
[Luk] Introduction to Nonlinear Wave Equations

Jonathan Luk
collected by Mark Ma

November 18, 2024

https://markmamathematics.com




Contents

1 Constant Coe�cient Linear Wave Equation 1
1.1 Fundamental Solution and Representation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Distribution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Fundamental Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Properties of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Non-constant Coe�cient Linear Wave Equation 11
2.1 Energy Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Existence of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Quasi-linear Wave Equations 21
3.1 Hadamard Well-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Existence of Local-in-time Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Continuous Dependence on Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Maximal Time of Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Persistence of Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Breakdown Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

We earnestly follow the set of notes ‘Introduction to Nonlinear Wave Equations’ by Jonathan Luk. In fact, the
author has his signature from Analysis Seminar at Courant.

i

https://web.stanford.edu/~jluk/NWnotes.pdf




Chapter 1

Constant Coe�cient Linear Wave
Equation

Consider Constant Coe�cient Linear Wave Equation with solution � : I � Rn � Rn+1 ! R where 0 2 I

�� = �@2
t �+

nX
i=1

@2
xi
� = 0 (1.1)

This is model by D’ Alembert in 1749. We wish to study the initial value problem with given initial data
(�0; �1) on I � Rn �

�� = 0
(�; @t�)jt=0 = (�0; �1)

(1.2)

1.1 Fundamental Solution and Representation Formula

1.1.1 Distribution Theory

One start with distribution theory.

De�nition 1.1.1 (Distribution, Restriction, Support, Distributional Derivative). Given open set U � Rn.

• u 2 D0(U) is a distribution in U if u : C1c (U)! R is a linear map on the space of smooth and compactly
supported functions, and for every K � U compact, there exits C = C(K) > 0 and k = k(K) 2 N s.t.

ju(’)j � jhu; ’ij � C
X
j�j�k

sup
x2K
j@�’(x)j 8 ’ 2 C1c (K)

• Let V � U � Rn, and u 2 D0(U). De�ne the restriction of u to V as uV

uV (’) := u(’) 8 ’ 2 C1c (V )

• u 2 D0(U). De�ne the support of u as supp(u)

supp(u) := U n
[
fA � U open j uA = 0g

• u 2 D0(U). De�ne the distributional derivative for any � 2 Nn as @�u

h@�u; ’i := (�1)j�jhu; @�’i

Lemma 1.1.1 (Approximation with C1c , Composition with C1, Chain Rule). Given open set U � Rn

• u 2 D0(U). There exists a sequence fujg � C1c (U) s.t. uj ! u in D0(U), i.e.

�
U

uj’dx = huj ; ’i ! hu; ’i 8 ’ 2 C1c (U) (1.3)

• f 2 C1(U) that is a submersion, i.e. df 6= 0. De�ne composition of u 2 D0(R) with f as u � f 2 D0(U)

1



2 CHAPTER 1. CONSTANT COEFFICIENT LINEAR WAVE EQUATION

(a) There exists unique pushforward f� : D0(R)! D0(U) s.t.

f�u = u � f

for any u 2 C(R).

(b) If u 2 D0(R), there exists fujg � C1c (R) s.t. huj ; �i ! hu; �i for any � 2 C1c (R) as in (1.3). De�ne

f�u = u � f := lim
j!1

uj � f (1.4)

• u 2 D0(R). f 2 C1(U) submersion. Then distributional derivative satis�es chain rule

@(u � f) = (@f)(u0 � f) (1.5)

Proof. For any � 2 C1c (U), �x @ = @i w.r.t. i 2 f1; � � � ; ng

h@i(u � f); �i = �hu � f; @i�i = � lim
j!1
huj � f; @i�i = lim

j!1
h@i(uj � f); �i

= lim
j!1
h@if(u0j � f); �i = h@if(u0 � f); �i

induct on i yields (1.5).

