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Chapter 1

Constant Coe cient Linear Wave
Equation

Consider Constant Coe cient Linear Wave Equation with solution :1 R" R"™! & Rwhere 021
2 X 2
= t + @Xi =0 (11)
i=1

This is model by D’ Alembert in 1749. We wish to study the initial value problem with given initial data
(o; 1)onl R
=0

(0t )==C0 1) (1.2)

1.1 Fundamental Solution and Representation Formula

1.1.1 Distribution Theory
One start with distribution theory.
De nition 1.1.1 (Distribution, Restriction, Support, Distributional Derivative). Given open set U R".

« u 2 D"U) is a distribution in U if u: C(U) ¥ R is a linear map on the space of smooth and compactly
supported functions, and for every K U compact, there exits C = C(K) >0 and k = k(K) 2 N s.t.

X
juC*)i jhu;Tij C supj@ *(q)j 8 7 2CH(K)
i kx2K
e letV U R" andu2D'U). De ne the restriction of u to V as uy

uy (7):=u(’) 87 2CH(V)
e u2 DY%U). De ne the support of u as supp(u)

L
supp(u) :=Un fA U openjua =0g

e u2D'(U). De ne the distributional derivative for any 2 N" as@ u
he u;”i:=( 1) hu;@ ~i
Lemma 1.1.1 (Approximation with Ct, Composition with C1, Chain Rule). Given open set U R"

e u2D'(U). There exists a sequence fujg C(U) s.t. u; ¥ uin D'(U), i.e.

ujidx =huj; 7i ¥ hu; 7i 87 2CH () (1.3)

U

e £ 2 C1(U) that is a submersion, i.e. df & 0. De ne composition of u 2 D°(R) with f asu f 2 D'(U)

1
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(a) There exists unique pushforward ¥ : D'(R) ¥ D°(U) s.t.
fu=u f

for any u 2 C(R).
(b) If u 2 D(R), there exists fujg CL(R) s.t. hu;; i ¥ hu; iforany 2 CZQ(R)asin (1.3). De ne

fu=u f :=j||!rr:1L uj f (1.9)

e u2DYR). f 2 C1(U) submersion. Then distributional derivative satis es chain rule
ou f)y=@Hu’ f) (1.5)

Proof. Forany 2Cl(U), x@=0; wrt. i2fl; ;ng
h@i(u f);, 1= hu @ 1= jli!mlhuj f; 0; i=j|i!mlh@i(uj f); i

= limbaif(uj ) i=haif’ ) i

induct on i yields (1.5). O

De nition 1.1.2 (Convergence in Cl and in C1). we rst specify convergence in Cl and in C1

e ”j CZ&(R") converges to * in C if there exists K R™ compact s.t. all supp(”;) K and

supj@ (>(x) "(x))j*o0 8 2N"
x2K

« ”j C?I(R") converges to * in C1 if for any K R" compact

supj@ (>(x) “(x))j*ro0 8 2N"
x2K

Lemma 1.1.2 (Convolution). u 2 D(R™) and * 2 CL(R™). One de ne convolution of u and ~ as
(u 7Y =hu; 7 (x )i
e u ~2C1(RM) with
@u *)=(@u) *=u (@) supp(u *) supp(u)+supp(*)

e Let U :CE(R") ¥ C1(R") be linear map s.t. for any ”; ¥ 0in Ct, one has U(*j) ¥ 0in C1. IfU
commutes with all translations, i.e. for any h 2 R" and > 2 C1(R")

U(n(?) = n(U())  where n:CTR™M I CTRM sitt w( )= (x h)
Then there exists unique distribution u 2 D’(R™) s.t. u > =U(”?) for all > 2 CX(R").
Proof. De ne u(”) := (U(%))(0) 8 ~ 2 CX(R™) where 2(x) := ”( x). Then for any h 2 R"
UCNC hy= wUCO) =U(n())O) =u(HC
=huy); " hi=hu@y) ( h yi=(@ ) h)

that u is unique is due to its explicit expression. And u 2 D°(R") due to continuity requirement on U. [

e ug; Uy 2 DY(R™). If ( supp(u1)) \ (supp(u,) + K) is compact for any compact set K. Then there exists
unique distribution u 2 D'(R") s.t.

