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1 Topological manifold and Differentiable Structure

Definition 1.1 (Topological n-manifold). A topological manifold of dimension n is a topological space M which
is locally homeomorphic to R™ w.r.t. the standard topology, i.e., for any p € M, there exists open neighborhood
U C M of p, and there exists a local homeomorphism ¢ : U — ¢(U) C R™ (a bijective continuous map with
continuous inverse).

o (U,9) is a chart for M around p.
o ¢=(x1,--- ,x,) €U are coordinates of U in R™ where x; : U C M — R are C°.
Remark 1.1. We require in addition for the topology of M to satisfy the following

o M is a Hausdorff topological space, i.e., for any p, ¢ € M distinct, there exists disjoint open neighborhoods
U around p and V around q.

o M is second countable, i.e., M has a countable basis of open sets. So every open set of M is a union of
elements in this countable collection.

Example 1.1. Standard example: R™. It is topological n-manifold that is Hausdorff and secound countable
with basis {B,(a) | a € Q™, r € Q}

Recall Quotient Topology, which is one way to construct topology on some set.

Definition 1.2 (Quotient Topology). Let w : X — M be surjective map from a topological space X to some
set M. One wish to use topology of the source X to equip a topology on M. U C M is open in the quotient
topology defined by the surjective map 7 iff the preimage 7=*(U) C X is open. It is not hard to see that

o 7 : X — M is continuous for M equipped with quotient topology.

o LetY be any topological space. Then f: M —'Y is continuous iff fonm: X =Y is continuous

X
ﬂl mﬂ 1)
7

M —Y

Example 1.2 (Bug-eyed line; Line with 2 origins). Consider 2 copies of the real line.
7:Rx{0,1} - M =R x {0,1})/{(x,0) ~ (x,1) if f = # 0}

for M equipped with quotient topology. Then M is a topological 1-dim manifold, second countable, but it is not
Hausdorff.

Example 1.3 (Bunching Line). Consider 2 copies of the real line.
7:Rx{0,1} - M = (R x{0,1})/{(x,0) ~ (x,1) if f = < 0}

for M equipped with quotient topology. Then M is a 1-manifold, second countable, but the positive part has 2
copies, so not Hausdorff.

Example 1.4 (Long Line). The usual ray is [0,00) = (J;=,[i — 1,4). But Long ray is countable copies of this.
Imagine if put 2 rays together one gets R, if put 2 long rays one gets the long line. It is connected, Hausdorff,

1-manifold, but not 2nd countable. (This is example 45 in ”Counterezamples in topology” by Steen-Secbach).

Definition 1.3 (Atlas). An atlas of a topological n-manifold M is a collection of charts for M

O ={(Ua,¢a) |ael} st |JUs=M
[0
along with transition functions ¢ o ¢, that are homeomorphism

ba(Ua NUs) C R" 2% 53Uy N Us) C R
Definition 1.4 (Differentiable Structure & Differentiable n-manifold). k positive integer or co.

e A CF-atlas on a topological manifold M is an atlas ® = {(Un, ¢a) | @ € I} for M s.t. all the transition
functions ¢g 0 o5t are CF diffeomorphisms.



We say two C*-atlas ® = {(Uy, ¢0) | @ € I} and ¥ = {(V3,15) | B € J} are equivalent (compatible) if

U is again a C* atlas.

o A CF-differentiable structure on a topological manifold M is an equivalence class of C*-atlases on M.

o A C*-manifold is a topological manifold M equipped with a C*-differentiable structure.

If k = oo, the above C*°-differentiable structure is called smooth structure, C°° manifolds are smooth manifolds,
and C* maps are smooth maps.

Example 1.5. The Bug-eyed line, the Branching Line and the Long Line are C'°°-manifolds.

Example 1.6. The real projective space P,(R) or (RP™) is

A set P,(R) := {{ C R"*! | 1 — dim R — vector subspace}

One has 2 equivalent ways to define Topology on P,(R). First of all equip P,(R) with quotient topology
defined by m: R" ™1\ {0} — P,(R) that maps x — Rx. Notation m(x1, - ,Tpi1) = [T1,  + , Tni1)-

(a) Let w:R"™1\ {0} — (R*T1\{0})/{z ~ Az iff A € R\ {0}} be surjective quotient map s.t.
r Xy e R {0} if f FAeRN\{0} s.t. y =z

(b) Let S" := {x € R™ | "' 02 =1} € R™! be unit sphere in R, Let w: S* — S™/{x ~ —x} be

surjective quotient map 5.1
rSyest iff T=—y

In fact,
Py(R) = (R™IN\{0})/{z ~ M if f A€ R\ {0}} =S§"/{z ~ —a}
Claim: P,(R) is compact and Hausdorff.

Proof. P,(R) is equivalently equipped with quotient topology defined by 7|, : S — P,(R). Since 7|g.
is continuous, and S™ is compact, P, (R) is Hausdorff and compact. O

P, (R) is a topological n-manifold with an Atlas.

Proof. For Altas, 1 <i <n+ 1, define

Us = {[o1,++ s @ns1] € Pa(R) | ; £ 0} C Po(R) 2)
Then U; is an open subset of P,(R) since 7= Y(U;) = {(21," -+ ,Zny1) € R* ! | z; # 0} is an open subset
of R\ {0}. Indeed P,(R) = (/' U;. Define ¢; : U; — R™ that maps
x Ti—1 Tit+1 Tn+1
7 y " ydn = Ty ) sy 3
llor ] = (2 T B ) ®)

and is bijection with inverse map (bi_l R* = U;
¢i_1(yla T 7yn) = [yh’ o 7yi—1717yia e ayn]
In fact, one has the following diagram for each i =1,--- ,n+1
R\ {0} “B" (1))

PN
¢

Pn (R) o;ijn Ui i

y

Rn

I

¢, "

If define s; : R® — 7= 1(U;) € R\ {0} s.t. s(y1, - »¥n) = (Y1, ,¥i—1, L, ¥, yYn). Then qﬁ;l =

m; 0 §; as composition of continuous function is continuous. For ¢;, notice

piom Y (U;) Cc R\ {0} — R™
(1;17...71'”) — (%7.,,7$;§17%,...’%)

is indeed a continuous map. Hence using (1) due to quotient topology defined on U;, one has ¢; : U; — R"
continuous. Thus ¢; are homeomorphisms. One obtain P,(R) as a topological n-manifold with atlas
® = {(U;, $;)} ™ on P,(R) where open sets U; and local homeomorphisms are given by (2) and (3).

O



e Transition functions ¢; o (i);l make (P,(R), ®) a C*-manifold of dimension n.
Proof. WLOG Uy NU; = {[z1, 22, , Tpt1] | ©1, 22 # 0}, so

¢2 O¢;1(y17"' 7yn) = ¢2([1ﬂy17"' ayn])

_ (1 v2 y)
yl’ yl’ ’ Y1
The transition functions

¢2007" 1 $1(U1NU2) = (R\{0}) x R"™ — ¢2(U1 N Ua) = (R\ {0}) x R" ™!

are indeed smooth maps. Same works for general 4, j. In general, for i > j s.t. U; NU; # @

P,(R) 5" U;nU;

R* " 4,(UNU;) P20 g UinU;) BT RP

for any (21, - ,2zn) € ¢:(U; N U;)

1
¢jo¢i (xlv"' axn):(bj([xh azi—171a$iaxi+la"' 7$L'n])
_ ($1 Tj—1 Tj41 Tic1 1 @i &"n)
= (=, ’ e ,—, e
€Lj €L Lj Ly Xj Xy Lj

Hence @ is a C*° altas on P, (R).



2 Differentiable Maps

Definition 2.1 (C* maps). Let M be C* manifold of dimension m and N a C* manifold of dimension n, where
1 <k<{<oo. A continuous map f : M — N is C*-differentiable if for any p € M, there exists a C*-chart
(U, ¢) for M around p and (V,%) for N around f(p) s.t. f(U) CV, and g:=vo fo¢~! is C*. When k = oo,
C*° maps are smooth maps.

M " pev—L v N
oo b
R™ "5 ¢(U) —— (V) " R"
Remark 2.1. The above C* is indeed well-defined.

o IfG:=1o fod ' is another composition for (0'7 (;NS) chart of M around p and (‘7,122) chart of N around
F(p) then § = (o) o (o fos)o(dod ) = (hot)ogo(god ) remains C* as transition
functions are C* diffeomorphisms and g is C*. Hence Definition 2.1 works for any charts, and f C* map
is well-defined.

Example 2.1. Let 7 : R"™\ {0} — P,(R) where P, (R) real projective space, which we know is C*°-n manifold.
w is continuous. In fact, projection w is a C*° map.

Proof. For any p € R"*1\ {0}, recall U; and ¢; as in (2) and (3). w(p) € P.(R), so there exists some i s.t.
7(p) € U;. Hence p € n~1(U;).

R\ {0} D" pen ' (Ui) = Ui E" Pu(R)

lid lqﬁ'i
RnJrl O:‘ijn T 1 (Uz) 9 R” Oﬁ" R™
g:=¢;omoidt: a7 (U;) C R*™1\ {0} — R" s.t.

Z1 Ti—1 Ti+1 Tn41
g(l'ly"'amn-l-l)':(i:"'a ) T )

is a C'°° map. O
Definition 2.2 (Diffeomorphism). M, N C* manifold. f: M — N continuous. dim M =m, dim N = n.
o fis C™ diffeomorphism if f is a homeomorphism, and f, f~' are C™ maps. In particular, m = n.

e Forpe M, f is a local diffeomorphism(C) at p if there exist a open neighborhood U of p in M and V
of f(p) in N s.t. f|, :U =V is a C®-diffeomorphism. In particular, m = n.

Remark 2.2. For M C*-manifold of dimension m, U C M open. ® := {(Uy, ¢o) | @ € I} some C*-atlas
of M. Then @y := {(Us NU, ¢aly ) | @ € I, Uy NU # @} is C-atlas for U. So U is a C*-manifold of
dimension m.

2.1 Submersion and Immersion

Definition 2.3 (Submersion/Immersion in R™). f = (f1, -+, fn) : U C R™ = R" is C¥-map for 1 <k <
and U open. f is a submersion(immersion) at x = (x1,- - ,&m) € U if
%(Qg) o Bho(,
dfy : R™ - R" s.t. dfy == | 9% G is surjective (injective)
da1 () - m(ﬂf)

under whose case m > n (m < n). f is a submersion(immersion) if f is a submersion(immersion) at every
zeU.

Example 2.2 (Canonical Submersion). For m > n, 7 : R™ — R" s.t. 7w(xy, - ,Tm) = (1, ,Tp) is
projection. Here dm, = w : R™ — R"™ for any x € R™.