De�nition 1.1.2 (Convergence in C1c and in C1). we �rst specify convergence in C1c and in C1

• ’j � C1c (Rn) converges to ’ in C1c if there exists K � Rn compact s.t. all supp(’j) � K and

sup
x2K
j@�(’(x)� ’(x))j ! 0 8 � 2 Nn

• ’j � C1(Rn) converges to ’ in C1 if for any K � Rn compact

sup
x2K
j@�(’(x)� ’(x))j ! 0 8 � 2 Nn

Lemma 1.1.2 (Convolution). u 2 D0(Rn) and ’ 2 C1c (Rn). One de�ne convolution of u and ’ as

(u � ’)(x) := hu; ’(x� �)i

• u � ’ 2 C1(Rn) with

@(u � ’) = (@u) � ’ = u � (@’) supp(u � ’) � supp(u) + supp(’)

• Let U : C1c (Rn) ! C1(Rn) be linear map s.t. for any ’j ! 0 in C1c , one has U(’j) ! 0 in C1. If U
commutes with all translations, i.e. for any h 2 Rn and ’ 2 C1c (Rn)

U(�h(’)) = �h(U(’)) where �h : C1(Rn)! C1(Rn) s:t: �h( )(x) :=  (x� h)

Then there exists unique distribution u 2 D0(Rn) s.t. u � ’ = U(’) for all ’ 2 C1c (Rn).

Proof. De�ne u(’) := (U( ~’))(0) 8 ’ 2 C1c (Rn) where ~’(x) := ’(�x). Then for any h 2 Rn

(U(’))(�h) = �h(U(’))(0) = U(�h(’))(0) = u(�̂h(’))

= hu(y); ^’(y � h)i = hu(y); ’(�h� y)i = (u � ’)(�h)

that u is unique is due to its explicit expression. And u 2 D0(Rn) due to continuity requirement on U .

• u1; u2 2 D0(Rn). If (�supp(u1)) \ (supp(u2) + K) is compact for any compact set K. Then there exists
unique distribution u 2 D0(Rn) s.t.

u � ’ = u1 � (u2 � ’) for every ’ 2 C1c (Rn)

One de�ne u1 � u2 := u 2 D0(Rn) as convolution of u1; u2.
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Proof. De�ne U(’) := u1 � (u2 � ’) for any ’ 2 C1c (Rn). We show this is well-de�ned. For any x 2 Rn

(x�supp(u1))\supp(u2�’) � (x�supp(u1))\(supp(u2)+supp(’)) is compact for any supp(’) compact

Hence the quantity

U(’)(x) = u1 � (u2 � ’)(x) = hu1(y); u2 � ’(x� y)i <1 8 x 2 Rn

as convolution, U(’) is smooth. Linearity of U follows from convolution with ’ and duality pairing. For
any ’j ! 0 in C1c , there exists K � Rn compact s.t. supp(’j) � K for any j and

sup
x2K
j@�’j(x)j ! 0 8 � 2 Nn

Now for any ~K � Rn compact and for any � 2 Nn

sup
x2 ~K

j@�(U(’))(x)j = sup
x2 ~K\K

ju1 � (u2 � (@�’(x)))j � C sup
x2K
j@�’j(x)j ! 0

Hence U : C1c (Rn)! C1(Rn) de�nes continuous linear map. Moreover,

U(�h(’))(x) = u1 � (u2 � (�h’))(x) = hu1(y); (u2 � (�h’))(x� y)i = hu1(y); hu2(z); (�h’)(x� y � z)ii
= hu1(y); hu2(z); ’(x� y � z � h)ii = hu1(y); �h(u2 � ’)(x� y)i
= �h(u1 � (u2 � ’))(x) = �h(U(’))(x)

Hence U de�nes unique distribution u1 � u2 s.t. for any ’ 2 C1c (Rn)

(u1 � u2) � ’ = u1 � (u2 � ’)

Now we discuss homogeneous distribution of degree a and the particular example �a+.

De�nition 1.1.3 (Homogeneous Distribution). One generalize homogeneous function to distributions.

• h : Rn ! R function is (positive) homogeneous of degree a if

��ah(�x) = h(x) 8 � > 0 (1.6)

• h 2 D0(Rn n f0g) or D0(Rn) is homogeneous of degree a if

hh(x); ’(x)i = �ahh(x); �n’(�x)i 8 ’ 2 C1c (Rn n f0g) or C1c (Rn) 8 � > 0

Notice this is indeed, abuse of notation, a generalization of (1.6)

hh(x); ’(x)i = �ahh(x); �n’(�x)i = �ahh(
y

�
); ’(y)i = ht�ah(ty); ’(y)i

Lemma 1.1.3 (Homogeneous Extension to the origin). h 2 D0(Rn n f0g) is homogeneous of degree a, where
a > �n. Then h has a unique and continuous extension to a homogeneous distribution h 2 D0(Rn) of degree a.

