [ outon)er-(on) dy

P

= /B v, () e (W) dy = E,N B NT"|
1

pin‘(Bp\E)ﬁTﬂ = pl”/B,, pe(x) o+ () do = /B1 or-(py) e+ (py) dy

= | eners iy =B\ BT
But from Theorem 2.1.2, E, — T in L} (R™) up to a subsequence, hence

1

lim —|ENB,NT |=1lm|E,NBNT |=[TtTNBNT |=0
p—0 p™ p—0
1
i 1y + + +_
,}g%pn\(Bp\E)ﬂT | =l [(Bi\ E,) NT™| = |[(BL\TT)NT™| =0
so (2.24) and (2.25) hold. Moreover, by the exact same procedure with S, . in place of B, and S; . in place of
Bj as in (2.18), one has

1

[ werl= [ 1De,

p S S

P, E 1,e

and since Si . is open set with H,_1(051,. NT) =0, apply (2.17) to conclude (2.26)

1 :
;IL%F/S E Dl }713(1)/5 [D¢p,| = Hot (TN 51,c) = wna

P,

O

The above Corollary 2.1.1 says for small enough balls B,(z), most of EN B,(z) lies in ", the same side w.r.t.
inner normal v; while most of B,(x) \ E lies in T'~, the outside. For small enough balls, the hyperplane T splits
B, into 2 parts which nearly corresponds to inner part £ and outside part R\ E.
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2.2 Regularity of Reduced Boundary

2.2.1 Characterisation of |Dyg| using 0E*

The purpose of this section is to argue that for £ C R™ Caccioppoli
e J*E is countable union of C! hypersurfaces up to set of | Dy p|-measure zero.
¢ [o|Dep|=H, 1(0*ENQ) so |Dyg| = H,_1.0*E as Radon measures.
e 0*F is dense in OF.

One shall first recall the precise definition for Hausdorff measure.

Definition 2.2.1. Let ACR", 0 <k < o0 and 0 < § < oco. We define the k-dim Hausdorff outer measure at
step 6

HY(A) == = inf Zdlam Y lAC U S;, diam(S;) < 6V (2.27)
j=1

and consequently define
Hi(A) :=lim H)(A) = sup H}(A)
60 0<5<00

as k-dim Hausdorff measure. Here wy :=T'(3)¥/T'(% +1) for k > 0 is measure of unit ball in R*.

Lemma 2.2.1 (Ratio Estimate). E C R™ Caccioppoli. B C 0*E. Then
Hoa(B) <23 [ Dl (2:28)
B

Proof. Since |Dpg| is Radon measure on R™, it can be approximated from the outside by open sets. Given B,
for any 1 > 0, there exists A open s.t. B C A and

[ 1Des < [ 1Derl+n (2.29)
A B
Moreover, for any € > 0, apply (2.26) to arbitrary « € B, there exists 0 < p(z) < € s.t. using openness of A
1
Byw()CA  and / Dl > 2 p(e)" s (2.30)
(r)( )

One think about covering B using balls {B,(,)(z)} via lemma 1.2.3. So there exists {z;} C B s.t.

BC U B3z, () and By (%) N By, (zj) = @ for i #j
i=1
and (2.30) holds for each z;. Hence one may bound, using B,(,,)(z;) C A and disjoint, and then (2.29)

> 2 2.3n1
> 3x1"1<53"1 / Dyp| < /D
(3p(z:) o |Dpp| < o A\ vE|

i=1 i=1 By (ay) (@i) n—

2 3n— 1
< (/ |D90E|+77)

Hence recalling (2.27), since B C ;= Bap(a,) () with p(z;) < & universal bound in ¢

Hi_y(B) < 5= mf{z<z~3p<m>nl ren <sw} 2.3 ([ 1Doel +0)

i=1
take supremum in € on LHS to obtain H,,_1(B). Take n — 0 to conclude (2.28). O
One shall be precise of our notion of C! hypersurface.

Definition 2.2.2. Let I',,_; be collection of H C R™ s.t. there exists A open containing H and a C function
f:A—=R st o
f(x)=0 and Df(x)#0 VeeH

One needs a criterion to determine sets of I',,_1.
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Recall Whitney Extension Theorem

Lemma 2.2.2. Let C C R"” closed and f : C — R, v : C — R"™ be continuous. If for each compact K C C

sup { |f(y) — f(x) —_V(fﬂ) (y — )
|z —yl

||0<|x—y|<(5,x,y€K}—>0 as § — 0

Then there exists a global C function f :R® =R s.t. f=f and Df =v on C.
One hence obtain criterion
Lemma 2.2.3. Let C C R"™ compact. If there exists v: C — R™ continuous s.t. v # 0 and

@)z =)

=0 uniformly for x,y € C (2.31)
e—yl—»0 |z —y]

Then C €T,,_1.

Proof. Apply Whitney Extension Theorem with C' compact and function = 0. Then there exists C!
function f: R™ - R s.t. f=0and Df =v on C. Since v # 0, conclude C € T',,_1. O

Before we prove the main theorem for this section, one needs 2 lemmas to reduce our problem

Lemma 2.2.4 (Egoroff Theorem). Let u be measure on R™ and fi, f : R™ — R™ p-measurable. Let A C R™
p-measurable with p(A) < oo and fr — f p-a.e. on A. Then for any € > 0, there exists B C A p-measurable
s.t. p(A\ B) < e and fr, — [ uniformly on B.

Lemma 2.2.5 (Lusin Theorem). Let p be Borel reqular measure on R™ and f : R™ — R™ u-measurable. Let
A CR"™ p-measurable and p(A) < co. Then for any € > 0, there exists K C A compact s.t. p(A\ K) < e and
flx is continuous.

Theorem 2.2.1 (Structure Theorem for Caccioppoli Set). If E C R™ is Caccioppoli, then

O"E=|JCiuN (2.32)

=1

where N is |Dypg|-measure zero and C; € T',_1 compact for all i.

For each Borel set B C 0*E,

/ |Dog| = Hy—1(B) (2.33)
B
and moreover, for every open set  C R™
P(E,Q) = / |Dop| = Hy-1(0*"ENQ) = H,_1.0"E(Q) (2.34)
Q
Dyg = / v(z)dH,—1 = v(z)H,_1L0"E(Q) (2.35)
Q 9*ENQ
Reduced Boundary is dense in OF
0*E = 0F (2.36)

Proof. Given E Caccioppoli

1. Since E is not necessarily bounded (in particular, | Dy g|(0* E) isn’t necessarily finite), one make use of
o-finite of [Dyg| to partition R™ = [J;2, ©; into open bounded disjoint domains so [Dyg|(Q;) < oo.
Then 0*F = | J;2, (0*E N €Y;). If (2.32) is proved for all bounded Caccioppoli sets, then 9*E N €, =
U; CijUN; s0 0" E = J; U, Ci,;UN; is still countable union with | Deg|(U; Ni) < 32, [Deg|(N;) = 0.
Hence it suffices to prove (2.32) for bounded Caccioppoli Sets.