Example 2.3 (Canonical Immersion). For m <n, i : R™ — R" s.t. i(x1, -+ ,&m) = (1, ,Zm, 0, ---, 0)
where diy, =1 : R™ — R™ for any x € R™.



Definition 2.4 (Submersion/Immersion). Let M and N be C*°-manifold of dimension m, n. f: M — N C*>
map is a submersion(immersion) at p € M if there exists (U, ¢) chart for M around p and (V,) chart for N
around f(p) s.t.

e f(U)CV and
e g:=1o fop~! the C® map is a submersion(immersion) at ¢(p), which implies m >n (m < n).

f is a submersion(immersion) if f is a submersion(immersion) at any point p € M.

M peU —L s fpev N

e v
R™ B g(p) € p(U) —2— y(v) K" Rr

Remark 2.3. This is well-defined as § = (1/; oty Ho(hofogp ) o(po (;}1) = (7,/? oy Hogo(popt) and so
dGgp) = d(@ o V) g0 © (d9)p(p) © d(¢ 0 éfl)cz;(p) is surjective (injective)
for (U, ) another chart of M around p and (V,v) another chart of N around f(p) s.t. f(U) C V.

Proposition 2.1. M C*-manifold of dimension m and N C°-manifold of dimension n.

o If f is a submersion(immersion) atp € M (m >n (m <n)), then there exists charts (U, ¢) for M around
p and (V,¢) for N around f(p) s.t.

¢(p) =0€R™  (f(p)) =0€R"

and
g=1ofop t:p(U)CR™ = (V) CR"is the canoncial submersion (immersion)

i.e.
g(mlf" axm> = (.’1,'17"' ,I‘n) (g(xla 7.'L'm) = (xla"' axﬂ”uoa"' 70)))

o If f is both a submersion and an immersion at p, i.e., dgg : R™ — R™="™ is a linear isomorphism, then f
is a local diffeomorphism at p.

Proof. Follows from the Rank Theorem. O

2.2 Smooth Embedding and Submanifolds

Definition 2.5 (C*° Embedding & Submanifolds). f: M — N C* map between C°°-manifolds. dimension
M = m, dimension N =n. We say f is a smooth embedding if

e f is a smooth immersion at any point p € M (implies m < n) and
o f: M — f(M)C N is a homeomorphism w.r.t. the subspace topology.
In this case, we call f(M) a C™ submanifold of N of dimension m.
Remark 2.4. Embedding = Injective + Immersion, but the converse is not true.

Definition 2.6 (Alternative definition of submanifold). Let N be C™ manifold of dimension n, M subset of
N. M is a C* submanifold of N of dimension m < n if

o for any p € M, there exists chart (U, @) for N around p s.t. ¢(p) =0 € R" and
o p(UNM)=¢U)N(R™x {0}).

M " peUunM—4 s peUu "N

J{‘blUﬁl\J J{(ZS

R™ 5" o(U)N(R™ x {0}) — ¢(p) =0€ ¢(U) “E" R"
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Figure 1: Chart for point on Submanifold Definiton 2.6

Proof for M C N is smooth manifold of dimension m in Definition 2.6. For any p € M, there exists local charts
(Up, ¢p) for N around p s.t. ¢p(p) =0 € R™. Moreover, ¢,(U, NM) = ¢,(U,) N (R™ x {0}). One wish to define

an Atlas on M. Indeed, let ®,; := {(Up N M, ¢P|U,,HM) |pe M} Since U, are open in N, M C N, w.r.t. the

subspace topology, U, N M are open neighborhoods of p in M. Moreover, ¢,(U, N M) = ¢,(U,) N (R™ x {0}) C
(R™ x {0}) 2 R™ are open w.r.t. subspace topology. Hence ‘bPlUpm s are local homeomorphisms to subsets of

R™, equipping M with topological m-manifold structure. That M = M NN = Upe v M NU, and transition
functions inherits C'° w.r.t. subspace topology make M a m-dim C'*° manifold. O

Example 2.4. f:R = R? for f(t) := (2(t), y(t)), f'(t) = (/(t), ¥'(1)), then

df : R — R? s.t. df(v) :== (Z:Eg) v
f is immersion at t iff f'(t) # (0,0). For example

o f(t)=(t,1%), f'(t) = (1,2t) is a immersion, and in fact, C>°-embedding since f is a homeomorphism (in
particular, bijective) from R onto f(R).

o f(t) = (cost,sint) then f'(t) = (—sint,cost) so f(R) =S. This is immersion but not embedding because
f s not injective.

o f(t)= (t3—4t, t> —4) then f'(t) = (3t — 4,2t). f is a immersion but not an embedding because f is not
injective at (0,0). Note both t = —2 and t = 2 correspond to f(—2) = f(2) = (0,0).

o f(t)= (3, t2), f'(t) = (3t%, 2t). This is not immersion at t = 0. But f(R) is homeomorphic to R.

Example 2.5 (counter-example for injective immersion but not embedding). f: (—3,0) — R? smooth

(0,—t—2) -3<t<-1
f(t) = —1<t< =
(—t,—sin(1)) =L<t<0

This is not an embedding because f(—3,0) C R? is not a topological manifold. In particular, f=' is not
continuous at the point (0,0), hence that f needs to be homeomorphism fails.

Now we discuss tool to construct a smooth submanifold using preimage of a regular value.

Remark 2.5. An immediate observation says preimage of singletons are closed subsets.
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Figure 2: Examples from Example 2.4

e A topological manifold M may not be a Hausdorff (Ta) space. But this is always a Ty space, i.e., for any
D, ¢ € M s.t. p+#q, there exists U, V open subsets of M s.t. pe U butp ¢ U and g€V butp ¢ V. This
is equivalent to saying for any p € M, {p} the singleton is closed in M.

e Hence for any f : M — N continuous map between topological manifolds, for any q € N, f~1(q) C M is
in fact closed.

Definition 2.7 (Critical Value & Regular Value). M, N smooth manifolds, and f : M — N smooth map.
o We say p € M is a critical point of f if f is not a submersion at p.
e ¢ € N is a critical value of f is there exists p € M critical point of f s.t. p € f~1(q).

e g € N is a regular value of f if q is not a critical value of f. In other words, for any p € f~1(q), f is a
submersion at p.

In particular, if f~1(q) is empty, then ¢ € N is reqular value of f.

Theorem 2.1 (Preimage Theorem). M, N smooth manifolds, and f : M — N smooth map. Suppose ¢ € N is
a reqular value of f, and suppose f~1(q) is not empty (hence dim(M) =m > dim(N) =n). Then f~1(q) is a
closed smooth submanifold of M of dimension m —n > 0.

Example 2.6. Let f: R"™ - R s.t. f(z1, -+ ,@nq1) =21+ 22, [ is C™ map, and df, : R"T' - R

dfz = (2.’,61, s ,2In+1)
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Figure 3: Counter-example for injective immersion but not embedding Example 2.5

the only critical point is 0 € R™*1 and the only critical value is 0 € R. Regular values are R\ {0}. By Preimage
Theorem, for any a > 0

@) = {(wr o ani) €R™ Y a? = a} R =1 57(Va)

is a C*°-submanifold of dimension n. S™(1 ) = S C R s a C* submanifold of dimension n. If a = 0,
F71(0) = 0 is just single point. If a <0, f~1(0) =

Example 2.7 (Orthogonal Group). O(n) := {A € M,(R) | AAT = I, n x n identity} C M,(R) = R"
where the latter is linear isomorphism. The subset O(n) C My, (R) is a C*° submanifold of M, (R) of dimension

n(n—1)
—5 -

Proof. Define f : M,(A) = R" — S, (R) = R*“5™ where S, (R) are real n x n symmetric matrices. Define

f(A) = AAT — I, so O(n) = f~1(0). Now if B = f(A), bij = > p_, Girarj — 5” So f is C°° map. It remains
to show that 0 is a regular value of the map f. For any A € M,,(R), dfa : R” & R™5

de(B)zflliL% f(A+hi)—f(A) :%ig%) (A+hB)(AT+hBJ;L) I, — (AAT — 1) _BAT 4 ABT (1)
Claim: for A € f~1(0) = O(n), for C € S,,(R), there exists B € M, (R) s.t. C = df4(B) = BAT + ABT. But
C =dfa(B) = BAT + ABT = BAT + (BA™)”
= LetBAT:%C — B:%CA

so B=1CA € M,(R) gives df4(B) = CAAT+ ALATC = C. Moreover, we conclude that O(n) is submanifold
of M,(R) C R of dimension n? — "% — 21 O

Example 2.8. Similarly, O(n,C) = {A € M,(C) | A = I,} ¢ M,(C). O(n,C) is C> submanifold of
M, (C) of dimension n?. (M,(C) = C" =~ R2""),

10



3 Orientation

Definition 3.1 (Orientation). Let M be C* manifold of dimension n. We say M is orientable if there exists
a Ck-atlas ® = {(Uy, ¢a)}acr on M s.t. for any U, NUs # O,

$p 0. pa(UaNUp) CR™ = ¢5(Us NUz) CR™
is C* diffeomorphism, and for any x € ¢o(Us NUp),
d(¢g o ¢5t)e € GL(n,R) := {A € M, (R) | det(A) # 0} where det(d(dg o ¢yt)z) >0 (5)
Note we only require there exists one such Atlas.
e If M is orientable, an orientation ® on M is a choice of C*-altas satisfying (5).

e if both ® and ¥ on M satisfy (5), we say they define the same orientation if ® UV still satisfies (5).

Example 3.1 (P,(C)). P,(C) is orientable. One compute
¢j o Qﬁ:l : ¢7,(Uz N U]) cC"— ¢j(Ui N U]) ccr

its differential
d(pjod; )y, g, :C" = C" C — linear map

?

In general, for L a C-linear map,

r4iyeC" —L Lz +iy) eC”

! !

(2,y) € R* 5 Lp(z,y) € R
there exists C € M, (C) s.t.

x+ iy — Clx +1iy) for C = A+1iB where A, B € M,(R)

hence
C(z+iy) = (A+iB)(x +iy) = (Az — By) +i(Bz + Ay) .. m — {A ‘B} m
y B Ally
where det( [A _AB]) = |det(C)|?. So L being linear isomorphism implies det( [A _AB}) > 0. Hence

det(d(¢; 0 7 yyove ) >0

More generally, if M is a complex manifold of complex dimension n, then M is an orientable C* manifold of
real dimension 2n. It is indeed oriented.

Example 3.2 (P,(R)). For real, P,(R) is orientable <= n is odd. Look at some examples. P;(R) = S! so
orientable, but Py(R) is not.
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4 Tangent Space and Tangent Bundles

Idea: first, let M be an n-dim C> submanifold of R"**. For any p € M, there exists U open neighborhood of
p that maps ¢(U) C R". Now we view its inverse

¢~ :p(U) CR" — M C R*F

as smooth embedding so
d(¢™ Vg : R* — R

is injective linear map. We define the tangent space

T, M = Im(d(¢™ ") () C R™TF
This is well-defined as if there’s another chart (V,1) around p s.t. T,M = Im(d(¢) ™) y(p)), then d(v o ¢™1) g
transits smoothly.