Example 1.1.1 (Space-time distance in special relativity). For (t; x) 2 R1+n, de�ne s2(t; x) := t2�jxj2. Then
s2 is homogeneous function of degree 2.

Proof. s2(�t; �x) = �2s2(t; x) for any � > 0.

Example 1.1.2 (� drops degree by 2). For � 2 D0(R1+n) and suppose � is homogeneous of degree a. Then
�� 2 D0(R1+n) is homogeneous of degree a� 2.

Proof. For any ’ 2 C1c (R1+n) and � > 0

h��(x); �n’(�x)i = h�(x); �n� (’(�x))i = h�(x); �n+2(�’)(�x)i
= ��a+2h�(x); (�’)(x)i = ��(a�2)h��(x); ’(x)i

Hence that � is degree a implies �� is degree a� 2.

Lemma 1.1.4. One has immediate homogeneity calculations for derivative and composition
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• In general, distributional derivatives dk

dxk of order k drop degree of homogeneity by k by same argument
from Example 1.1.2.

• Composition of a distribution u 2 D0(R) with f 2 C1(U) where df 6= 0, U � Rn multiplies degree of
homogeneity. If u 2 D0(R) is homogeneous of degree a1 and f 2 C1(U) homogeneous of degree a2, then
u � f 2 D0(U) is homogeneous of degree a1 � a2.

Proof. For any ’ 2 C1c (U) and � > 0, choose fujg � C1c (R) s.t. uj ! u in D0(R) (note we may
choose sequence with same homogeneity as u due to its construction as convolution and multiplication
with distribution)

hu � f(x); �n’(�x)i = lim
j!1
huj � f(x); �n’(�x)i = lim

j!1
huj � f(

y

�
); ’(y)i = lim

j!1
huj � (�a1f(y)); ’(y)i

= �a1�a2 lim
j!1
huj � f(y); ’(y)i = �a1�a2hu � f; ’i

Example 1.1.3 (�0 2 D0(Rn) ). Dirac Delta �0 2 D0(Rn) is homogeneous of degree �n.

Proof. For any ’ 2 C1c (Rn)

h�0(x); �n’(�x)i = �nh�0(x); ’(�x)i = �n’(0) = �nh�0(x); ’(x)i

Example 1.1.4 (�a+). n = 1. For any a 2 C.

• If Re(a) > �1, xa+ := 1fx�0g x
a is homogeneous of degree a.

Proof. For any ’ 2 C1c (R n f0g)

hxa+; ’i =

� 1
0

xa’(x) dx =

� 1
0

(�x)a’(�x) d�x = �a
� 1

0

xa�’(�x) dx = �ahxa+; �’(�x)i

• If Re(a) > �1, d
dxx

a
+ = axa�1

+ .

Proof. For any ’ 2 C1c (R n f0g)

h d
dx
xa+; ’i = �hxa+;

d

dx
’(x)i = �

� 1
0

xa’0(x) dx =

� 1
0

axa�1’(x) dx = haxa�1
+ ; ’i

One may think of de�ning xa+ := 1
a+1

d
dxx

a+1
+ for Re(a) > �2. But at a = �1, there is pole of order 1.

• Instead, de�ne �a+(x) := 1
�(a+1)x

a
+ where �(x) :=

�1
0
tx�1e�t dt so �(a+ 1) = a�(a) for any a 2 C, and

d

dx
�a+(x) = �a�1

+ (x) 8 Re(a) > �1 (1.7)

Proof. For any ’ 2 C1c (R n f0g)

h d
dx
�a+; ’i = �h�a+;

d

dx
’(x)i = �

� 1
0

1

�(a+ 1)
xa’0(x) dx =

� 1
0

1

�(a)
xa�1’(x) dx = h�a�1

+ ; ’i

Hence one may de�ne

�a+ :=
d

dx
�a+1

+ =
dk

dxk
�a+k

+ � k � 1 < Re(a) � �k k 2 N+ (1.8)

and �a+ is analytically continued from C n f�1;�2; � � � g to C.
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ˆ One has identity for any a 2 C
x� a

+ (x) = ( a + 1) � a+1
+ (1.9)

Proof. If Re(a) > � 1,

x� a
+ (x) = x

1
�( a + 1)

1f x � 0gxa =
1

�( a + 1)
1f x � 0gxa+1 =

a + 1
�( a + 2)

1f x � 0gxa+1 = ( a + 1) � a+1
+ (x)

Hence it holds for any a 2 C by analytic continuation.