2. Given FE bounded Caccioppoli, 0*E is bounded so | Dy g|(0*E) < co. Let | Dyg| be our finite measure
on the space 0*E, and denote for any = € 0*E, the limits (2.24) and (2.25)

o1 o .1 )] —
i EAB@)NT- (@) =0 lim —|(B,(x)\ E)NT* ()| =0 (2.37)
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as our pointwise limiting function sequences. Then Egoroff theorem applies, saying for any i > 0,
there exists F; C 0*E that is |Dyg|-measurable s.t.

i 1
|Dep|(0"E\ Fi) < o (2.38)

and (2.37) holds uniformly on F;. Now to apply Lusin theorem, first notice one has v(z) =

pr(:c) Der

lim - defined on 9"E as in (2.4). As Radon measure, |Dyg| is Borel-regular, and with

p—0 pr(m) [Dep
|Dyg|(F;) < oo, Lusin’s theorem says there exists C; C F; compact s.t.

[Dep|(F;\ C;) < % (2.39)

and v|q, is continuous. Thus 9*E = (0" E\ (U; Ci)) UU; C; where

[Dep|(0°E\ (U Cy)) = lim p(0"EN\ C;) =0

so N =0"F\ (U, C;) is our |Dyg|-measure zero set. It suffices to show C; € I',,_;.

3. Fix any such C;. By Egoroff, convergence (2.37) happens on C; uniformly, so for any ¢ € (0,1), there
exists o € (0,1) s.t. for any p < 20

|[ENB,(2) NT™(2)] < p"(inZ_")E” uniformly on z € C; (2.40)
[EN By(2) NT*(2)] = [By(2) NT*(2)| = [(B,(2) \ E)yNT*(2)| = p"wn% —[(By(2) \ E)NT*(2)]

n 1 n 1 -n niwnpn e”
> plwng = Pt (qun27")e" = == (1= o)

uniformly on z € C;
(2.41)

Using (2.40) and (2.41), we wish to show for any € € (0,1), there exists o > 0 s.t. % <e

uniformly for any z, y € C; s.t. |x — y| < 0. Since C; are compact, v is continuous on C; By Lusin,
and by definition for reduced boundary (2.5) that |v(z)| = 1 # 0, applying lemma 2.2.3 concludes
that C; € Ty, _1.

4. To show uniform convergence, first suppose there exists some ¢ € (0, 1) s.t. for any o € (0, 1), there
exists z, y € C; s.b. |z —y| < o yet (v(z),y — z) < —e|z — y|. By definition of T~ (z), this implies
y € T~ (x) for such z,y. And indeed, for any |z — y| < |z — y|, one has
(), z —a) = W),z —y) + w(z),y —2) <[z —y| —elz —y| <O
hence z € T~ (x). Thus B,|,_,|(y) C T~ (x). Moreover, that |z — y| < e|lz — y| implies
[z =z <o —yl+ly — 2 < |z —y[+elz —y| <2z —y]
80 Be|y—y|(y) C Bajz—y|(z). Hence we have

Bela—y)(y) CT(2) N Byjo—y|(2) == [Beja—y|(y)| < [T (2) N Bajay)(2)] (2.42)

Now, since we require |z — y| < o, choose p = 2|z — y| < 20, one may apply (2.40) with z =«

_ wpe™ n
|E N Byjg—y(2) NT™ (x)] < |z —y (2.43)
and then use (2.41) with p=¢|lz —y| <o and z=y
wpe™z —y|™ em Wre™ n
|E N Be\x—yl(y” > |E N Be|x—y\(y) N T+(y)| > 9 ( - 2n+1) > 4 |LL‘ - y| (244)

But now (2.43) and (2.44) together yields
|E N B2|zfy|(x) nT- (JJ)| < |E N Be|a:fy\(y)‘ = |BQ|:cfy\(x) nT- (JJ)| < |lemfy\(y)‘

contradicting the inclusion (2.42). Hence our assumption for existence of e fails if we require that
(w(z),y —x) < —ele —yl.
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5. Then, we suppose certain ¢ € (0, 1) exists and for any o € (0, 1), there exists z, y € C; s.t. |[z—y| < o
yet (v(z),y—x) > ez —y|. One derive the similar inequalities for (2.40) and (2.41) but on B,(z) \ E

(B,(2) \ E)n T (2)] < pn(%

(By(2)\ E) T~ ()] = [By(2) N T~ (2)| ~ |B,() N E T~ ()| = oy ~ | By(2) N ENT(2)

w2 M)e" uniformly on z € C; (2.45)

1 1 _ Wpp" g™
> Py = (G2 )" = S0 5

) uniformly on z € C;
(2.46)

By definition of T"(z), y € T"(z), and indeed for any |z — y| < e|lz — y|
(W(@),z —x) = (W(x), 2z —y) + (W(@),y —2) > —elw —y[+elz —y| > 0

hence z € T (x). Thus B,y (y) C T (x). Moreover, that |z — y| < €|z — y| implies B.|,_,(y) C
By|p—y|(x). Hence we have

Bejo—y|(y) CT7(2) N Bajg—y(¥) == |Bejoy|(y)| < [T () N Bajyy ()| (2.47)
Apply (2.45) with z = x and p = 2|z — y| < 20 yields
+ Wne" n
|(Baje—y) (@) \ E)N T (2)] < ——lz —y] (2.48)

Then use (2.46) with z =yand p=clz —y| <o

Wpe™

[ Belo—y(¥) \ E| Z |(Beja—y|(y) \ E) N T (y)| > z —y[" (2.49)

together (2.48) and (2.49) yields
|T+($) N B?|m—y|(x)‘ < ‘Bs\m—yl(y)l
and we have contradiction.

6. We conclude that % converges to 0 uniformly for z, y € C; for any 7. Hence by lemma 2.2.3,

C; € I'y_1 for any i. Thus we’ve proved (2.32).
e 1. Forany B C 0*E, B= (BN (U,C:)) U (B\U,C;), but by continuity from above and the Ratio
Estimate (2.28)

1
Ho-y(B\|JC:) = lim H, (BN CY) < lim 2.3 /B\C |Dpp| <2-3"'lim = =0

1—00 1—00 1

where (2.38) and (2.39) gives

1
/ |Dyg| < / |Dog| < / | Dy x| +/ |Dpp| < -
B\C; 8*E\C; O*E\F; F\C; ¢

i i i

Hence H,,—1(B) = Hn,—1(J;(BN C;)). One may write

U(B NnC;)=(BNC)U U(B NCiy1)\ (BNC) into disjoint union

i =1
Since subsets of C; € T',,_; still belong to I',,_1, it suffices to prove (2.33) for B € ', _;.
2. Given B € T',,_1, there exists open set A D B and f: A — R that is C! s.t.

f(x)=0 and Df(x)#0 VreB

Since f is C!, up to taking subset, one may assume Df(x) # 0 on the open set A. Now 0 € R is a
regular value for the map f : A — R, so taking its preimage

Vi={zeA| f(x)=0}

one has from preimage theorem that V is C' regular hypersurface of dimension n — 1.
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3. From Hausdorff measure properties, H,,_1.V has density for any = € B

lim anl‘—V(Bp(x»

= Wy_ orany r € B
p—0 pn_l n—1 f Yy

and because x € B C 0*F, taking ¢ = 1 in density estimates for |Dyg| in (2.26) gives

lim ————— =w, 1 forany x € B

hence lim =1tV (Bo(@)) _
p—0 pr(m)‘D‘PE|

Ratio estimate (2.28) implying H,,_1 < |Dyg| on 0*E, and that B C V/

H, B
H”_l(B) = Hn—lLV(B) = hm M .
p=0 pr(m) Dokl

1 for any z € B. Now by Lebesgue-Besicovitch differentiation 2.1.2 and

/ |Dyg| :/ |[Dyg| VY B C 0*E Borel
B B

concluding (2.33).
4. From (2.33), take B = 9*E N Q for any Q C R™ open gives

Hy 1 0" B(Q) = Hy 1 (9°ENQ) = / Dy
o*ENQ

But according to Lebesgue-Besicovitch differentiation 2.1.2, in particular, remark 2.1.1, one has
|Dog|(OF \ 0*E) = 0. Hence the above writes, upon using supp(Dyg) C OF

H,_1L0"E(Q) = /

Dyp| = / Dyp| = P(E.Q)
OENQ Q

concluding (2.34). (2.35) follows immediately from (2.7).

e To show density, one show that for any A open set intersecting OF, it must also intersect 0*E. In other
words, if A open not does intersect 0*E, by (2.34)

0=H,_1(0"EnN A) :/ D
A

but since A is open, OF is closed, they do not intersect. Hence 0*F = OF.