4.1 Tangent Space and Differential
Definition 4.1 (Tangent Space). M C* manifold for k > 1 of dimension n. p € M.

T,M = {(U, ¢,u) | (U, ¢) is C* chart for M around p, u € R"}/ ~p

where
(U,6,u) ~ (Vi,0) = d(o ¢ o (u) =v

define the map
Ov.pp: R*" = T,M st u—[U, ¢, u this is bijection (6)

Use this to equip T, M with the structure of a vector space over R. This structure is well-defined because diagram
commutes.
Rn
—1 0U,¢,p
d(od )‘W)l \
v,y
R™ 28 T M
Notice the diagram is equivalent to saying
-1 -1
d(¥ 0674 = 00y, © OUpp (7)
Call T,M tangent space to M at p. A tangent vector to M at p is an element in T, M.

Definition 4.2 (Differential). M, N C* manifolds k > 1 with dimension m, n. f: M — N C* map. The
differential of f at p is a linear map
dfp : TpM — Tf(p)N

s.t. for any (U,¢) C* chart around p in M and (V,v) C*¥ chart around f(p) in N, letting g = o fo ¢! be
local representation of f, df, denotes the composition

dfp = Ov,p, £(p) © AGg(p) © 95,1@1) s0 dfp([U, ¢, u € R™]) == [V, 9, dgg(p) (u) € R"]

Indeed the diagram for differential commutes

Mo peu—L v ¥ N T,M Y Ty N
J/(ﬁ J/l/} au,(p,p]\ OV,UJY.f'(P)T
R™ 05774 ¢(p) c ¢(U) L} ’l/J(V) Opén R™ R™ M} R"™

Theorem 4.1. f is a submersion(immersion) at p if df, : T,M — Ty, N is surjective (injective).

Lemma 4.1 (Chain Rule for manifolds). If f : M} — My and g : My — M3 are C* maps between C* manifolds,
where k > 1.

e gof:M; — MsisC*
o For any p € My, df, : T,M; — TripyMa, dgspy : TrpyMa — Ty(pp)) M3, then

d(go flp =dgrp)odfy : TyMi — Tyorp)Ms
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One has tool to construct tangent space via preimage theorem.

Theorem 4.2 (Linear Subspace and closed submanifold). o If M C N for C*° manifolds. Leti: M — N
be inclusion map (hence smooth embedding, in particular, immersion at any point). For any p € M,

di, : T,M — T,N is an injection
T,M is a linear subspace of T,N .

o If f: M — N C* map with g € N regular value of f s.t. f~1(q) is not empty. Hence m = dimM > n =
dimN. By Preimage theorem, S := f~1(q) C M is a closed submanifold of M of dimension n —m. Now
foranype S

T,S = ker(dfy : T,M = R™ — Ty, N = R") (8)

In other words, there is a short exact sequence of real vector spaces
0—T,8 = TyM — Tp,yN — 0
One make use of (8) to compute explicitly tangent space of submanifolds.
Example 4.1. For any p € R™, we have linear isomorphism T,R™ = R" given by (6)
[R",id, u] € T,R" — 0.} 4 ([R",id, u]) = u € R"
Example 4.2 (T,S"). f:RY" = R for f(z1, - ,Tpy1) = Z?;l x2. f is C°* map, 1 is reqular value of f.

s0 S" := f71(1) is a O submanifold of f of dimension n. For any x € R'™" df,(v) = 2x-v. And for any
x € S™, using (8)

T,S" := {v € T,R'"™™ | df,(v) =0} = {v e R"" | 2. v = 0} C T,R"" = R'*™
where the linear isomorphism is viewed via Ogi+n ;4 . (6).

Example 4.3 (T4O(n)). O(n) = f~1(1,,) for

n(n+1)
2

fiM,(R)=R" — 5,(R) =R sit. f(A) = AAT

here I, is a reqular value of f. For any A € O(n), using Remark (8)
TAO0(n) ={B € M,(R) | dfa(B) =0} C TaM,(R) =2 M,(R)
where = is done via Oy, (r),ia,4 (6). Then recalling dfa(B) = BAT + ABT (4)
TAO(n) = {B € M,(R) | BAT + ABT =0}
In particular at identity

T;,0(n) = {B € M,(R) | B+ BT =0} skew symmetric matrices

4.2 Tangent Bundle

Definition 4.3 (Tangent Bundle). Given C* manifold M of dimension n where k € N. We will construct the
tangent bundle TM of M as a C*~1 manifold of dimension 2n.

e As a set, the tangent bundle of M is
TM ={(p,v) |[pe Mjve T,M}= | | T,M
peM
Define 7 : TM — M as (p,v) — p. T is a surjective map.

e Topology. If (U, 9) is a C* chart for M, we define

¢:mH(U) CTM — ¢(U) x R* CR™ s.t. (p,v) = (6(), 01 4, (V)

where 0y, ) (u) = [U, ¢,u] € T,M. It is bijection. Now take any C* atlas ® = {(Ua, ¢a) | v € I} on M.
Fi| | 9aUa) xR" 5 TM st (z,u) = (651 (2) € M0y 4 4= (a)) (W) € T, () M)
ael

We equip TM with the quotient topology determined by the surjective map F. Then TM is a topological
2n-manifold with
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1. & = {(77(U,), ¢a) | @ € I} Atlas
2. d;oz : 77_1(Ua) CTM — (ba(Uoz) x R" C R*" s.t. (pa U) = (gzﬁ(p),e(_Ul,%p)(U))

™ 5" (pv)en WU, ——pelU, & M
Lﬁa Jqﬁa
R " 4, (Us) x R* —=" ¢, (U,) “E" R”

where the diagram commutes and Teqn = (;Saon'od;a_l is the canonical submersion from ¢ (Uy) x R™ C R2®
onto the first n coordinates ¢ (U,) C R™.

We wish to compute transition functions. For any U open set of M, one may identify

N U)=TU = | | T,U
peU

Note n=1(U,) N7~ (Ug) = m=1(Us NUg). And given two charts (Uy, ¢o), (Ug, ¢g) for M, we have two
corresponding charts (TUq, ¢o), (TUg, ¢g) for TM. Hence

Ga(m ™ (Ua) N7 (Up)) = a(n (Ua NUp)) = ¢a(Ua NUs) x R

For any U, NUg # @
coool n n - -
0900 1 Pa(UaNUsg)XR™ = ¢5(UsNUg) xR (z,u) ~ (pgody ' (), 0U;,¢ﬁ,¢gl(z)09Ua»¢m¢51(m) (u))
using diagram (7), one may write our transition function as

Foo T ~1 ~1

$poda (,u) = (P500, (z), d(ds0dg )u(u))
Since g o ¢t is CF in x € po(Uy NUg) while d(¢p o ¢yt)y in C*~1inu € R™, our qi;ﬁ o ngail(a:,u) are

CF=1 maps in (z,u) € ¢o(Uy NUg) x R™. So ® is a C*~1 atlas on TM. (TM,®) is a C*~ manifold of
dimension 2n.

Our surjective map © : TM — M is C*~1 map due to 7 = ¢ 0 Tean © qi;a as composition with C*~1
charts. For k > 2, 7 is a submersion.

e Moreover, TM is orientable C*~' manifold of dimension 2n, even though M might not be.

Definition 4.4. Suppose f: M — N C* map where k > 1 or k = co. Define

df :TM — TN st. (p,v) = (f(p), dfp(v)) forpe M and v e T,M

Proposition 4.1. If f : M — N is C* map between C* manifolds where k > 1. Then df : TM — TN is a

Ck—l

map between C*~1 manifolds. For k > 2, d(df): T(TM) — T(TN) is defined.

o If f is a submersion(immersion), then df is a submersion(immersion). If f is submersion(immersion) at

some point p € M, then df is a submersion(immersion) at (p,v) for any v € T,M.

e If N is smooth manifold of dimension n and M smooth submanifold of dimension m < n. Then TM =

{p,v) [ peM,veT,M} CTN ={(p,v) |p€ N,veT,N} C® manifold of dimension 2n. Hence TM
is C'°° submanifold of dimension 2m.

Example 4.4. Recall id : R"+1 — R+ TSP © TR 4 RI+n 5 RIF7 . Fere

and

TS? — {(CE,U) €R1+n XR1+n | reS*ye TmSn}
= {(z,v) eER"" xR |z.2 =1, x-v=0}

TO(n) = {(A,B) € M,,(R) x M, (R) : AAT =1,,, BAT + AB" =0} € TM,,(R) = M,(R) x M, (R)

TO(n) is C*° submanifold of dimension n(n —1).
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5 Vector Bundles

5.1 Vector Bundle and examples

Definition 5.1 (Vector Bundles). Let M be C* manifold with n = dimM. A C* real vector bundle of rank r
over M s

e a C* manifold E together with

e a surjective C* map
m:E—-M

s.t.

1. Local Trivialization. There exists an open over {Uy}acr of M (not necessarily the open charts) and a
family of associated C* diffeomorphisms he for k > 1 (or homeomorphism for k =0)

ho:m ' (Us) CE — U, xR”

s.t. for pri: (p,v) €Uy X R" = p e U,

U, x R* 215 U,
the diagram commutes w, = 7r|r1(Ua) = pri1 o hy (implying m is a submersion if k > 1)

2. Transition Functions. For any U,, Ug open subsets of M (not necessarily homeomorphic to open subsets
of R™).
ho : T HUy) = Uy x R” hg : 7 (Ug) — Us x R” local trivializations

Then for any Uy, NUg # @
hgohy' : Uy NUsz xR" — U, NUz x R” s.t. (p,v) = (p,98a(p)(v)) is a C* dif feomorphism

where
R = {p} x R ) [p} x R" = R”

s.t. gga(p) € GL(r,R) a linear isomorphism between R” for any p. In other words

9sa : Ua NUs — GL(r,R) = {A € M, (R) | det(A) # 0} € M,(R)  C* map

Here E is called total space and M is called the base of the vector bundle.