Lemma 1.1.5 (Negative Integers and half Integers for� a
+ ). For any k 2 N+ .

ˆ Denote � 0 dirac delta so h� 0; ' (x)i = ' (0)

� � k
+ (x) = � (k � 1)

0 (x) = (
d

dx
)k � 1� 0(x) (1.10)

Proof. It su�ces to show d
dx � 0

+ = � 0. For any ' 2 C1
c (R n f 0g)

h
d

dx
� 0

+ ; ' i = �h x0
+ ; ' 0i = �

� 1

0
' 0(x) dx = ' (0) = h� 0; ' i

then conclude using (1.8).

ˆ

�
� k � 1

2
+ (x) =

1
p

�
(

d
dx

)k (x
� 1

2
+ ) (1.11)

Proof. It su�ces to compute �
� 1

2
+ = 1

�( 1
2 ) x

� 1
2

+ . Note Euler's Re
ection formula for Gamma

�( a)�(1 � a) =
�

sin(�a )

hence �( 1
2 )2 = � . so �

� 1
2

+ = 1p
� x

� 1
2

+ . Conclude using (1.8).

1.1.2 Fundamental Solution

Consider constant coe�cient linear wave equation (1.1) on R � Rn = R1+ n .

De�nition 1.1.4 (Forward Fundamental Solution) . E+ is forward fundamental solution to (1.1) on R1+ n if

ˆ � E+ = � 0 in the sense of distribution where� 0(' ) = ' (t = 0 ; x = 0) .

ˆ supp(E+ ) � f (t; x ) 2 R � Rn j 0 � j xj � tg.

Proposition 1.1.1 (Uniqueness of Forward Fundamental Solution). If forward fundamental solution E+ to
(1.1) exists, it is unique.

Proof. Suppose bothE and E+ are forward fundamental solutions. Since suppf � 0g = f 0g 2 Rn +1 is compact,
one may convolve this withE and E+ in any order as suggested by Lemma 1.1.2. Notice for any' 2 C1

c (R� Rn )

(E � � 0) � ' (x) = E � (( � 0 � ' )(x)) = E � (h� (y); ' (x � y)i ) = E � ' (x)

henceE � � 0 = E. Similarly � 0 � E+ = E+ . Notice by supports of E and E+ , the convolutions E � E+ , E � (� E+ )
and (� E ) � E+ are well-de�ned. Hence for any' 2 C1

c (Rn +1 )

hE; ' i = hE � � 0; ' i = hE � (� E+ ); ' i = hE � E+ ; � ' i = h(� E ) � E+ ; ' i = h� 0 � E+ ; ' i = hE+ ; ' i

concluding E = E+ .

Proposition 1.1.2 (Representation Formula to Cauchy Problem). E+ be forward fundamental solution to(1.1)
on Rn +1 . Given initial values (� 0; � 1) 2 C1 (Rn ) � C1 (Rn )

ˆ the unique forward solution � to (1.2) writes

� (t; x ) = � (� 1� f t =0 g) � E+ � (� 0� f t =0 g) � (@t E+ ) (1.12)
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ˆ In general for nonhomogeneous equation� � = F with F 2 C1 (Rn ), unique forward solution � writes

� (t; x ) = � (� 1� f t =0 g) � E+ � (� 0� f t =0 g) � (@t E+ ) + ( F 1t � 0) � E+

Proof. Suppose� solves� � = F with initial values ( � 0; � 1). Then � 1t � 0 denotes the forward solution. To
represent the solution, one convolve with� 0 = � E+ then throw all derivatives to �

� 1t � 0 = ( � 1t � 0) � � 0 = ( � 1t � 0) � � E+ = ( � 1t � 0) � (� @2
t E+ ) + (� � 1t � 0) � E+

= ( � 1t � 0) � (� @2
t E+ ) + ( @2

t � 1t � 0) � E+ + ( F 1t � 0) � E+

= � (@t (� 1t � 0)) � (@t E+ ) + ( @2
t � 1t � 0) � E+ + ( F 1t � 0) � E+

= � (@t � 1t � 0) � (@t E+ ) � (�� f t =0 g) � (@t E+ ) + ( @2
t � 1t � 0) � E+ + ( F 1t � 0) � E+