2.2.2 Lipschitz Regularity of Reduced Boundary

Let a = (ay,- - ,a,) € R® where |a| = (3.1, a?)? = 1 is unit vector. Denote D, = S| a; D;.

Lemma 2.2.6 (Moving Ball Integration). Let E Caccioppoli set in Q (i.e., E CC Q or E C Q and part of OF
agree with 9) with Q& C R™ open. Fix unit vector a. Let z € Q, p > 0, and 7 > 0 s.t. for any 0 <t < 7,
B,(z +ta) CC Q. Then

|EN B,(z + ra)| — |[EN B,(2)| :/ / Dupp dt (2.50)
0 JBy(z+ta)

Proof. One choose g, C C§°(2) s.t. 0< g <1, g, =1o0n Bp_%(z) and supp(gx) C B,(z). Hence gr. — ¢, (=)
in L'. Moreover, for B,(z + Ta) C Q, one has gi(z — 7a) — ©B,(2)(T —TQ) = B, (z4ra)(T) in L', so

|EﬂBp(z+Ta)|:/ OB, (z4ra) dr = lim /gk(x—Ta)dx, |[ENBy(2)| = lim/gk(x)dx
E L k—o0 E k—o0 E
But due to g € C§°(Q2) and that supp(gr(z — ta)) C By(z +ta) CC Qforany 0 <t <7
/gk(xfTa)fgk(z)das:—// oz~ng(x—ta)dtdz:f// vg - Va(x —ta) dtde
E EJo QJo
:—/ /@Ea-ng(x—ta)dxdt:/ /gk(a:—toz)oz~D<pEdt
0o Ja 0o Ja

Now take limit on both sides to arrive at

|EN B,y(2+70)| — |[EN B,(2)] = / / 05, (210 () Darpps dt = / / Do dt
0 Q 0 B, (z+ta)



32 CHAPTER 2. REDUCED BOUNDARY
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Figure 2.1: Moving Ball Integration measure increase Lemma 2.2.6

Lemma 2.2.7 (Boundary points Can’t Escape E along « with uniformly positive normal projection). Let E
Caccioppoli set in Q with Q@ C R™ open. Suppose there exists a € R™ unit vector and a lower bound p > 0 s.t.

v(z) - a = lim I, Por >p>0 (2.51)
=0 [5, @ | DB
for |Dyg|-a.e. x € Q (notice v(x) exists |Dypg|-a.e. x due to (2.6)). Let z € OE N K.
e For any k > 0 s.t. the line segment [z,z + ka] C Q, then z + ka € Eo’, i.e interior of E.

o For any k < 0 s.t. the line segment [z + ko, 2] C 2, then z + ka € (Q\ E)°, i.e. interior of Q\ E.

4
% ® e
@ 1 XU (o
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Figure 2.2: 4 illustrations for Lemma 2.2.7

Proof. One starts with showing for k& > 0.

e First assume for contradiction that there exists z € 0E N and k > 0 s.t. the line segment z + 7a € 2
for any 0 < 7 < k, yet z + ko does not lie in E. We wish to argue hence [z, z + ka] C OF.

1. Suppose there exists 0 < 7 < k s.t. z4+7a € Q\E. Then one may choose p > 0s.t. B,(z+7a) C Q\E.
Using (2.51) and (2.50) one obtain

og/ / Dagpdt = |ENB,(z +ra)| — |[ENB,(2)| = —|EN B,(2)]
0 JB,(z+ta)

Notice we’re using F under Lemma 2.1.1 with the same topological boundary and measure theoretic
boundary, in particular, (2.1). So for z € OF

0< —|ENB,(z)| <0

and we have a contradiction. Thus |2,z + ka] C E.
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2. Notice we're assuming z + ka ¢ E. Hence z + ka € BE.O Now suppose there exists 0 < 7 < k s.t.
z+ 1o € E. One may choose p > 0 s.t. B,(z+ 7o) C E. This implies |B,(z + 7a) N E| = wyp™.
Now using again (2.51) with (2.50)

k
0< / / Doppdt =|ENB,(z+ ka)| — |[ENB,(z2+ 71a)| = |EN By(z + ka)| — wpp"
T JBy(z+ta)

Again notice under Lemma 2.1.1 with (2.1). So for z + ka € OF
0<|ENB,(z+ka)| —wpp" <wpp™ —wpp" =0
and we have a contradiction. Thus [z, z + ka] C OFE.

e We wish to further argue [z, z + ka] C OF leads to contradiction with the strict positivity in (2.51). Note
we assume at first [z, z+ka] C Q, hence [z, z+ka] C IEN. We may choose pg so that for any 0 < p < pg
and 0 <t < k, one has B,(z + ta) C Q. Then using (2.7) Dyg = v|Dyg| agree Borel-a.e.

/ Dang:/ a~D<pE:/ a-v|Dpg]
B,(z+ta) B, (z+ta) B,(z+ta)

fB z+ta DD‘SDE
[ et pe sy [ Dl
By(=+t0) P20 [ (o psa) 1DPE] B, (s+ta)

Now notice (2.51) satisfies assumption for Uniform Density Estimate (2.9), one may apply (2.12)

/ |Dyg| = Cp ™!
B, (z+ta)

for some constant C' > 0. Hence for any 0 < p < pg and for any 0 <t < k

/ Dopp > Cpp"™*
B, (z+ta)

Thus apply (2.50)

k
|EN B,(z + ka)| — |[EN B,(2)] :/ / Doppdt > Ckpp"*
0 JB,(z+ta)

Yet again by Lemma 2.1.1, since both z, z + ka € OF
|ENB,(z+ ka)| + |EN By(2)| < 2w,p"”

from which we may conclude for any 0 < p < pg

Ckp

Ao p™ > Ckpp" ! = p> 5 >0

Wn
But RHS is independent of p so we take p — 0 on LHS and reach a contradiction.

For k < 0, redefine & := —« and use (2.51) with strictly negative inequality. The same argument applies. [

Now we wish to show if v(z) does not vary too much, then set E has Lipschitz continuous boundary. Upon
rotating we consider v varying not much and pointing upwards in x,-axis direction.