Definition 5.2 (Alternative definition of vector bundle). Let M be a C* manifold, k € N U {co}. We say
7w E — M is C* real vector bundle of rank r with total space E and base M if

e I is a C* manifold
o T is a surjective C* map
and

e For any x € M, the fiber of E at x, E, := (), is equipped with the structure of a real vector space of
dimension r. 7 is defined by

E=||E5M st wE)=z
zeM

e Local Trivialization. For any x € M, there exists open neighborhood U of x in M and a C* diffeomorphism
h:7m Y (U) — U x R" s.t. = pryoh diagram commutes and

VaxeU hlg 1By — {z} xR" is a linear isomorphism
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Remark 5.1. It follows from the above definition that ™ : E — M is a C* vector bundle of rank r with total
space E and base M. Hence one may find open cover {Uy}tacr of the base M where the open cover is not
necessarily the local coordinate chart. And the local trivializations

he : T HUy) = Uy x R” are CF dif feomorphisms
s.t. Ty 1= W\ﬂ,l(Uu) = pr1 o hy, diagram commutes and
VaeUs halp, : Bz — {z} xR" is a linear isomorphism
Now one may consider transition functions
hgohyt: (UyNUg) x R™ — (Uy NUg) x R” s.t. (z,v) = (2, gap(x)v)
where gap : Uy NUs — GL(r,R) C M,(R) s.t. 2+ gas(x) = (gap(z))ij is CF map

Example 5.1 (Product Vector Bundle). E = M x R" where 7 = pry1 : E — M. This is product vector bundle
of rank r over M

Definition 5.3 (vector bundle isomorphism). Let g : E — M and np : F — M be 2 C* vector bundles
over the same C* manifold M. A C* vector bundle isomorphism from ng : E — M to g : F — M is a CF
diffeomorphism h

h:E—F s.t.mg=mxpoh diagram commutes

in other words
VreM, h|Ew E, > F, is a linear isomorphism

We say 2 C* vector bundles are isomorphic if there exists such a C* isomorphism.

Example 5.2 (Trivial Vector Bundle). We say a C* vector bundle w : E — M is trivial vector bundle of rank r
if it is isomorphic to the product vector bundle pri : M X R" — M. In other words, there exists h : E — M x R”
C* diffeomorphism (or homeomorphism for k =0) s.t.

1. m = pry o h diagram commutes.
2. the restriction of h to each fiber E, is a linear isomorphism

hly : B, CE— {2} xR’

In a word, w: E — M is trivial vector bundle if there exists only one global trivialization h : E — M x R".

Example 5.3 (Tangent Bundle). Let M be a C* manifold where k > 1. Then 7 : TM — M is a C*~' vector
bundle over M of rank n = dimM . Recall we’ve constructed

T™M = | | T,M with ® = {(Ua, ¢a) | a € I} C* atlas on M
peEM

anew ® = {(7"HUy), o) | a € I} C*~1 atlas on TM
o Local Trivialization of TM.

ha . 7T_1(Ua) — UOé X RTL s.t. (p7U) = (p’ el;ivﬁbavp(v))

e Transition Functions (as C*~1 manifold of dimension 2n)

¢p 0 qs;‘l : 00 (Ua NUB) x R = ¢5(Uy NUp) x R™ s.t. (z,u) v (g 0 65 (2), d(ds o ot )a(u)
hﬂ o h;l U, NUg x R" - U, N Ug x R™ s.t. (p, u) — (p,d((bg o gb;l)%(p)(u))

5.2 Sections

Definition 5.4 (C*(M)). For M a C* manifold, let C*(M) be space of C* functions for f : M — R with ¢ < k.
One has inclusion C*(M) c C*~Y(M) C - --

Definition 5.5 (C* section). A C* section of a C* vector bundle m : E — M over C* manifold M is a C*
map s: M — E s.t. mos: M — M is the identity map, i.e.

VoeM, s(x)€ B, =n"(z)

Define
C*(M, E) = {C* sections s : M — E}

Indeed C*(M, E) is itself vector space
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Lemma 5.1. For any f € C*(M) and s € CF(M,E), one has fs € C*(M,E) where for any x € M,
fs(x) == f(x)s(z) where f(x) € R and s(x) € E,. So C¥(M,E) is a C*(M)-module.

Proposition 5.1. Let 7w : E — M be a C* vector bundle of rank r over a C* manifold M of dimension n. Then
it is trivial iff there evists C* sections {s1,--- ,s,} of 7 : E — M s.t. for any x € M, {s1(z),--- ,s.(2)} C E,
s a basis of F.

Proof = . m: E — M is trivial, then there exists h : E — M x R" C* diffeomorphism that is global
trivialization s.t. 7 = pry o h diagram commutes. For any C* section s : M — E, their composition are

(hos)(z)=(z, f(x)) for f: M —R" C* map
For {ey,--- ,e,} standard basis of R", one define for 1 <14 <r
s; = h7(z, )
Then s; are C* sections of 7 : E — M. Now for any = € M, using h| g, as linear isomorphism between E, and
R"
E, hl—Ef {z} xR"=R" s.t. hosi(z)=(z,e) — ¢
so {s1(x), - ,sr(x)} are basis of E,.

<. Let {s1,---,5,} be C¥ sections of 7 : E — M s.t. for any x € M, sy(z),---,s.(z) € E, is a basis of
E, = R". Define

¢: M xR — E st. ¢(z,v) := Zvisi(x) €eE, CFE
i=1

Then prqy = 7o ¢ diagram commutes. For any € M, {z} x R" X B, is a linear isomorphism. It remains

to show that ¢ is a C* diffeomorphism so that ¢ is a vector bundle isomorphism between the product vector
bundle and 7 : E — M. Since 7 : E — M is a C* vector bundle, there exists open cover {U,, | a € I'} of M and
local trivializations s.t. @ = pry o h,, diagram commutes. One needs to check that hy,o¢: U, Xx R" = U, x R"
is a C* diffeomorphism. But for any j € {1,--- 7}

S1j (J})
hoos;: Uy — Uy xR" s.t. (2) — (x, ) where s;j(z) are C* functions on U,
srj(2)
hence A(z) = (s;5(x)) € GL(r,R). Now
U1 . D=1 vis14(2) su(z) o sue(w)
hoot(z,v=| 1 |)= ha(z v;sj(z)) = (z, : ) = (x, A(x)v) where A(x) =
Uy =1 Z;Zl 08 () sp(x) o spr(T)

here (hq 0 ¢)(z,v) = (x, A(x)v) and (hy 0 @) Y(z,u) = (z, A(x)"tu)) so A, A~ : U, — GL(r,R) are C* maps.
Hence h, o ¢ indeed defines C* diffeomorphisms. O
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6 Derivations and Vector Fields
6.1 Local Derivations and Tangent Space Isomorphism
Definition 6.1 (Germs). Let M be C* manifold. k € NU {co}. Given p € M, we define
C’]’;(M) ={(f: U = R) | U open neighborhood of p in M, f is C* function}/ ~ p
where we write the equivalence class as
(f:U—=R)X (g:V = R) <= there exists open neighborhood W of pin M st. W C UNV and flyy = gly
an element [f : U — R] in CS(M) is called a germ of C* functions at p.

Remark 6.1. C*(M) c C*'(M) C --- and ¥ p € M, CF(M) C C}='(M) C ---. These are inclusion of
subrings.

[f:U—=Rl+[g:VoR=[f+g:UNV = R]
[f:U—=Rlg: V=R =[fg:UNV = R]

Remark 6.2. One has useful ring homomorphisms that simplifies the problem.
o If (U,¢) is a C* chart for M around p s.t. ¢(p) =0
CE(M) = CER™) st [f:V =Rl =[flyay : UNV 2Rl = [fog ' :p(UNV) = R]

is a ring isomorphism

CH(M) = CE(M) st. (f : M = R)— [f: M = R]

is a surjective ring homomorphism. To see it is surjective, gwen [f : V — R] € C}’;(M), there ezists
B e CF(V) with supp(8) C V s.t. (8:V = R) L (1: M — R). Hence

[f:V=R]=[8f:V =R
and Bf can be extended to M due to Hausdorff topology on M. But it is not injective.

o If M is a real analytic C* manifold and U C M open connected, then for any p € U, we may consider
cv(U) — Cy(U) s.t.
(f:U->R)—[f:U—>R]

This is injective ring homomorphism. But it is not surjective.
CY(R) C C¥(—¢,e) — C{(R)
Look at elements of the form Y 7" a,z", e.g., % =30 (3)m Tz € CE(R) \ C*(—¢,¢).
Definition 6.2 (Derivation). A Derivation on C¥(M) is a R-linear map
§: C;f(M) — R s.t. Leibniz rule §(fg) = 6(f)g+ fo(g) is satisfied
If c1, co € R and 01, 02 are derivations on C’]’;(M), then
161 4 262 1 CE(M) = R s.t. (c101 + c202)(f) 1= c16(f) + c26(f)
is also a derivation. Hence the set of derivations on C;;(M) has the structure of a vector space.
Example 6.1. k> 1.
o %(0) :CFR") =R st [f:U—R]— a%if(O) € R Then 6%(0) is a derivation for any 1 <i <mn.
e Foranya; €R, ", ai%(()) : CE(R™) — R is a derivation.
Lemma 6.1. k € NU {c0}.

(i) If 6 : C¥(R) — R is a derivation and c is a constant, then 6(c) = 0.
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Proof. §(c) = c¢d(1) by R-linear, and

5(1) =6(1-1) =6(1)-1+1-6(1) = 5(1) =0

O
(ii) & is a derivation on CJ(R) < §=0.
Proof. By R-linear and (i), 6(f) = d(f — f(0)). May assume f(0) = 0. Then f = fy + f_ with
fo= W for o c B®), o201 <0, f0) =0
One may assume that f > 0 and f(0) = 0. Now we may do
= V/f € CGY(R) so that 5(f) = 6(¢°) = 6(9)g(0) + g(0)3(g) =0
Hence f must be 0. O

(iii) 0 is a derivation on C§°(R) then § = 1, J(IZ)%(O)

Proof. Want to show for any feCER), 6(f)=>", 5(1‘1)68 (0). So fix x € R™, define g(t) := f(tx)
so that ¢'(t) = >0 @i 5= am L (tz) Then

f(x) = f(0) = g(1) — 9(0) = / t)dt = Z“”/ o, !

Define h;(zx) := fol g—{i(tx) dt so that h; € C§°(R™) with h;(0) = 01 ggi: (0)dt = %(O)

O(F) = 8(f = (0)) = 3 d(wiha) = 3 0(@i)hi(0) + 3 wi(0)3(h Z(s 8%

O

Remark 6.3. 1 <k < oo andn > 0. Then the vector space of derivations on C(’)‘”'(R”) is infinite dimensional.
From now on we discuss smooth derivations.

Definition 6.3 (D,M). Let M be C*° manifold of dimension n, p € M. We denote D,M as the vector space
of derivations on Cp°(M).