= � (@t �� f t =0 g) � E+ � (�� f t =0 g) � (@t E+ ) + ( F 1t � 0) � E+

= � (� 1� f t =0 g) � E+ � (� 0� f t =0 g) � (@t E+ ) + ( F 1t � 0) � E+

Now one wish to �nd the Forward Fundamental Solution E+ to (1.1) on R1+ n . Notice symmetries of � that
�x the origin f 0; 0g 2 R1+ n are Lorentze transformations, leaving invariant the quantity s2(t; x ) = t2 � j xj2.
On the RHS, � 0 is invariant under these symmetries as well. It is hence natural to look for solutions invariant
under Lorentze transformation, and possibly with s2 built in. Now notice

� E+ = � 0

From Example 1.1.3 we know� 0 is degree� 1 � n, and since � drops degree by 2 from Example 1.1.2 it is
natural to look for E+ with degree 1� n. From lemma 1.1.4, since we wish to build ins2 which is degree
of homogeneity 2 as in Example 1.1.1, we're forced to look forE+ = u � s2 where u 2 D 0(R) with degree of

homogeneity 1� n
2 . Due to supp(E+ ) requirement, we needt � j xj � 0, so choosingu = �

1 � n
2

+ indeed guarantees
a homogeneous1� n

2 distribution de�nes on D0(R) (it is originally de�ned on D0(R n f 0g) but by Lemma 1.1.3
one may apply homogeneous extension toD0(R)) where t � j xj makes sense in its support. To ensure we're
dealing with forward solution in time t � 0, one simply multiply by 1f t � 0g which is itself homogeneous degree
0 and invariant under Lorentze transformations.

Proposition 1.1.3 (Forward Fundamental Solution) . The unique forward fundamental solution to (1.1) over
R1+ n is given by

E+ (t; x ) = �
�

1 � n
2

2
1f t � 0g�

1 � n
2

+ (t2 � j xj2) (1.13)

Proof. One �rst compute for ( t; x ) 6= (0 ; 0) 2 R1+ n . Then, as a distribution in D0(R1+ n n f (0; 0)g), using chain
rule (1.5) and (1.7) and (1.9) at last

� (1f t � 0g�
1 � n

2
+ (t2 � j xj2)) = 1f t � 0g� (�

1 � n
2

+ (t2 � j xj2))

= 1f t � 0g

 

� @t ((2t�
� 1 � n

2
+ )( t2 � j xj2)) +

nX

i =1

@x i (( � 2x i �
� 1 � n

2
+ )( t2 � j xj2))

!

= 1f t � 0g

�
� 2�

� 1 � n
2

+ (t2 � j xj2)) � 4t2�
� 3 � n

2
+ (t2 � j xj2))

�

+ 1f t � 0g

nX

i =1

�
� 2�

� 1 � n
2

+ (t2 � j xj2) + 4 x2
i �

� 3 � n
2

+ (t2 � j xj2)
�

= 1f t � 0g

�
� 2(n + 1) �

� 1 � n
2

+ (t2 � j xj2) � 4(t2 � j xj2)�
� 3 � n

2
+ (t2 � j xj2)

�

= 1f t � 0g

�
� 2(n + 1) �

� 1 � n
2

+ (t2 � j xj2) � 4
� 1 � n

2
�

� 1 � n
2

+ (t2 � j xj2)
�

= 0

Thus � E+ is distribution supported at f 0g, hence a linear combination of � 0 and its derivatives. But as
we've seen,� E+ and � 0 are manually constructed with the same degree of homogeneity, then we must have

� E+ = cn � 0 for some constantcn > 0. For computation of cn = � �
1 � n

2

2 , see Appendix B of `Lecture notes on
linear wave equation' by Sung-jin Oh .

We now apply formulas for E+ to derive representation formulas inn = 1 and n = 3.

Proposition 1.1.4 (D'Alembert's formula) . Let (� 0; � 1) 2 C1
c (R) � C1

c (R) be initial data to (1.2) in R1+1 .
Then unique solution � writes

� (t; x ) =
1
2

(� 0(x + t) � � 0(x � t)) +
1
2

� x + t

x � t
� 1(y) dy
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