Theorem 2.2.2 (Lipschitz Regularity for 0F). Q C R™ open, convex and E Caccioppoli in ). Suppose there
exists constant 1 > q > g s.t.

z Dn(PE
Vn(x) = lim fB"(' ) > V2 (2.52)
p=0 fBP(m) Dl 2
for |Dygl|-a.e. x € Q. Then there exists an open set A C R"™! and a function f: A — R s.t.
OENQ ={(y,t) e AxR| f(y) =t} (2.53)

and for any y, y' € A

) — £ < Y=y ) (2.54)

q
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Proof. Consider any unit vector o with c,, > 0. Then using (2.52)

1
n—1 n—1 2 /n—1 2
Do¢p = 0nDnpp + Y a;Dipp > anDnop — <Z a?) (Z(Di@E)2>

i=1

i

1
n—1 2
> qon|Dep| — /1 — a3 (Z(Di(PE)2>

But one may calculate

n n—1 n—1

|Deel> =Y (Digr)® = (Dipp)*+(Dner)’ > > _(Dipr)*+¢*|Depl> = /1 - ¢|Dpg| > (Z(Di(PE)2

i=1 i=1 i=1

Hence
Dagi > (qan — /(1= a2)(1 =) Dol

One may choose a,, > /1 — ¢? so that 1 — a2 < ¢* and thus

Dayp > (q\/l — 2 —q\/1 *qQ) |Dop| =0

We may apply Lemma 2.2.7 so that for any z € 9E N Q and for any « unit vector with a,, > /1 —¢2 > 0 we
have points in © of the form z + ta € E and points in €2 of the form z — ta € (2 \ E)°. Notice Lemma 2.2.7 is
applicable due to convexity of €2, ensuring all line segments connecting z and z + ta lie within 2. Now we wish
to choose in particular the a unit vector. If let «,, = ¢, we indeed require

V2

g>V1—¢? <= 2¢*>1land ¢>0 < q¢> 5

l
which satisfies our assumption ¢ > % Hence choosing o with «, = ¢ so that (EZL 11 a2> =4/1-¢%is

plausible. For any z € Qs.t. t =z2+ta < (x—2)-a=t,if t >0, by Lemma 2.2.7 we have z € E. But
t > 0 is equivalent to the condition that

(zn —znanJrZ zi)a; >0

Notice

N

(zn - a7z + Z - Zz o > (xn - Zn)an - (i(xl - Zi)2>

i=1
Hence requiring that

1
n—1 2
2
>}
i=1
n—1

(Tn, — 2n)ay > (Z( T — 2;) > (Za ) = q(zn—2m) > V1—-¢> (Z(ocz - 21)2>

i=1

[N

is an overkill condition that is sufficient for z € E. Thus the cone
C, = x€Q|xn—zn>“1q_q2 (g(xi—zif)Q cFE
i=1
and for exact same reasoning
Cli={xeQ|o,—2, < V1qu (7121(30121)2)2 C(Q\E)°
i=1

Hence we have
OENQCQ\(C,UC)=0nCinCLe

for any z € 9E N Q. The LHS is independent of z so one has

OENQC (] (@ncenclo)
z€EQENQ
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Suppose there exists (z1,- - ,Tp_1,2Zn), (T1, * ,Tn_1,2,) € OE N Q with z,, # z/, one has

1
/71_ b) n—1 2
|z, — )| < A <Z(azz - x1)2> =0

a q =1

reaching contradiction. Hence each point = (1, ,Zn—1,2n) € OE N Q has unique correspondence between
(v1, -+ ,xp_1) € R"! and z,, € R, i.e., this defines a function z, = f(x1, -+ ,7,_1) for any z € dE N Q.
Moreover, for any x, ' € OE N

/7_ b) n—1 %
|xn _xlnl = |f($1, 7xn—1) - f(mlh "r’/ﬂ*l)l < # <Z(ml —.’L‘;)Q>

q i=1

This defines a Lipschitz continuous function f over its domain. Since €2 is open, f=1(2N ({0} x R)) c R*~! is
open due to continuity of f. In fact, A := f~topr, (2N ({0} x R)) is the domain of definition for f (where pr,,

FW) =) ‘ < Vi=a
y—y’ = q

denotes projection onto n-th coordinate). Hence (2.53) follows. Writing sup < 00 gives

Y, Yy’ €A
Lipschitz continuous function (2.54). O
To upgrade to C! regularity, one needs tool that transits from Lipschitz continuity to C*.

Lemma 2.2.8 (Rademacher’s Theorem). Let Q@ C R™ open and f : Q — R locally Lipschitz continuous. Then
f is differentiable L™-a.e. in Q (L™ denotes n-dim Lebesque measure).

Remark 2.2.1. Under same assumptions as Theorem 2.2.2, there exists f : A C R"™ ! — R Lipschitz continu-
ous with OENQ = {(y,t) € AxR | f(y) =t}. And for L t-a.e. y€ A, fori=1,--- ,n—1

D;f(y) 1

JaioE YT AT prae

In fact, this holds are |Dypgl|-a.e. x = (y, f(y)) € OENQQ.

vi(z) = for x=(y, f(y)) € 0ENQ (2.55)

Proof. Since f : A C R"~! — R Lipschitz continuous, by Rademacher’s 2.2.8, for L" t-a.e. y € A, f(y) is
differentiable. Hence for £"!-a.e. y € A, the quantities D; f(y) and /1 + |Df(y)|? are well-defined. But since
OF N has Lipschitz boundary, Trace Extension Property for ¢ € BV () says in (2.8) that

Dyg =n(x)dH,—1 .0F on Borel sets in Q

where n denotes the classical inner unit normal w.r.t. dF. This immediately implies

e classical inner normal n is well-defined on H,,_1.0FE-a.e. = € §). This is because the set in A ¢ R*~!
where Df does not exists has £"~! measure zero, and by one to one correspondence via = = (y, f(y)),
the set that n(x) is not defined has H,,_1LJF measure zero.

e for points y € A on which f is differentiable (from classical theory)

(2.56)

n(l’)n((y,f(y)))( D1 f(y) D1 f(y) 1 )

VI+DFGP I+ IDIWP i+ DfG)P
One use the equivalence (2.7)

Dyg = v(z)|Dyg| on Borel sets in R"
to equate (2.8) with the Structure Theorem (2.34)

|Dop| = Hy,—1L0"E on Borel sets in R"

So for H,_1.0*E = |Dygl-a.e. x € , v(r) = n(z). Recall the set that n(x) is not defined has H,_1.0F
measure zero, hence H,_1.0* F-measure zero. We take the union of the two H,_1.0*FE measure zero sets
where either v = n or (2.56) fails. Their union is still of H,_100*E measure zero. One project such set
onto R"™! to obtain a £"~! measure zero set. Hence one has (2.55) for both £" !-a.e. y and |Dygl|-a.e.
x=(y, f(y)) € IENQ. O

Theorem 2.2.3 (C! Regularity for OE). Q C R" open and E Caccioppoli set in Q. If v(z) erists for every
x € OENQ and is continuous. Then OE N is C* hypersurface.
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Proof. By definition of reduced boundary, |v(z)| = 1 on §*E. But by Structure Theorem (2.36), 0*E = OF.
Using v € C(OE N§;R™) continuous, |v(z)] = 1 on JE. Now for any z € 9E N, one may cover z using B ball
small enough s.t. (2.52) holds upon rotating so that v, is close to x,, axis pointing upwards. This is of course
applicable due to continuity of v. And since we’re covering with balls that are convex objects, one may apply
Theorem 2.2.2 to obtain locally f with Lipschitz regularity whose graph is the boundary F N B. Applying
Remark 2.2.1, one has for £ -a.e. y

Dif(y) = 2 for o = (4, f(y) € 9EN B

Hence the derivative of f coincides a.e. y with a continuous function. This is equivalent to f € C! locally. Now
repeat for arbitrary point z € 9E N, one obtain IE N Q) with C' regularity. O



Chapter 3

De Giorgi’s Lemma

In this chapter we develop the key lemma to tackle regularity theory for minimal sets, the De Giorgi’s lemma.