Theorem 6.1 (Linear isomorphism between T, M and D,M). Let M be C*° manifold of dimension n, p € M.
Define (U, ¢) a C™ chart for M around p, and we write ¢ : U — ¢(U) C R™ open with

¢(p)=0€R" and ¢ =(x1,---,2n) € C(U;R")

Then there is linear isomorphism between T, M and D, M

B n a

(p) s.t. [U, ¢, u] — Zuzaixz(p)

with the derivation a ~(p) : C°(M) = C5°(R™) — R defined as

0
8131'

9 (Fod 1))

(p)f = o2,

A (f06™00) =

noticing that C°(M) = C3°(R") s.t. [f : U - Rl [fodp™" : p(U) — R]
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6.2 Global Derivations and Smooth Vector Field isomorphism

Definition 6.4 (smooth vector field). A C* vector field on C*° manifold M is a C*° section of m : TM — M,
call it X : M — TM. Notice this implies for any p € M, X(p) € T,M. Write

X=C®M,TM) ={C* vector fields on M}
Theorem 6.2 (Isomorphism as C*°(U)-module). Let M be C* manifold of dim n.
e For (U,¢) C* chart with ¢ = (1, ,z,) € R

0
8l‘i

is a C™ vector field on U.

9 (p) € DM = T,M = T,U

U= TU=7"YU) s.t. p— o,

e In particular, a— as C* wvector fields on U implies by definition that —_ is C* section of TU — U.
Hence for anyp € M,

0 (p) is a basis of T,M =T,U
Oz, i=1

Moreover
COO
@ awz

is isomorphism as free C°(U)-module.

e In general, for s : U — TU continuous section, for any p € U

Zaz 83:1 ai(p) €R a;: U —-R

and s is a C* vector field iff a; € CF(U).
Definition 6.5 (Derivation in C*>°(M)). Let M be C* manifold. A derivation on M is an R-linear map
§:CF(M) = C*(M) s.t. 5(fg) = 0(f)g + fo(g) for [, g€ C™(M)
Let D(M) be set of all derivations C®(M) — C°(M). If 61, 2 € D(M), ¢1¢co € C°(M), then
€101 + c2dg : CF(M) — C°(M) s.t. (c101 + c202)(f) 1= c16(f) + c20(f)
is also a derivation. D(M) is a C°°(M)-module.

Remark 6.4. For any p € M, there is a localizing R-linear map. Suppose
D(M) — Dy(M) s.t. § = 6(p) where 6(p) : C;° (M) — R with [f : M — R] = (0f)(p) € R
It is also useful to define

5y C2(M) = C(M) sit. [f: M — R] s [5f : M — R]
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7 Lie Derivative on smooth functions

7.1 Lie Derivative and Lie Brackets
Definition 7.1 (Lie Derivative). Define Lx
X(M)—DM)  st. X Ly
with
Ly :C®(M) = C®(M) st fo Lx(f):=Xf

and
Xflp)=Xp)f vV X(p) e T,M =D, and Xf:M—=R

one use local coordinates to check this is C* function. On (U,¢) X = > aia%i for a; € C>*(U). This is a
morphism of C°(M)-modules. Indeed this is an isomorphism.

Proof that D(M) = X(M). We have surjectivity. Given any § € D(M)
X(p) i= 8(p) € DM = T,M

and define X : M — T'M. One use local coordinates to check that X is C*°. For injectivity, if X # 0, there
exists p € M s.t. X(p) # 0. Then there exists f € Cp°(M) s.t. X(p)f # 0 implying Lx f # 0. We conclude
D(M) = X(M). O

Definition 7.2 (Lie Bracket). For X,Y € X(M) = D(M), define
[X,Y]:C®(M) = C®(M) st. [X,)Y]f =XYf-YXSf
Then [X,Y] is a R-linear map. Indeed it also satisfies the Liebniz rule so [X,Y] defines a derivation.

(X, Y](fg) = (X, Y]f)g + f([X,Y]g)

So [X,Y] € D(M) = X(M). More explicitly, for (U,¢) C* chart on M with ¢ = (x1,--- ,x,) local coordinates.
One may write on U
= 0 - 5} o

Jj=1

So

o - - 8b] 8aj 0
[va] - Zj: <Za18xz - bl8x1> 37%
Proposition 7.1.
[ ]: X(M) x X(M) = X(M) s.t. (X,7)— [X,Y]

satisfies

(i) R-linear in both X, Y. (not C*-linear)

[Cle + 0 X, Y] =C [Xh Y] + CQ[XQ, Y]
(i) [X,Y] = [V, X]

(#i3) Jacobi Identity.
[[X7Y]7Z]+HY>Z]7X]+[[Z3X]7Y]:0 9)

with these above, (X(M), [, -]) is a Lie algebra over R.

7.2 Differential as map between Derivations

Definition 7.3 (pullback of C*(N)). Let F : M — N be C*-map between C* manifolds, and let £ < k be a
positive integer. Then the map F induces the pullback

F*:CYN) = CYM) st. frs foF
For a point p € M, we get a map F; local pullback s.t.

F : Chyy(N) = CLM) st (V. f)] = [F7X(V), foF]
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Remark 7.1. If M and N are C* manifolds, and F : M — N is continuous map, then for each p € M, there
exists local pullback F s.1.

here F is a C* map iff for each p € M, F* (Cf;(p)( )) is a subring of C’;f(M). We may also use this to define

C* maps.
Lemma 7.1. Let F: M — N be a smooth map between smooth manifolds. For each p € M, the differential
dFy : T,M = DyM — TpyN = Dp) N
is given by the map
dFp(X)f = X(F"f) = X(f o F)
for any X € T,M = D,M and f € C?(p)(N).

Proof. Pass to local coordinates. Assume M C R™ open subset and N C R™ open subset. p = 0 € R™ and
F(p) =0 € R™. Then one write

F(z) = (y1(z), - yn(z)) Vo € R
Then for any tangent vector X € ToR", X = > a; 52 (0)

8337',
- 0y 0
X)=3_ (Z o (0) ) 7,0 € o)
j=1 : i
To compute explicitly
LHS = dF,(X)f = 30 3 a2 0) 20
i=1 j=1 i J

RHS = Zaia%(foF)(O)
=1

which is equal by chain rule. O
Remark 7.2. We may also use dF,(X)f = X(F*f) to define dF,.

7.3 Differential as map between curve velocity

Definition 7.4 (smooth curve). Let M be smooth manifold. A smooth curve in M is a smooth map 7 :
(a,b) = M for —oco < a < b < co. Notation: for any t € (a,b), let v'(t) or Z—Z( ) to denote the tangent vector
dyi () € TyyM.

Example 7.1. If M = R" then the smooth map
v:(a,b) = M s.it. y(t) = (x1(t), - , 2, (1))

where xz; : (a,b) = R are C* functions on (a,b). Then

V(1) = (21(8), - 2, (1) = Zzé(t) oz, 1®)

Lemma 7.2. Let M be a smooth manifold and v : (—e,e) — M be a smooth curve. Let v(0) = p. Then ~'(0)
s a derivation at p s.t.

d

YOF = 5 (o)

Proof. This is special case of dF,(X)f = X (F*f). O

Remark 7.3. One may alternatively define the derivation ¥'(0) : C;°(M) — R The tangent space T, M is
hence the collection of all such +'(0). Under this definition, dFy, : T,M — Tp N of a smooth map F : M — N
at p € M is defined by

dF, : T,M — Tp)N s.t. +'(0) = (Fov)'(0)
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8 Integral Curves and Flows

8.1 Integral Curve Local Existence and Uniqueness

Definition 8.1 (Integral Curves). Let X be a smooth vector field on a smooth manifold M and let v : I — M
be a smooth curve. We say that v is a integral curve of X if

Y(t)=X((t)Vtel

Example 8.1. M =R" and v(t) = (x1(t),- -, xn(t)) for ; : I — R smooth functions on I. A smooth vector

field on R™ is of the form 5
X(z) = (a1(z), -+ s an(x)) = Zai(l“)axi

where a; are smooth functions s.t. a; : R™ — R. Therefore X can be viewed as a smooth map from R™ — R™.
v is an integral curve of X is equivalent to the solution to the system of ODFEs
d.’Ei
dt

(t) = a;i(z1(t), -, zn(t)) fori=1,---n

Theorem 8.1 (Local Existence and Uniqueness of Integral Curves). Let M be a smooth manifold and X be a
smooth vector field on M.

(i) For any p € M there is an open interval I, C R containing 0 and an integral curve ¢, : I, — M of X s.t.

¢p(0)=p and I, is a mazximal interval for such ¢,

(i) Moreover, this integral curve is unique in the following sense. If v : I' — M is integral curve of the vector
field X on I' s.t. v(0) = p, then the interval I' C I, and the curve vy is the restriction v = ¢pl,,.

(iii) Existence of Local Flow. For any p € M, there is

— an open neighborhood U of p in M
— an open interval I of 0 in R
— a smooth map ¢ : I x U — M (local flow)

ERA
9
{ (0,9) =4q tq)
Proof. Assume M = R™ and p = 0 then the proof is a theorem in ODE. O

Example 8.2. M =R" and p = (a1, - ,an) € R™. Suppose X is the identity vector field so X (x) = x for any
x=(x1, -+ ,x,) € R". Then

d
qtvi = Ti =1,
{xz(O) —a fori=1,---n

hence x; = a;et. We conclude that the integral curves are straight lines emanating the origin. We also calculate
the local flow
¢ :RxR™ = R" s.t. ¢(t,x1, -+ ,2,) = (z1€", -, zne")
or in short, ¢(t,z) = e'x.
Example 8.3. M = {x € R" | |z] < 1}, and X is identity vector field. If p=a = (a1,--- ,a,) then
bp : I, = R" s.t. ¢,(t) = e'a for I, = (—oo, —log|al)

Example 8.4. Given flow ¢ : R x R? = R? s.t.
__[cos(t) —sin(?)) [«
¢(ta (x,y)) = <sin(t) COS(t) ) <y>
To find the corresponding vector field, use %QS(O, q) = X(¢(0,9)) = X(q). So

= N0-)

Xt = o0, () = (0 Zeot)

Hence X (z,y) = —y% + xa%.
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8.2 Integral Curves Global Existence

Definition 8.2 (Global Flow). ¢; : U — M for ¢+(q) := ¢(t,q) This tells us where the point in M gets mapped
after flowing a certain time t.

Remark 8.1. Let ¢y, 0 ¢dr, = ¢t 41, 0on the subset of M where both sides are defined.

Lemma 8.1. Let X be smooth vector field on a smooth manifold M s.t. the support of X is compact, where

supp(X) :={p € M | X(p) # 0}

Then there exists a unique smooth map ¢ : R x M — M where

D) = X6t with 6(0,0) = g

In other words, we have a global flow
(bt M — M

which exists for all times t € R.