u >=u; (up *)  forevery > 2CIHR")

One de ne u; U, :=u2 DYR") as convolution of us; us.
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Proof. De ne U(?):=u; (up 7)forany ~ 2 C(R"). We show this is well-de ned. For any x 2 R"

(x supp(up))\supp(uz *) (X supp(uy))\(supp(uz)+supp(?)) is compact for any supp(”) compact
Hence the quantity
UC)X) =ur (uz 7)(X) =hus(y);uz >(x y)i<l 8x2R"

as convolution, U(”) is smooth. Linearity of U follows from convolution with * and duality pairing. For
any ”j ¥ 0in CZ, there exists K R" compact s.t. supp(”j) K for any j and

supj@ ~j(x)j ¥ 0 8 2N"
x2K

Now for any K R"™ compact and for any 2 N"

sup j@ (Ui = sup jur (uz2 (@ *(X)))i lezlllgj@ i) o

x2K xX2KRK\K
Hence U : CX(R") ¥ C1(R™) de nes continuous linear map. Moreover,
UChCNG)=u1r (U2 (n7))(X) =hua(y); (U2 (n7))(X y)i =hui(y);huz(z); (n™)(X Yy 2)ii

=huy(y);huz(2);>(x 'y z h)ii =hui(y); n(uz 7)(X V)i
= nur (U2 7)) = nUCH)

Hence U de nes unique distribution u; uy s.t. for any > 2 CL(R")

(U u) “=u (uz 7)
O
Now we discuss homogeneous distribution of degree a and the particular example 2.
De nition 1.1.3 (Homogeneous Distribution). One generalize homogeneous function to distributions.
e h:R" ¥ R function is (positive) homogeneous of degree a if
gh( x) = h(x) 8 >0 (1.6)

= h 2 DY(R" nf0g) or D'(R™) is homogeneous of degree a if
hh(x); > (x)i = 2hh(x); "~ ( x)i 8 >2Ct(R"nfog) or CF(R") 8 >0
Notice this is indeed, abuse of notation, a generalization of (1.6)

hh(A; (i = 2hh(); "7 ( )i = 2h(L); *(y)i =ht 2h(ty); > )i
Lemma 1.1.3 (Homogeneous Extension to the origin). h 2 D'(R™ n f0g) is homogeneous of degree a, where
a> n. Then h has a unique and continuous extension to a homogeneous distribution h 2 D(R") of degree a.

Example 1.1.1 (Space-time distance in special relativity). For (t;x) 2 R'*", de ne s?(t;x) :=t?> jxj2. Then
s? is homogeneous function of degree 2.

Proof. s?( t; x) = 2s?(t;x) forany > 0. O

Example 1.1.2 ( drops degree by 2). For 2 D%R'*™) and suppose is homogeneous of degree a. Then
2 DY(RY™M) is homogeneous of degree a 2.

Proof. Forany > 2 CL(R¥*™ and >0
h (Q; ™()i=h () " CCXNi=h (x); "EC )0
2005 EOE= @ P (x); 7 (9i
Hence that is degree a implies is degree a 2. O

Lemma 1.1.4. One has immediate homogeneity calculations for derivative and composition
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< In general, distributional derivatives dd7kk of order k drop degree of homogeneity by k by same argument
from Example 1.1.2.

= Composition of a distribution u 2 D(R) with £ 2 C1(U) where of & 0, U  R" multiplies degree of
homogeneity. If u 2 D'(R) is homogeneous of degree a; and f 2 C1(U) homogeneous of degree a,, then
u f 2 DYU) is homogeneous of degree a; a,.