Definition 3.0.1 (Minimal Set). For Q C R™ open, and E Caccioppoli Set. E is minimal in Q if for any
F Cc R™ Borel s.t. F' = E outside ), we have

P(E,9) = /Q Dys| < /Q Dyr| = P(F.Q)

From Theorem 1.1.5 we know the existence of Caccioppoli Set with minimal perimeter within bounded open 2.
Given such minimizing set, we examine its regularity. In doing this, we need to approximate the minimal set,
and we shall introduce a measure of how close a set is to being minimal.

Definition 3.0.2 (v and ). For Q C R” open, let f € BV(9)

o v(f,Q) :=inf{[,|Dg|| g € BV(Q), supp(g — f) C Q} and ¢(f,Q) == [, [Df| - v(f,Q).

o IfQ =B, we write v(f,p) :=v(f,By) and ([, p) :=¢(f, By).

o If f =g for some Caccioppoli set E, we write v(E,Q) :=v(pg, Q) and Y(E,Q) := Y(pg, Q).
Remark 3.0.1. If E is a minimal set in bounded open Q, then ¢¥(E,Q) = 0.

Proof. If suffices to show v(E,Q) = inf{ [, |Dg| | g € BV(Q),supp(g — vr) C Q} = [, |Dep| = P(E,Q). But
indeed pp € BV(Q) due to Caccioppoli, and supp(¢r — ¢r) = @ C Q, so v(E,Q) < [, [Deg|. On the other
hand, for any € > 0, there exists g € BV () and supp(g — ¢r) C Q s.t.

V(E,Q)+ 2> /Q Dyl

Now using Coarea formula (1.28), we may write

o0
/\D9|=/ /\Dw{xesz|g(x)<t}|dt
Q —o0 JQ

V(E,Q) +e> /Q \Dg| = / /Q D ocorato <o dt

1
2/ /|D<P{xe9|g(x)<t}|dt
0 Q
1
:/ /|D<P{xeﬂ|g(m)>t}|dt
0 Ja
1
2/ /|D<P{.reR"\g(z)>t}|dt
0 Q

1
z/ /|D¢E|dt:/|DwE|
0 Q Q

where we’ve used supp(g—¢g) C Q = g = g outside Q, so F; := {x € R" | g(x) > t} satisfies F; = E outside
Q for any t € (0,1). This is necessary so we may apply minimality of E. We also used that {z € Q | g(x) < ¢}
and {z € Q| g(z) > t} mutually disjoint so they give same perimeter. O

Hence

37
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We may now state the De Giorgi’s Lemma

Theorem 3.0.1 (De Giorgi’s Lemma). For any n > 2 and o € (0,1), there exists positive constant ¢ =
o(n,a) >0 s.t. for any E CR™ Caccioppoli and p > 0 satisfying the following

Y(E,p) = /B
/,

D] — inf{ / Dg| | g € BV(B,). supp(g — w5) C B,} =0 (3.1)
BP

P

D) — | /B Dyl < o(n,a)p™! (3.2)

/ |D¢E|—|/ Dyp| < a” (/
B Ba, B

Notice the important term
Definition 3.0.3 (Excess). A(E,p) = p,,%l {fB |Doe| —| [ D<pE|}.
p P

P

Then
Dys| — | /B D¢E|> (3.3)

ap 3

Remark 3.0.2. Using Structure Theorem for Caccioppoli Set (2.34) and (2.35), one may write

/ |Dog| = H,-1(0"ENB,)

P

| pee={  vizan,.,
B, 9*ENB,

Hence the Fxcess writes

A(E, p)

:F

{Hnl(a*E NB,) — | v(x) dHnll}

9*ENB,
as a measure of how much the direction of v(x) changes in B,N0*E. If N(E, p) is small, then v(x) must remain
approzimately in a constant direction and thus we expect results from Theorem 2.2.2.

3.1 Approximation of Minimal Sets - C!' Caccioppoli Sets

If EN B, are locally graphs of C*! function, i.e. EN B, = {(y,t) € AXxR| f(y) <t} N B, where A C R*~! and
f € C*(A), then the boundary of our set E writes

OENB, ={(y,t) eR" |y A, t = f(y)}

and our measures |Dyg|, Dyg writes, recalling (2.55)

/ Doy = / \dH, , — / VIT OGP dy (3.4)
B, OENB,. A

/ DQOE:/ v(z)dH,
B, OENB,

= ([ s [ Drsstran, [ 1) (35)

1
2

Then the quantity

n—1

> (/A D;f(y) dy)2 +14[?

Jj=1

n—1 2
1
=]A — | D; d 1
4 ;<|A|/A ) dy) +
If we're considering sets A approximated using %, C R"~!, we may introduce notation for f € C(4,)

1
o= Jy,

| / Dyg|
B,
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and rewrite the above as

n—1

2 3
1
|/BTD<PE|N |2, Z (L@H/@ijf(y)dy> +1

j=1

—1B,1\/1+ (Df),? = /@ S (D), 2 dy

Thus the quantity to the LHS of (3.2) writes

/BT Dy| — /B Dl ~ A VT Df(y)zdy—/% 1+ (Df), 2 dy (3.6)

With simplification using C' boundary, it suffices to study quantities in the RHS of (3.6). Moreover, notice the
RHS is always non-negative due to choice of (Df), as the average of D f over %,. Since both terms on RHS are
finite measures locally, their difference, which is non-negative, again defines a measure on R”~! that is locally
finite.

Now to minimize as in (3.1) the perimeter of E in B,

/ |D<PE|
B

r

in C!' boundary case, we're essentially minimizing

/A VIT DGR dy

among all functions f € C1(A). Yet for |Df| small, i.e., OF nearly flat in B,, /1 + |Df|? is roughly 1+ %|Df|2
via Taylor Expansion, so f minimize

1(f) = /A DfI? da

That is, f must be nearly harmonic. Hence it is important to obtain estimates for harmonic functions which
approximate sequences of surfaces tending to a minimum. We have the analogue of the De Giorgi Lemma for
harmonic functions.

Lemma 3.1.1 (De Giorgi’s Lemma for harmonic functions). Suppose 8, C R™ and u € C*(%,) harmonic in

B,. Then for every a € (0,1)

/ (|Dul? — |(Du),|?) dz < ozm+2/ (|Dul? — |(Du),|?) dx (3.7)

ap P

Proof. A harmonic function u € C*(4,) is automatically analytic in %,. Hence it may be written as Homoge-
neous Expansion, i.e., as series of homogeneous harmonic polynomials

u(z) = Z Vi(z) Vo € B,
=0

Here

Each V; is a harmonic polynomial homogeneous of degree i

e Since we're restricting to ball %,, V; are orthogonal.

/.

Since DV preserves harmonicity, for any j > 2

J.

In particular, for j # k

(DV;, DVy)dx = / (DV;, DVy)dz = 0
'%P

ap

DVjda = / DV;dz =0
B,

ap

Hence by Mean Value Property

1 1
ol

> 1
Du), = / Dudr = / DVida::—/ DVidx = DV1(0) = DV;
( )P |%p| %, |% 2 Z f@p @, 1 1( ) 1

%o i=0
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Combining above and using orthogonality, one has

| (pu = (0w, Py de = [ 1DV s
® =%,

I,
Finally noting

S /@ DViP(x)de =Y L DV (ag) a™dy = o™ 3 /@ 022 DV;[2(y) dy
j=2" Bar j=2" %0 j=2"%p

<am? Y / DV, () dy
j=2" %o

ap

(IDuf? = |(Du),?) dz =3 /@ DV [? du
j=27 Pap

One has an analogue of the De Giorgi Lemma for sequence of C* functions whose

e gradients tend to zero

e Excess has control via §; positive constants, and do not differ much from harmonic functions in the sense
that their defined surfaces are close.