Proof. Tt suffices to prove existence. Let K = supp(X). First step, look at V = M \ K open, X (q) = 0 for any
q € V. Then define
o RxV = M st ¢(t,q) =q
Then ¢ is smooth and
O¢ .
3¢ (60) =0=X(q) = X(o(t,q)) with $(0,9) =q

Step 2, given p € K, there exists open neighborhood U, of p in M and €, > 0 s.t. there is a C"* map
Yp i (—ep, €p) X Up = M

a local flow which satisfies o
{at”(t, q) = X (¢p(t,q))
¥p(0,9) = ¢

Moreover, if p1, p2 € K and Up, N Uy, # &, then

¢p1 |(_575)><(Upan;n2) = wpz |(_575)X(Up1 mU;nz)

where ¢ := min{e,,,e,,} > 0. So we obtain a smooth map ¥(t,q) defined on (—¢,¢) x (Up, U U,,) Since
K is compact, K C UpeK U, hence there are finitely many p;,--- ,pny € K s.t. K C Ufil Up,. Let € :=
min{e,,, -+ ,epy > 0and U := Uf;l U,, we obtain a smooth map

Yi(—ee)xU—=M

s.t.

Q

{t(t,q) = X(¥(t,q))
¥(0,9) =q

Step 3, again by uniqueness
¢|(_675)X(Uﬁv):¢:RxV—>M and Y (—e,e)xU—M

We also have U UV = M so we obtain
¢:(—e,e) x M - M

satisfying assumptions. Step 4, for any ¢ € R, there exists n € N with [¢| < ne, we define ¢(t,q) =
AL p(L,- - ,¢(%,q)) ++) Then ¢ : R x M — M satisfy the assumptions. O

8.3 Flow and Lie Derivative on Vector Fields

Now we talk about Flow and Lie derivative.

Definition 8.3 (Lie Derivative). Let M be smooth manifold, let X € X(M) = C°(M,TM) space of smooth
vector fields on M, which is C°°(M)-module. Recall that Lx : C*(M) — C®(M) s.t. Lxf = Xf isa
derivation. We extend this definition via

Lx : X(M) = X(M) st. Y v LxY :=[X,Y]
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Notice

Lx(fY)=(Lxf)Y + fLxY for feC®(M) andY € X(M)
Lix(9) = fLx(g)  for f, g € C®(M), and X € X(M)

but in general Lyx(Y') # fLxY since
Lix(Y) =[fX,Y] = fIX,Y] =Y (f)X = fLxY - Y(f)X

Definition 8.4 (pushforward and pullback of smooth vector fields). Let F : M — N be C*° diffeomorphism.
Define the pushforward

F.: X(M) — X(N) s.t. X=X
(F.X)(p) := dFp-1)(X(F~'(p))) € T,N

where p € N, F~(p) € M, and X(F~'(p)) € Tp-1(,)M. Define pullback
F* = (F71, : X(N) = X(M)

Proposition 8.1 (Lie Derivative using Flow). M smooth manifold, X € X(M), p € M and U open neighborhood
of pin M. Let ¢y : U — M smooth be flow of X atp fort € (—¢,¢), e >0. Then

e For[f: M — R] € C;°(M), pick a representative f

(Lx f)(p) = X(p)f =

o Y e X(V) for V open neighborhood of p

d d

(LxY)(p) = [X, Y](p) = o B (@7Y)(p) = — —

(1Y) (p) = lim Y (p) = (doe)s_, () (Y (9-¢(p)))

t—0 t

(10)
using the fact
Pty = —(9—1):Y = —¢7Y

and recalling (¢1+Y)(p) = (dpt)g_, () (Y (6—:(p)))

Lemma 8.2. Ifh:(=4,0) xU = R s.t. (t,q) — h(t,q) is C* map for U C M open, § > 0, and suppose that
h(0,q9) = 0. Then there exists C* map g: (—§,0) x U — R s.t.

h(t,q) = tg(t,q)

Proof. Fix t, q. Let u(s) := h(st,q). Then Lu(s) = t%h(st,q) with

h(t,q) = h(t,q) — h(0,q) = u(1) / s—t/ —h(st,q)ds =tg(t,q)

where ¢(t,q) = fol %h(st,q) ds. Here g is C* map. Notice g(0,q) = %h((),q) ds = %h(o,q). O
Proof of Proposition 8.1. For f € Cp°(M),

D) = +

d
i, (fodp)(t)
=¢,(0)f = X(p)f

since ¢, (t) = ¢¢(p) for ¢, : (—¢,€) — M integral curves of X s.t. ¢,(0) = p and ¢,(t) = X (¢p(t)). Now for the
second item, claim that

f(o¢(p))

t=0

dt o

d

@l (@uY)(P)(f) = =[X,Y](p)f V feCF(M)

To see this, let
h(t,q) = fo¢u(q) — f(q)
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Here h : (—0,0) x V. — R is C* with h(0,¢q) = 0. By lemma 8.2, there exists C*° g : (—=6,0) x V — R s.t.
h(t,q) = tg(t,q). For fixed t € (—=6,9), g: : V — R smooth with g,(¢) := g(¢,q). So

fooi(q) = f(q) +h(t,q) = (f +tg:)(q)

Also note 5 d
go(q) = 7.0, q)= —| fodiq)=X(q)f

from first item. Hence using Lemma 7.1

(06:Y)()(f) = (dot)g_, () (Y (9—t(P)) f = Y (¢—t(p))(f © t)
=Y(d—i(p))(f +tg:) =Y (90—t () f + Y (¢-t(p))(tg:)

L Yo (fos) = L] (N6-w) + YD) = - XY +Y()X] = —[X,Y](0)/

dt|,_o
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9 Frobenius Theorem

9.1 Subbundle

Definition 9.1 (subbundle). Let 7 : E — M be C* vector bundle of rank r over a C* manifold M. F C E is
a subbundle of rank k < r if for any p € M, there exists open neighborhood U of p in M and a local trivialization

h:m Y U) = UxR" C* dif feomorphism
s.t. diagram w = pry o h commutes and
h(FNa= Y (U)) =U x (RF x {0}) for R* x {0} c R"
Remark 9.1. Some remarks for a smooth Subbundle F' of E
e Recall for any x € U, E, = R"
E, =7 Y(z) = {z} x R" is linear isomorphism
While in the case of F as subbundle, for any x € U, F,, := F N E, is a subspace of dimension k in E,.

Proposition 9.1 (Subbundle Equivalent Definition). Given w: E — M smooth vector bundle of rank r over a
C* manifold M. For any x € M, F,, C E, is subspace of dimension k < r. Take disjoint union

F = |_|cmE:= |_|Em

reM zeM

Then F is a C* subbundle of E of rank k iff for any p € M, there exists open neighborhood U of p in M and
C™> sections {s1,-+ ,sp} C C®°(U;n~Y(U) = E|;) s.t. for any q €U

51(q), - - sk(q) is a basis of F,
Example 9.1. E = {({,v) | £ € P,(R), v € £} C P,(R) x R""'. E is a smooth vector bundle of rank 1 of the
product vector bundle. Here prq : P,(R) x R"*! — P, (R).

9.2 Distribution: Involutive and Completely Integrable

Definition 9.2 (distribution). Let M be C* manifold. A C* distribution of dimension k for k <n on M is
a collection {F, C T,M | p € M} where F,, are k-dimensional subspaces of TyM s.t.

F=||FRcrM=|]|T,M
pEM pEM

is a C* subbundle of TM of rank k.
Remark 9.2. One has an equivalent definition for smooth distribution using Prop 9.1

o The collection {F, C T,M | p € M} of k-dimensional subspaces of T,M is a smooth distribution iff for
any p € M, there exists open neighborhood U of p in M and X1, -+ , X € X(U) s.t. for any q € U

k
by = @RXi(Q)
i=1
Remark 9.3. Given a smooth subbundle F — M of m : TM — M, and denoting C*° (M, F') as space of smooth
sections of the subbundle FF — M. Then
C*®(M,F)Cc C®(M,TM)=%(M)

is C*°(M)-submodule.

Definition 9.3 (involutive and integrable). Let F' be C*° distribution of dimension k on a C*° manifold M of
dimension k.

o We say F is involutive if C>°(M, F) is a Lie subalgebra of (X(M),[-, -]).

X,Y € C®(M,F) = [X,Y] € C™(M,F)
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o [ is completely integrable if for any p € M, there exists (U,¢) for ¢ = (x1, - ,x,) C®-chart for M
around p s.t.

k

)

E,:@Raﬂ(q) VgeU
=1

This is equivalent to saying for any p € M, there is a k-dimensional submanifold S C M s.t. p € S and
for any q € S, the subspace T,S = F.
Example 9.2. One has some examples motivating the Frobenius Theorem
o For dim F = dim M, then F, = T,M for any p € M, here F' is involutive and completely integrable.
e FordimF =1, F is involutive and completely integrable.
e For U C R? open, there exists 2 — dim distributions not involutive and not completely integrable.

Theorem 9.1 (Frobenius Theorem). A C* distribution F' on a C* manifold is completely integrable if and
only if it is involutive.

Proof. Let k :== rank FF < n = dimM = rankTM. For — . If F completely integrable, for any X, Y €
C>™(M,F), for any p € M, there exists (U, ¢) C* chart for M around p s.t. for any ¢ € U

k

=1

OnU, X=Y1, aigy; and Y = Zg:lbja%f %

;5= —0;
- ox; Ox; | Ox;

k k
[X,Y] _Z< %y, 3aj> 2 [X,Y] € C(M,F)

For <= . Let F involutive. As a distribution, since F is smooth subbundle of T'M, for any p € M, there exists
open neighborhood U of p in M and X;,--- , X} € X(U) s.t.

k
F, = @RXZ‘(Q) forany qeU
i=1

For any p € M, there exists (U,¢) ¢ = (x1,--- ,x,) 50 X; = 22:1 aij% for a;; € C=(U),i=1,--- ,k. For
any p € U, consider '

air -0 Qin
(q) of rank k
ag1 - Qkn
by permuting x1, - - , x, if necessary, we may assume the minor matrix
aip -0 Qig
det | = ... 1 | (p)#0
g1 -+ Okk

Due to smoothness of a;j, by shrinking U if necessary, we may assume

app - A1k
det| ... 1 |(¢#0 forany qe U
ak1 akk
air o Qi
Let A := oo so A = (aij)ﬁjzl : U — GL(r,R) and A7 =: (aij)f’jzl : U — GL(r,R) are
ak1 - Okk

smooth. Using A=A = I}, we write

k
2 : il
a7 Qpj = (Sij
=1
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Fori=1,---,k, define

k
E' = Zainj e X(U) forany qe U
j=1

Hence for any ¢ € U, F, = Eszl RE'(q). Using X; =), aifa%z

E? ::Za” (ZG”%:J :Z(Sieaierr Z %87,@
j=1 £=1 =1 £=k+1
“am T 2 e,
t=k+1
o ) .0 0 0
= [EZ7EJ]:[ + Z 7;77 5+ Z Vﬁ*]
3931‘ Rl 8@3 6a;j Rl a:z:g
- 0
— Z i
m=k+1 a m
For any ¢ e U
. N 0
ELENg) e P Ro —(a) =Gy
m=k-+1 m

where dimGy, = n — k. Now G is completely integrable distribution of dimension n — &k on U. Since F' is
involutive with E* € C*°(U, F|), for any ¢ € U

k
[E',E'](q) € Fy = DRE(g)
i=1
But as vector spaces F, N G, = {0}, so o
[E*, E’}(g) = 0