Proof. For any = 2 C}(U) and > 0, choose fujg CX(R) s.t. uj ¥ uin D(R) (note we may
choose sequence with same homogeneity as u due to its construction as convolution and multiplication
with distribution)

e F00; "8 = limhy F60i 7701 = limbuy @)= limbuy ()W)

= & _Iimlhuj f(y);>(y)i= 2%hu f;”i
ju

O
Example 1.1.3 ( ¢ 2 D(R") ). Dirac Delta o 2 D°(R") is homogeneous of degree n.
Proof. For any ~ 2 CX(R™)
ho(); "7( X)i= "ho(X);7( X)i= "7(0)= "ho(X); > (X)i
[
Example 1.1.4 ( 8). n=1. Foranya?2C.
= If Re(@) > 1, X3 = gx ogX? is homogeneous of degree a.
Proof. For any ~ 2 C:-(R n f0g)
1 1 1
hxg; i = . x27(X)dx = . (x)*7(x)d x= 2 . x® 7( x)dx= 2hx%; 7( x)i
O
e IfRe(@) > 1, £x3 =ax§ .
Proof. For any * 2 C:-(R n f0g)
hixi; Ti= hxg; i’(x)i = 1xa’o(x)dx = 1axa 1 (x)dx = hax? %; ”i
dx dx 0 0
O
One may think of de ning x& := ﬁ%x‘f’l for Re(a) > 2. Butata= 1, there is pole of order 1.
« Instead, de ne 2(x):= ﬁxi where (x) 1= 01 t< e tdtso (a+1)=a (a)foranya2C, and
& ax)= 21(x) B8Re(@=> 1 1.7)
Proof. For any ~ 2 C:-(R n f0g)
h% a:7ji= h i;%’(x)i = 01 (al+ 1)xa’o(x)dxz * %xa *(x)dx=h 2 1; 7
O
Hence one may de ne
3 .= d atl — Ll a+k k 1<Re(@ k k2N* (1.8)
dx dxk

and 2 is analytically continued from Cnf 1; 2; gtoC.
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~ One has identity for anya2 C

x $(x)=(a+1) " (1.9)
Proof. If Re(a) > 1,
1 1 a+1 1
X 200 = Xyt o0 = iy 0 = iyt 0 =(ar D) R0
Hence it holds for anya 2 C by analytic continuation. O

Lemma 1.1.5 (Negative Integers and half Integers for 2). For any k 2 N*.

" Denote ¢ dirac delta soh ;' (x)i ="' (0)
K= E P00 = ot (110)

Proof. It sucestoshow & 9 = o Forany' 2 C! (Rnf0g)

d , 1

h— %2:i=hx{;"4%= "Ix)dx="(0)= hog;'i
dx 0
then conclude using (1.8). O
K L 1 d 1
S %(&)"(Xﬁ) (1.11)
Proof. It su ces to compute ﬁ = (ﬂ)x+ %. Note Euler's Re ection formula for Gamma
2
(1 o= W
hence (3)?= . so +% = plx, % Conclude using (1.8). O

1.1.2 Fundamental Solution

Consider constant coe cient linear wave equation (1.1) onR R" = R ",

De nition 1.1.4  (Forward Fundamental Solution). E. is forward fundamental solution to (1.1) on R** " if
" Es+ = o in the sense of distribution where (' )= "' (t =0;x =0).
" suppE+) f (ExX)2R R"jO j Xt

Proposition 1.1.1  (Uniqueness of Forward Fundamental Solution) If forward fundamental solution E. to
(1.1) exists, it is unique.

Proof. Suppose bothE and E. are forward fundamental solutions. Since supp og = f0Og 2 R"*! is compact,
one may convolve this withE and E.. in any order as suggested by Lemma 1.1.2. Notice forany 2 C! (R R")

(E o) "()=E ((o ")X)N=E (h(y);"x yi)=E "(x)

henceE (= E. Similarly o E. = E.. Notice by supports ofE and E. , the convolutionsE E.,E ( E.)
and ( E) E. are well-de ned. Hence for any’ 2 C} (R"*)

hE;"i=h o'i=E ( E:);'i=hE E+; '"i=h E) E+;"i=hg Es;"i=h,;"i
concludingE = E.. O

Proposition 1.1.2 (Representation Formula to Cauchy Problem). E. be forward fundamental solution to(1.1)
on R"*! | Given initial values ( o; 1) 2 C! (R") C! (R")