Lemma 3.1.2 (De Giorgi’s Lemma for C' functions approximating harmonic functions). Suppose %, C R™.
Let w; € CY(A,) be sequence of C' functions and u; € C*(#,) harmonic functions s.t.

Uj = wj on 0%,
Suppose for {8;} C Ry sequence of positive numbers s.t.
lim sup [Dw;(z)] =0 (3.8)

J0 zen,

/@p (\/1 +|Dwj 2 — /14 (ij)p‘z) dz < ; (3.9)

1
limsup—/ < 1+ |Dwj|? — 1+|Du-2> dx =0 (3.10)
j—oo 6j B, \/ ! \/ !
Then for any o € (0,1)
1
limsup—/ < 1+ |Dw;|? — /14 [(Dw;)a |2> dx < a™*? (3.11)
mw 3, J,,, (VDR =Lt D)

Proof. Before we start, we first derive some inequalities that we need. For any z,y € R, we taylor expand
V1 + y at the point x. This gives us for some £ between x and y

y—z (y — =)
Vity=+vi+z+ —
2V1+z  8(1+¢)*2
Write z = B? and y = A2, hence ¢ is between A? and B?, and thus nonnegative. We obtain
A? — B?
1+4A42—-/1+B2< ——
\/ \/ ~ 21+ B2

2 2 2 S U N
now for B? < 3, we have 4(1 + £)> > 4 > /1 + B2, hence ol > =g
A2 _ g2 77(A2—B2)2>7(A2—Bz)2 (3.15)
21+ B2 8(1+¢)3 2V1+ B2 '

On the other hand, let A, B, C' € R™, for any ¢ > 0

2

(3.12)

and

V1+42-\1+B2—

m

A= B> =) (4 —Bi)*=> (A= Ci+C; — B;)?

< Em:(AZ- —Cy)*+2 Y (A; — C;)(C; — By) + Em:(ci — By)?
i—1 i—1 i—1
2(4; = C;)(C; = B;) = g(Ai — C;)V2Ve(C; — B;)
< %(Ai - C)* +¢e(C; — By)?
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Hence

|A— B> <

(")\H

zm: (1+e¢) i =(1 +§)|A70|2+(1+6)|37C\2 (3.14)

i=1
(i) Our main goal is to bound

1
lim sup — / <\/1 + |Dw;|? — \/1 + |(DWj)ap2> dx

Jj—o0o B] Bop

in terms of a™*2. In the first step we reduce the LHS to

1 1
— limsup — / |Dw; — (Dw;),|* da
2 j—oo 5]

To do so, apply (3.12) with A = |Dw;| and B = |(Dw,)a,| so that
| Dw;|? — |(Dw;)apl?
L+ [(Dwj)apl?

Bop

VI 1Dw; 2 = /14 |(Dw; a2 <

Notice that

m

2
1
Dw; — (Dw; ?= Dlw‘_i/ Duy d
| J ( J)Oél’| Z( I |<93ap| Bap o )

i=1

2
= 2 1
= D1w2 —_ / Di(.O' DiW‘ + — / Dl'CU'
; ! |3304P‘ ( Bap J) ’ |<%ozp|2 ( Bop I
< [ ot -£ iy 0) (o)
ap ap
= Duw;|? / D;w
/gg | Jl Z ‘L%)ap‘ < J)

2
:/gg |ij| - ‘%ap|z 1wj ap

[ IDwsP = [ (D)l
B B

ap ap

Also note that due to minimization of (Dw;)a, over %,,, one has

ﬂ |Dw; — (Dwj)apl dz Sl |Dw; — (Dw;),|* da

ap ap
Hence one obtain bound
Dw;|? — |(Dw; 2
[ ViD= U (Dupaan < [ DAL D0 g,
By Bop 20/1+ [(Dwj)apl?
B

<, 5
:/ | Dw; = (Dwj)apl*
Bop 2
1 2
<5 [ |Dwj—(Dwj),|" du

(ii) In the second step we bound our previous term f%ap |Dw; — (ij)p|2 dx part using |Dw; — (ij)p|2 on
the unscaled ball %, and the other part using |Dw; — Du;|? on %,. The key is to go from scaled domain
to the unscaled domain using (3.7) for harmonic functions. This throws the scaling parameter « from the
domain to coefficients of the RHS. To do so, first use (3.14) for A = Dw;, B = (Dwj), and C' = Du;. Fix
any € >0

1
I11,, ::/ |Dw; — (Dw;),|* dz < (1+€>/ \ij—Duj|2dx+(1+e)/ |Du; — (Dw;),|? dx
B i

7.
ap ap Fap

1
=: (1 + E) L, +(1+¢)Il,, (3.15)
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Since u; = w; on 0%,, we may apply Gauss-Green Theorem, denoting v as outer unit normal on 0%,

1 1

Deide =131 |, V@ =127 |

ujv(z) dHp—1 = (Duy),
hence using (3.7)

IIap:/Q |Duj—(ij)p\2dac=/ug \Du; — (Duy), 2 de

7 7
ap ap

< 04"”2/ |Duj — (Duy),|* da

P

am+2/ |Du; — (Dwj),|? dv =: a™ 211,

%

Again applying (3.14) with A = Du;, B = (Dwj), and C = Dwj; to the last term f@p |Duj — (Dwj),|* dzx
gives us

11, :/ |Duj — (Dw;),|? dz < (1 + 1)/ |Duj — Dw;|? dz + (1+5)/ |Dw; — (Dw;),|* da
B, €/ Ja», B,
_ (1+ i_) I+ (1+¢)1II,
Hence the above summarizes to
IT,, < a™II, < o™t? (1 + i) I, +a"m"(14¢)I11,

Also notice the trivial bound

I,, = / |Dw; — Du;|? dz < / |Dw; — Duj|* dx =1,

ap By

So plugging the two into (3.15) yields
11, = / |Dw; — (Dw;),|* dx

1
< ) |Dw;j — Du;|*dx + (1 +¢) m+2/ |Duj—(ij)p|2dx:<1+8>1p+(1+5)am+211p

P

1 1
(1 + ) |Dw; — Dug|? dx + (1 +¢) ™" ((1 + g)/ |Du; — Dw;|? dz + (1 —|—5)/ |Dw; — (Dw;),|? dx)

2, 2,

0

1 1
<+>Ip (1+¢) m”<1+E)Ip+(1+e)2am+2111p

1
=(1+ 5)2 O/n+2/ |Dw; — (ij)p|2 dx + (1 + 6) (1 +(1+¢) am+2)/ |Dw,; — Duj|2 dz
Z

,@p Fp

1
= (1+¢)* ™ 2IIL, + <1 + 8) (1+(1+e)a™?)I,

= (1+¢)’ am+2/ |Dw; — (Dw;),|* dz + Q(e, a,m)/ |Dw; — Du;|? dx

3, B,
Hence we’ve arrived at
I, < (1+4¢)* ™ 2101, + Q(e, o, m)I,

i.e.