Conclusion: If F' is an involutive C*° distribution of dimension k£ on M, then for any p € M, there exists smooth
chart (U, ¢) for ¢ = (1, ,,) of pin M and E',--- | E* € X(U) s.t. B = ;2 + Y0, vii

k
[EYE) =0 and VqeU F,=EPRE(q)
i=1
The strategy is to construct new coordinates (t1,--- ,t,) on U’ C U s.t. E' = 6% fori=1,---,kon U’. Recall

Assignment 4(2): For M C° manifold, X,Y € X(M) with [X,Y] =0, let p € M, and suppose ¢ o ¢; (p) and
@7 o ¢X(p) are defined for (s,t) € I x J with I, J open intervals containing 0, then one has

o3 ogy (D) =0y 0o (p)  V(st)elxJ
Hence to use this, we may assume ¢(p) = 0 € R™. Define for V open neighborhood of 0 € R™
ViV R = M st (b, t) =6 06 008l 06 (0,0, tp1, - tn)
Then % is a C*° map. But for each ¢ € {1,--- ,k} one in fact has
Y(ty, - ) = ¢f (O(ty, -+ tim1,0, i1,y tr))
For fixed t1,--- ,t;_1,ti41,- - ,tx. Integral curve of E are
’Y(S) = ¢(t17 e ,tifl, S,ti+1, e ,tn) ’thh ’Y(O) = ’(/J(tl, e ,t¢,170,ti+1, e ,tn)
sofory: VCR" - M

dwa%) — Pt ) = Bt ) = () €V

Filp)1<i<k
At t =0, d1/10(3%i) = {ﬁ(pgpi; L1 ZS_Z <n Hence dipg : ToV = R™ — T,M is a linear isomorphism. There

exists open neighborhood V' of 0in V C R™ U of pin M U’ C U s.t.
Yl V= U is a C* dif feomorphism
Then define ¢’ := (¢|y,,) ™! : U' = V' CR™ with B = - on U’ C U, where ¢/ = (t1,--- , ). O

Example 9.3 (1-dim distribution F'). For any p € M, there exists U open neighborhood of p in M, X € X(U)
s.t. for any q € U, F, =RX(q). For k-dim distribution F', involutive iff completely integrable, this is foliation.
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10 Operation on Vector Bundles

Recall operations on vector spaces. V, W finite dimensional vector spaces of dimension 7, s. Then
e V/* dual vector space is of dimension r
e V@ W direct sum dimension r + s
e V ® W tensor product dimension of rs
o V¥ =V ®...®V k-tensor product of V, dimension of 7*.
e AV Wedge product, dimension (2)

Let g : E — M and 7p : FF — M be C* vector bundles of rank r, s over a C'°° manifold M. Let the fibers
be denoted as E, := 7, (p) ZR" and F, := 7" (p) = R® for any p € M, i.e.,

TE:E:UE[)_)M and 7rF:F:|_|Fp—>M
peEM peEM

Since each E,, F}, has structure of a vector space, one may perform the above vector space operations to fibers
and define the following bundles at the set level.

o B =],y E; where E} := (E,)".
e ESF =],y (E®F), where (E® F), := E, ® F),.
e EQF :=||,cy(E®F), where (E® F), := E, ® F,.

E®F = |

et (E®F), where (E®F), := EP".

APE = upeM(AkE)p where (AFE), :== AFE,.

10.1 Dual Bundle

Let mg : E — M be C®° vector bundles of rank r over a C°° manifold M.
e Asaset, let E* := || ) Ep.
e Asamap, let mp- : E* — M s.t. mp-(Ey) := {p}.
We wish to construct mg= : E* — M a smooth vector bundle of rank r. First recall the smooth structure on E.

(i) Local Trivialization and Smooth Frame. Since mp : E — M is vector bundle of rank r, there exists
{Us | @ € I} open cover of M and local trivializations

hE 7' (U,) CE — U, xR”

(o3

C* diffeomorphisms s.t. 7 = pry o hE. For any x € Uy, hE|, : E, = 75 (x) — {z} x R" are linear
isomorphisms. One shall notice that ‘

— hE are local trivialization iff

— hE are isomorphisms from ng(Ua) to the product vector bundle of rank r over U, iff

— There exists C™ frame e,,, - , €, Where ey, € C‘X’(Ua,ﬂgl(Ua)). In particular, for any = € U,,

{eq; (x)}1_; are defined as
ea; : Ug — wgl(Ua) s.t. eq; (x) = (hf)_1($7ei)

where e; = (0,---,1,---0) are standard basis in R". Notice
(REY™1 Uy x R™ — 751 (U,) s.t. (z,v) = (, Zviei(m))
i=1

(ii) Smooth Transition Functions. On U, N Ugs, one has smooth frames {e,,(x)}/_; defined by hZ and
{eg, (z)}i—, defined by hf. Due to definition of vector bundle, one has the linear isomorphisms in R”

(96a(2))5 ;= € C™(Us NUg; GL(r,R))
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s.t.
ea] Z 651 gﬁa

or in short
o = eggﬁEa

with notation e, = [eq,, - ,€q,] and eg = [eg,, -+ ,eg,]. The gga corresponds to the transition functions
hg o (hE)™": (UaNUg) x R” = (Uy NUg) x R

via the following

hg o (hE) "z, v) = h§ (x Zvjeaj
ZUJ Zeﬁl gﬁa )ij)
Z Zngﬂa ij)es, ()

i=1 j=1
= (z, g (x)v)

So the transition functions hf o (hY)~" are given by

hg o (hE) " (z,v) = (z,g5,(2)v)

Now one wish to define the smooth structure on the set E*.

(i)

(i)

Local Trivialization and Smooth Frame. For smooth frames, define
er Uy = gt (Ua) = |_| E; C E”
zeUq
s.t. for any = € U, with eq, (z) € Ey, €}, (z) € (E*), = (E£;)*, we have
(eq,(z), €q, () = i (11)

e., {e}, (x)}i_, is a dual basis for the dual space E; w.r.t. {eq,(2)}j—; as basis of E,. For local
trivializations, define

r U1
hE" gl (UL) € BX - U, x RT s.t. (x,ZvieZi (@) = (x,o=1] 1 ])

Ur

bijection. We use this bijection to equip wE}(Ua) with topology and a smooth structure s.t. the map hf*
is ¢ diffeomorphism. Then 75! (U,) is a C* manifold of dimension n + r where n = dim M. Indeed
7 = pry o hE" for any x € U, and EX = R".

Smooth Transition Functions. On U, NUg # @, recall

T

€a; (JC) = Z €B; (I)an(il?)z’j €EE,

i=1

Then by our definition of e (11)
(€50 (2), €0y (3 Z S ()i = 95 (@)
= ep, (@ Zg,@a ()
= Z ea, (@) (g5a®))
= Z €a, (T gaﬁ

== (9511)7 :gaﬁ = (gﬁa)
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Now
ghn = ((g5)") " Uu NUs = GL(r,R) s C* map

The transition map

* * _1
hE o(hg) Uy NUs x R" = Uy N Us x R

is given by »
BE o (hE) (o) = (w05 (0)v) = (v, (9F) T (2)0)

while its inverse is given by
* * _1 * —
RE o (RET) (@,0) = (w 9fn(@)v) = (2 (950 ) " (@)v)
The above smooth structures gives
wg« : E* = M is C° vector bundle of rank r
10.2 Other Operations
Similarly, for {eq, };_; € frame of E|; := 75 (Us) and {fa, }ioy € frame of F|, = 72 (Us)
o {ea, iy U{fa, 5=y is C= frame of (E& F)|, .
o {0, @ fo; |1 <i<r, 1<j<s}is O frame of (E® F)y .

. {eail/\-~-/\eaik [1<iy < - <ip <r}is C™ frame of (AkE)|UQ for k <.
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11 Tensor Bundles

11.1 Tensor and Forms
Definition 11.1 (Cotangent Bundle). Let M be C*° manifold with dimension n. Let p € M
e A cotangent vector at p € M is a vector in Ty M = (T, M)*.
e T7M 1s the cotangent vector space at p.
o T"M :=(TM)* =|],cps Ty M a C* vector bundle of rank n is the cotangent bundle.
Definition 11.2 ((r, s)-tensor and s-form). Let M be C*° manifold with dimension n.

o TI(M) := (TM)®" @ (T*M)®* is C> wvector bundle of rank n"*5. A C* (r,s)-tensor on M is a C>
section of T (M).
Space of smooth (r, s)-tensors on M := C(M,T.(M))

o A*T*M is C* wector bundle of rank (Z) A C>® s-form on M is a O section of AST*M C T°M =
(T*M)®s.
Q* (M) :=C>®(M,\N°T*M)
is the space of C*° s-forms on M.
Remark 11.1. Given smooth manifold M.
o feC™(M) is (0,0)-tensor.
o X € X(M) is (1,0)-tensor.
e 1-form are exactly (0,1)-tensors.

e s-forms are examples of (0, s)-tensors.

Example 11.1 (Differential of smooth function). Let M be smooth manifold of dimension n. Let p € M and
(U,9) a C*® chart around p where ¢ = (x1,--+ ,x,). Let f € C°(U), then its differential df

dfy:T,U »R € T;U

and satisfies
o, of
<df7 8$1> - (9561

Hence df is (0, 1)-tensor, or equivalently, 1-form.

e C>(U)

Example 11.2 (dz;, tensors and forms in local coordinates). We pass to local coordinates. Let (U, ¢) be C*
chart for M with ¢ = (x1,- -+ ,x,) for z; € C°(U).

(i) The differentials of coordinate functions {dx;} are smooth sections of T*M|,; =T*U — U s.t.
dx; U — T*MlU st.p— (dml)p : TpM — T¢(p)R =R

0 Bl‘i s
(1) (5 () = g = i

where {%} is C* frame of TM|, = TU. Hence {dx;} is the C* dual frame of T*M|,; = T*U.

(i1) For any f € C>(U) one writes
af =5 2 g,
More generally, on U, C*™ wvector fields as (1,0)-tensors are
iwi
P ’Lal‘i
where a® € C*(U), and C* 1 -forms as (0,1)-tensors are
Z(lidfﬂi
where a' € C*(U).
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(iii) C* (r,s)-tensors are

i iy O 9
Z als“:‘r' ®...®7®dle®-~-®dxj5 (12)

J1y 5T ax ax
1<iy,+ ir<n " !

1<j1,+,ds<n

r

for a0t € C°(U). And C* s-form is

J15m s

Yo g dag A Aday,

1<gi,,js<n

with convection dx1 N\ dre = dz1 ® dre — dro ® dxy.