" the unique forward solution to (1.2) writes

(tx)= ( 1ft=09) E+ (o0tt=0g9) (@E+) (1.12)
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" In general for nonhomogeneous equation = F with F 2 C* (R"), unique forward solution writes
(tx)= ( 1f=09) E+ (o0ft=0g) (@E+)+(F1lt o) E+

Proof. Suppose solves = F with initial values ( o; 1). Then 1; o denotes the forward solution. To
represent the solution, one convolve with o = E., then throw all derivatives to

Lio=( 1t 0) o0=( 1o E:+=(10 ( @E)+( 1) E.
(o) ( @E)+(@ 1t 0) E++(Fli o) Eu
(@ 1t o) (@E:)+(@ 1t o) E.+(Fli o) E.
(@ 1t 0) (@E+) ( fi=0q) (@E:)+(@ 1t 0) Es+ +(F1li o) Es
(@ ft=09) E+ ( ft=0g) (@E+)+(F1li o) E+
(1ft=09) E+ (o0tt=0g) (@E+)+(FLli o) E+

O

Now one wish to nd the Forward Fundamental Solution E. to (1.1) on R*". Notice symmetries of that

x the origin f0;0g 2 R™" are Lorentze transformations, leaving invariant the quantity s?(t;x) = t? j xj°.

On the RHS, g is invariant under these symmetries as well. It is hence natural to look for solutions invariant
under Lorentze transformation, and possibly with s? built in. Now notice

E+: 0

From Example 1.1.3 we know g is degree 1 n, and since drops degree by 2 from Example 1.1.2 it is
natural to look for E. with degree 1 n. From lemma 1.1.4, since we wish to build ins? which is degree
of homogeneity 2 as in Example 1.1.1, we're forced to look foE; = u s? whereu 2 DYR) with degree of

homogeneitle“. Due to supp(E. ) requirement, we needt j xj 0, sochoosingu= _? indeed guarantees
a homogeneouslTn distribution de nes on DYR) (it is originally de ned on DYR nf0g) but by Lemma 1.1.3
one may apply homogeneous extension t®DYR)) where t j xj makes sense in its support. To ensure we're
dealing with forward solution in time t 0, one simply multiply by 1¢; o4 Which is itself homogeneous degree
0 and invariant under Lorentze transformations.

Proposition 1.1.3  (Forward Fundamental Solution). The unique forward fundamental solution to(1.1) over
R*" is given by
5
2
Proof. One rst compute for (t;x) 6 (0;0) 2 R*". Then, as a distribution in DYR* " n f(0; 0)g), using chain
rule (1.5) and (1.7) and (1.9) at last

1n .
E. (tx) = Ly og o7 (2 ] X?) (1.13)

(Lt og +7 (2§ Xi) = Lie og (7 (17 ] xj%) ,

2 v 2 X e Y.
= 1it og @2t L7 )7 xj9)+ @ (( 25 2 )(t° ] xj9)
i=1
=1t og 2.7 (P jx%) 47 7 (] x%)
X 2 i a2 2 2 2
+ 1tt og 2,7 (7 ] xjp)+axy .2 (7] x9)
1 n 3 n

=1t o9 200+1) T (2 ] x?) 47§ xi%) ST (] xj?)

1n L 1 n _Ln L.
=1 o9 2(n+1) (7 (% jxj?) 4 5+ (t* j xj® =0

Thus E. is distribution supported at f0Og, hence a linear combination of ¢ and its derivatives. But as
we've seen, E, and o are manually constructed with the same degree of homogeneity, then we must have
1 n

E: = ¢, o for some constantc, > 0. For computation of ¢, = TZ see Appendix B of "Lecture notes on
linear wave equation' by Sung-jin Oh . O

We now apply formulas for E. to derive representation formulas inn =1 and n = 3.

Proposition 1.1.4 (D'Alembert's formula) . Let ( o; 1) 2 C! (R) C?! (R) be initial data to (1.2) in R,
Then unique solution  writes

X+t

(6= 5( o+ olx D)2 a(y)dy

X t
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