/%r |Dw;—(Dw;),|? dx < (1+5)2am+2/ |Dw; —(Dw;) ,|? derQ(s,oz,m)/a |Dw;—Duy|? dz (3.16)

ap P Bp

(iii) In the third step we bound the first term on RHS of (3.16) upon dividing by 3;, using our assumptions.
Recall, as in Step 1

[ 1Dws = Dup o= [ 1D (D) da
A, B

77
“Fp
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and it suffices to bound the RHS. We apply (3.13) with A = |Dw;| and B = |(Dwj),| so that

Y1+ IDws 2 = 14 |(Dwy), |2 7 (1D = (D)o = (1Dwsf* = (D), )°)

1
1+ [(Dw;)p
Note (3.13) is valid for j large enough as (3.8) ensures lim |(Dw;),| = 0 hence B = |(Dw;),| < 3. We
j—o0
need to deal with the second term on RHS (| Dw;|? — \(ij)p\2)2. Note the model for arbitrary z, y € R™

m

ol = Iyl = D _(af = ) = D (@i + y) (@i — wi)
= Z( —vi) + Z vi) (i — yi)
< (Z(%F) (Z(% - yz)2> + (Z(y1)2> (Z(% - yz)2>
i=1 i=1 i=1 i=1

(|| + ly]) |z =yl
(

= (la]* = [y1*)? < (2l + [y)? o — yP?

Let © = Dw; and y = (Dwj),, we have

2
2
(|1Dw;[* = |(Dw;),|*)” < <S§P|ij| + (ij)p|> |Dw; — (Dw;),l* =: mj| Dw; — (Dw;),|*
P

Thus under the integral over %,

(IDw;|* = [(Dw;),|* = m;|Dw; — (Dw;),|?)

= (|Dwj|? = [(Dw;)o[* = my (|Dw;|* —(Dw;),|?))

Duwj),|
1 —m; 2 2

= Duw;|* — |(Dw;
e, (Pl 10aP)

Reversing the inequality and using (3.9)

2\/1+ |(Dwy),
= [ (1D = [(Dw)),P) < : / VI 1D =Lt (Do), (317

, - 1—m;
L+ 1(Dw;)ol” 5.
- 1—m; J
Thus taking lim sup on both sides gives
lim sup — IIIp = limsup — / (|Dw;|* = |(Dw)),|*) <2 (3.18)
Jj—roo B] j—o0 ﬁj

p

(iv) In the fourth step we bound the second term on RHS of (3.16) upon dividing by ;. Again, as in Step 1

(Diwj — Dﬂtj)Q

NE

|ij — DU]“Q =
1

.
Il

.

(Diwjz» — 2Diw]*Din + Dzuf)

i=1

Notice that we may apply Green’s first identity. Using that u; is harmonic in %, hence Au; = 0 in 4,
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and that u; = w; on 0%,

/ ZDZ%D Uj z/ w]%uj dH,_ — / Aujw; dx
2

/721 P

:/ wj%dHn,lz/ w2 g,
0B, ov 0B, v

1%
— [ 1w [ 1w
B, B

P o

It suffices to bound [, [Dw;|* — [, |Du;|*>. To do so, write
2, 3,

= [ P [ puP = [ (DwP 10w, R) + [ (D), - Dul) =1, 1,

P Bp

For III,, apply (3.17) from Step 3 so

2¢/1+ [(Dw;), 2
III, < +| “i)o |/ <\/1+|Dw|2 \/1+|ij )

_mj

For II,, we apply (3.12) with A = |Du;| and B = |(Dwj,),| to obtain

|D“J|2 |(ij)p|2
1+ [(Dw;),|?

1+ D = /14 (Dwy), |2 <

|(Dwj),|? — | Dy ? <2\/1+| (Dw)), |2 (\/1+| (Dwy), \/1+|DuJ2>

— 41,,:/ ((Dw;),I? — |Duy|? < 24/1 + |(Dw;) |2/ <\/1+ (Dw;)), \/1+|Du]2>
By

Thus combining above gives
I, = /@ Dyl [ 1Dl = [3 (1D = (D)) + [ (1D, = 1Dy ) =101, ~ 1,
2\/1 (D 2
+1(Dwy), |/ <\/1+Dw|2 \/1+|Dw] )

1—-m;

HW/ (\/1+|ij \/1—|—|Duj|2)
—2W< m/ <\/1+|DwJ|2 \/1+|ij ) /(\/1+|ij \/1+|Duj|2)>

For the last term, write

/ (\/1+|ij \/1+|Duj|2)
/ <\/1+ij \/1+|Dw]|2> Lp<\/1+|pwj|2_\/1+|puj|2)
/%p (Ve ipust = freimap k) + [ (i1mef - i 1oue)

1 _17(17771]) mj

observe

1—m]‘_ - 1—m]‘ _1—mj
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so we add back

= [ 1w [ (Duf
B, %

P

:zm(ﬂm [, (Vrsiper - reioare) « [ (\/1+|ij|2—\/1+|Duj2>>
< 24/1+[(Dwj),|? (1 infn]ﬂj +/@p <\/1+ | Dw;|* — \/1+ |Duj|2>>

Now divide by B;

1 1
5 (/@ ij|2_/%p|Duj|2> < 24/1+ |(Dw;),? (11'1;% +Bj/33p (\/1+|ij|2—\/1+|Duj2)>

Notice due to sup|Dw;| + |(Dwj),| = m; — 0 from (3.8)
By

P

. m;
lim sup l_ =0
jooo 1—m

So taking limsup on both sides and using (3.10) gives

1 1
limsup —I, = limsup — / |Dw;|* — / |Duj|* | <0 (3.19)
j—oo B jmoe Bi \Ja A,

P

(v) In our final step, we put things together. In particular, we plug (3.18) and (3.19) into (3.16)

[ 1Dy = D, < o0 [ 1Dy = (D) P+ Qesnm) [ Dy = D

ap 3 P

1 1 1
7/ |Dw; — (Dw;y),|* < — (1 +¢)? O‘m+2/ |Dw; — (Dw;),|* + —Q(s,a,m)/ |Dw; — Du;|?
Bi Ja., B; 2, B 2,

Taking lim sup on both sides yields

1
lim sup —/ |Dw; — (Dw;),|*> < 2(1 +¢)%a™*?
7

j—oo Py ap

Going back to Step 1 yields

1
limsupﬂ—/ (\/1+|DW]‘2—\/1+|(D%')@,3|2> dx
.,

j—oo  Mj

1 1
< flimsup—/ |Dw; — (Dw;),|* dx
2 oo Bjla,,
< (1+¢)?amt?
For any € > 0. Taking ¢ — 0 on RHS and conclude (3.11).
O

Now instead of looking at C'! functions, we look at the sets determined by the functions via (3.4). In particular,
we replace the condition (3.10) with a condition saying that sets tend to a minimum.

e Let #, C R™ and w; € C*(4,)
o W;:={(z,t) e B, xR |t <wj(z)}
e Q;:={(z,t) e B, xR zrg%lpwj(x) -1<t< ;ré%iwj(x) +1}

Lemma 3.1.3 (De Giorgi’s Lemma for C! functions representing sets approximating flat boundary). Suppose
B, C R™. Let w; € C*(B,) be sequence of C* functions. Let {8;} C Ry be sequence of positive numbers s.t.

lim sup |[Dw;(z)| =0 (3.20)
I= 0 zeB,
/ (\/1 + D2 — /14 |(ij)p|2) dz < B; (3.21)
'98/’
lim <, Q;) = 0 (3.22)



46 CHAPTER 3. DE GIORGI’S LEMMA

Then for any o € (0,1)

1
limsup—/ ( 14 |Dw;]?2 — /14 |(Dw)q |2> dx < a™*? (3.23)
Jj—roo ﬂj Bop \/ ! \/ P

Proof. By Perron’s Method, one may construct u; € C'(%,) harmonic in %, s.t. u; = w; on 0%,. Recall from
(3.4)

P @) = [ 1Dgw, = [ \fr+Dusp

Q.’/ ‘@/J

Then

lA
" »
@y

B
/
Figure 3.1: wj, u; and Q;

/% 1+ D 2~ /% 1+ Du? < /Q D, |~ intf /Q 1Dl g€ BV(Q,). swply ) € Q)
=v(Wj, Q;)

Since u; itself defines g := @((2 1)e®,xR|t<u;(z)}, and indeed supp(g — ¢w,) C Q; due to construction of wu;.
Now one may apply Lemma 3.1.2. O

Lemma 3.1.4 (De Giorgi’s Lemma for C'' Caccioppoli Sets). Let {L;} be sequence of Caccioppoli sets in R™.
Let {B;} C Ry be sequence of positive numbers, and p > 0 s.t. dL; N B, is C* hypersurface, and

lim inf vd(z)=1 for vi(x) the normal to L; at the point x (3.24)
j—o0 dL;NB,
/ |Der,| — I/ Dyr,| < B; (3.25)
B, B,
1
lim —4(L;. p) = 0 (3.26)
J]—00 ﬂj

Then for any o € (0,1)

ap

1
lim sup — /
j—oo Bj ( B

1D, | - \/ D@Lj|> < amtt (3.27)
Ba,p
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Proof. Assume for contradiction, i.e., there exists a sequence of Caccioppoli Sets {L,}, a sequence {f;} C Ry
and p > 0 s.t. 9L; N B, is C! hypersurface and (3.24) to (3.26) holds, yet for some a € (0, 1), we obtain

L[
m —

(i) Since (3.24) ensures vi(z) converges to 1 for any x € dL; N B,, we may assume vi(z) > q > g for
every x € dL; N B, for j sufficiently large. From Theorem 2.2.2 and Theorem 2.2.3, since v}, exists
everywhere and L; N B, are C'! boundaries, we know there exists open set A; C R"~! and C' functions
wj:Aj CR"! 5 Rsit.

|D<)0Lj| - I/B DQOLJ|> > an+1 (328)
ap

ap

OL;N B, ={(y,t) eR"™" xR |y € 4;, t = w;(y)}
Moreover, since v > ? satisfies (2.52), we have bound on

v/ 1—¢g?
|w;(y) —w;(y)] < le -l

for any y, y' € A;. Thus as j — oo, (3.24) ensures ¢ — 1, and the bound yields

sup |wj(y)—wj'(y’)‘ cVi-¢

v,y €A y—y - q

= lim sup|Dw;| =0 (3.29)
J—=oo 4

On the other hand, since we’re considering dL; N B,, it is guaranteed that sup|w;| < p for any j large.
g
Hence {iilfwj'}j C [—p, p] is bounded sequence in R, by Bolzano Weierstrass, there exists a convergent
j

subsequence and constant ¢ € [—p, p] s.t.

lim infw; = 3.30

P e = ¢ (330

We claim that ¢ < p?. If not, i.e., ¢® = p?, then since lim sup|Dw;| = 0, for j sufficiently large, we
J—=o0 A

eventually reach lim |w| = p, i.e., OL; N By, = @ for a € (0,1). But this contradicts assumption (3.28).
j—oo
(ii) Due to (3.29) and (3.30), for any € > 0, there exists je1 > 0 s.t. for any j > j. 1, one has
lwij(z) —c|<e VazeA; (3.31)
Since ¢ is constant, let 0 = p? — ¢* > 0, there exists j. > jo 1 s.t. for balls B, e, By_. C R*!
r@n—s g Aj g r@a-&-s V] Z je Z js,l

And on the set (B,_. x R) N B, with piecewise smooth boundary, we have from (1.4) that

/ Dep, = / v (x)dH, V>
(Bo—xR)NB, OL;N(Bs—exR)NB,

In particular, via change of variables and computations (3.4) and (3.5), for any j > j.

/ D= [\ TH DGR

(Bs—xR)NB, PBo_ o

/ Dipr,; =/ vl (z)dH, :/ Djw; dy i=1,--,n—1
(Bo—exR)NB, OL;N(Bo—c xR)NB, 2

/ Dnor, = / 1dy = |By—-|
(Bs—xR)NB, B

o—e

n—1
|/ Do, = /
(Bs—xR)NB, Z B

i=1

n—1 1 2 %
= |930-_5| Z <,@0.5| /% Dzwj dy) + 1
i=1 o—¢

n—1 %
= [Bo—e| (Z ((Diwj)o—s)z + 1) =[Bo—c|\/1+ ‘(ij)0—6|2

=1

1
2

2
Djw; dy) + | Bo—c|?

o—e

- / 1+ | (Dw;)oe2 dy
Bo_.
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Aa: { ae\RM \ Wi € %@ .3

“1

€ /‘6 N\ P

AN e

\ C

ey By

\

Al

Figure 3.2: B,_. C Aj C Boe

as in (3.6), we obtain

/ Doy, | - \/ Dy, :/ 1+ [Dw; () 2 dy —/ 1+ (D))o 2 dy
(B5—<xR)NB, (Bs—xR)NB, Bo—_e Bo_e

Notice the above defines locally a finite measure (in particular, non-negative and monotonic) on R™. Hence

[ remewra- [ firiDu - [ Dol -1 [ Do, |
Bo_e By (Boy—exR)NB, (Boy—exR)NB,

s/ |D¢Lj\—|/ Doyl < B;
B B,

P

Thus we're ready to apply Lemma 3.1.3 and obtain from (3.23) that for any 0 < v < 1

. 1 n
lim sup — /@ <\/1 + [Dw;(y)|? — \/1 + |(Dw)7((,_5)|2> dy <"t (3.32)
y(o—e)

jooo B
(iii) Recall definition for A;. We may rewrite

A ={y e R | (y,w;(y)) € B,}
It’s reasonable to consider its subset

Cj={y € 4; | (y,w;(y)) € Bap}
The same argument from (3.31) indicates there exists j. o for any j > j. o

lw;(z) — ] < ae Vaelj CA,
Also notice ¢ < a?p? for the same reason as ¢? < p?. Hence

o?o? =a?(p® =) >a?p? -2 >0
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In particular
ac > va2p?—c2 = alo+¢e)>vVap?—c?+ae

so so there exists j. > jo 2 s.t. for any j > j.

- éae\RM\ wiey) € Buq

Figure 3.3: C; C Z ,— B iae = PBo(o+e)

C c# a2p2—c2+ae - %a(a—&-s)

Now on the other hand

/ |DsoL|—\/ DsoL|</ |D¢L|—|/ Doy
B Bo(ore)xR)NB, Bo(ose)XR)NB,

ap
/ S+ |Dey ()| dy — / U+ (D)) aoro P dy

a(a+5)
(3.32) and combining with above, we obtain

a(a+5)

Take v = agf‘z

1 n+1 n+1
lim sup — / |Dor,| — |/ Dyr,| < <a0 +€> = "t (U"_E)
j—o0 /8] ’ Bap g —¢£ o—¢

Bap

Let € — 0 to reach a contradiction against (3.28).
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