11.2 Pullback and Pushforwards

Definition 11.3 (Pullback of (0, s)-tensor under C*° map). Let M, N smooth manifolds. ¢ : M — N C*
map.

(i) dop : TyM — Ty,yN. One get pullback dual map d¢}, : Th N — Ty M s.t.

(p)
do,(Y)(X) =Y (d¢p(X)) VXeT,M and Y eTj, N
which generalizes to s inputs
(dpy)®* + (TON) gy = (Tg) N)P* = (TIM) = (T, M)®*
s.t.
(d¢;)®s(yl - Q Ys)(Xla R} XG) = (Yl Q& Ys) (dQS?S(Xla Tty Xs))
=M ®--- @) (dop(Xn), -+, dp(X5))

VX Xs€eT,M and Yy ---Ys €T N.

(i) We define the pullback of (0, s)-tensor
¢* : C®(N,T'N) — C*(M, T°M) T+ ¢*T
from (0, s)-tensor on N to (0,s)-tensor on M s.t. Vpe M
(6"T)(p) = (dg})** (T(¢(p)))

where T(¢(p)) € TY(N)p(p) and (dg3)®* (T(¢(p)) € TAN) g()) € TO(M),,. In particular, for T € Q*(N),
for any Xq,--- , X € X(M)

(@ T) (X1, -+, Xs) = T(do(Xn), - -, do(X))
One can check ¢*T : M — T7 M s a C*° section using local coordinates.

(iii) The above definition works for pullback of s-forms, i.e. ¢* : Q*(N) — Q°(M). As a particular example,
consider Q' (N) the space of 1-forms.

(a) If f € C°(N) = Q%(N), so df € Q'(N) as in Ezxample 11.1. For any ¢ € N

df(q) =dfy : T,N R st df =) g; dy; onV
i=1 7"

where (Y1, -+ ,Yn) 18 local coordinates on V. C N open. One has the following commutative lemma
Lemma 11.1. ¢*df = d(¢*f) € QY(M)

Proof. For any p e M

(¢"df)(p) = doy,(df o)) = dfp(p) © dpp = d(f © ¢)p = d(¢" f)(p)
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(b) If more generally take any 1-form over N with smooth frame {dy;}?_, in local coordinates, one has

Ordy; =Y mjdxj € Q' (M)

i=1
so for the local coordinate representation,

n

¢* (Y ady;) = (a;0¢) ¢"dy; € Q'(M)

i=1 i=1
for a; € C>®(N).
Example 11.3. Let ¢ : (0,00) x R — R? be
o(r,0) := (rcos(f),rsin(0)) = (z,y) € R

We’d like to compute ¢*dzx, ¢*dy and ¢*(dx A dy). Recall ¢*(x) = rcos(0) and ¢*(y) = rsin(0).

1. ¢*(dz) = d(¢*x) = d(r cos(f)) = cos(8)dr — rsin(0)do.

2. ¢*(dy) = d(¢*y) = d(rsin(0)) = sin()dr + r cos(9)d6.

3. ¢*(dx A dy) = d(¢*z) Ad(p*y) = rcos?(0)dr A d + rsin®(0)dr A dO = rdr A df.
We may also compute

@ (—ydz + xdy) = —rsin(0)(cos(0)dr — rsin(0)d0) + r cos(0)(sin(0)dr + r cos(6)db)
=r2df

Lemma 11.2. For M; i> Ms EN M3
(go f)F = fg": C(Ms, TJ(Ms)) — C>°(My, T (My))

Definition 11.4 (Pullback and Pushforward of (r, s)-tensor under C*° diffeomorphism). Let M, N be smooth
manifolds with the same dimension. Let F : M — N be C* diffeomorphism with inverse F~': N — M. Note
for any p € M we have F(p) € N.

(i) Define pullback F* : C*°(N,TI(N)) — C®(M,Tr M) that takes (r,s)-tensor T on N to F*T, a (r,s)-
tensor on M

(F*T)(p) := (dF; 1) @ ((dF)*)®° (T(F(p)))

for T(F(p)) € (TIN)r@) = (TrpyN)®™ ® (T;i(p)N)@S. One can check F*T : M — TTM is a C* section
using local coordinates.

(i) Define pushforward
F,:= (FYHY*:C®(M,T"M) — C*(N,T"N)

Lemma 11.3. For M; E) Ms E) M3z C° diffeomorphism.
(GoF)*=G*o F*

Example 11.4. Let M = {(r,0) | r >0, 0| < 5} and F : M — R? s.t. F(r,0) = (rcos(6),rsin(f)). Consider
the pullback of tensor field A = z%dy Rdy by F
1

F*A = md(r sin(f)) ® d(rsin(0))

1 _ .
= W(sm(@)dr + rcos(0)df) ® (sin(0)dr + r cos(0)do)

tan?(#)
= T

dr@dr+@(dr@@dwde@dmme@w
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11.3 Lie Derivatives of Tensors

We discuss Lie Derivative Lx on (r, s)—tensors for X € X(M).

Definition 11.5 (Lie Derivative on Tensors). Given X € X(M) for M C* manifold. We want to define
Lx :C®(M,TIM) — C®(M,T'M) s.t. T — LxT extending

Lx:C®(M)—=C®(M) st. f—Lxf=Xf on (0,0) — tensor
Lx :X(M)— X%X(M) st. Y — LxY :=[X,Y] on (1,0) — tensor

o Approach 1. We want to define Lx : QY (M) — QY(M) (0,1)-tensors by requiring that it is R-linear and
satisfies the following Leibnitz rule: For any

ac Q(M)e C®(M, T*M =T)(M)) and Y € X(M)=C>(M,TM =T, (M))

note a(Y) € C*°(M) s.t.

The Leibnitz rule is

The only way to define Lx is as following
— Define Lx : Q' (M) — Q' (M) s.t. For any
a€ QY M) e C®(M, T*M =TY)(M))  and Y € X(M)=C>(M,TM =Ty (M))
(Lxa)(Y) = X(«(Y)) — a([X,Y])

— tensor product
Lx(S®T)=(LxS)@T+S® (LxT)

this extends to tensors of any type.

e Approach 2. Given X € X(M) we want to define LxT where T is (r, s)-tensor on M, using the local flow
of X. For any p € M, there exists open neighborhood U of p in M, fore >0

¢t:UC—O>OM t € (—e,e)
Define
(BxT) )= G| @
t=

where (—¢,€) BN (TEM), = (T,M)®" @ (Ty M)®* maps t — (¢ T)(p). We have seen that

(Lxf)p) =X(p)f ¥ feC*(M)
(LxY)(p) = [X,Y](p) VY €X(M)
Claim: LxT = LxT for any T tensor on M of any type (r,s). It suffices to check that
(a) (Lxa)(Y) = X(a(Y)) - a([X,Y]) for any
a€ QY M) e C®(M, T*M =TY)(M))  and Y € X(M)=C>(M,TM =Ty (M))
(b) N N N
Lx(S®T)=(LxS)@T+S® (LxT)

To do so, one use local flow

{ ¢i ((Y)) = ¢ ()7 (Y)
¢i(a(S@T)) = ¢;(5) @ ¢;(T)

and take derivative % to determine uniquely.

=0
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Lemma 11.4. For w € Q¥(M), 7 € QY(M) and X € X(M)
Lx(wAT)=(Lxw)AT+wA (LxT)
Lemma 11.5. For w € Q¥(M), f € C®°(M) and X € X(M)
Lx(fw) = Lx(flw + f(Lxw) = (X flw + fLxw
Lemma 11.6 (Leibnitz Rule for Lie Derivative). For any w € Q°(M), X € X(M) and Y1,---,Y, € X(M)

Lx(w(Y1, -+, Y) = (Lxw)(Y1,+ . Ya) + Y _w(Yi, -+, Yoy, [X,Yi], Yiga, -+, i)
=1

Example 11.5. Let w = —ydx + xdy € Q'(R?), and X = —y% + 333% € X(SY). We want to compute Lxw.
Using that Lx is a derivation and Lx commutes with d

Lx(—ydz + zdy) = —Lx(ydz) + Lx (zdy)
= —(Lx(y)dz 4+ yLx (dx)) + (Lx (x)dy + 2Lx (dy))
= —Lx(y)dz — yd(Lx(z)) + Lx (z)dy + xd(Lx(y))

it suffices to compute

Ly(@) = —yL g (@) + 2L g () = —y
0 0
Lx(y) = <_y8:c +x8y) y=x

Lx(—ydx 4+ zdy) = —adx + ydy — ydy + xdx =0

Example 11.6. Let A € C®(M,T9(M)) be covariant 2-tensor field for M with dimension n. Let V & X(M).
We wish to compute Ly A in local coordinates. First note Ly (dz') = d(Ly ') =d(Va') =dVi=Y]_, g;/,: dzk.

S0

Ly (A;jdr' @ da’) = Ly (Ayj)dz’ @ do? + A;j(d(Va') @ do? + da' @ d(Va?))
B < vk ovk

VAij + Akj% + Azkax]) de' ® da’

11.4 Exterior and Interior derivatives on Forms
We discuss exterior and interior derivatives on forms. Let Lx : Q°(M) — Q°(M) be Lie derivative on s-forms.

Definition 11.6 (Exterior Derivative on forms). d: Q*(M) — QT (M) is exterior derivative if it is R-linear
and satisfies

(a) For any f € C(M) = Q°(M), df € Q' (M), df (p) = dfyp : TyM — Ty, R = R where df (X) = X(f) for
X € X(M), i.e., df is the differential of f.

(b) For any f € Q°(M) we have df € Q' (M) and d(df) =0
(¢) For a € Q" (M) and g € Q°(M)
dlaNp)=daNp+(—1)"andp

In local coordinates (U, ¢) C chart on M. For o € Q*(M), on U

o = Z ajh...,jsdle /\"'/\dl‘js

1<g1,3s<n

for aj, ... j, € C®°(U). Then we compute

doo=d Z ajlf..,jsdle /\"'/\dlL’jS

1<g1, s <n

= Z daj17...7js /\CZI]‘1 /\"'/\dl‘js

1<g1,,4s<n

" da;, ...
J1, " 5)s . .
g E Oy dry Ndxj, Ao Ndxy,

1<g1, 5 js<n k=1
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Proposition 11.1. Let d be the exterior derivative.
(i) ddw =0 for any w € Q°(M).
(ii) For F: M — N C* map, for any w € Q°(N)
d(F*w) = F*(dw) € Q*T1(M)
This is naturality of d that it commutes with pullbacks do F* = F* od
(iii) For X € X(M) and w € Q(M)
d(Lxw) = Lx(dw) € QT (M)
so d commutes with Lie derivatives do Lx = Lx od
(iv) For o € Q*(M) and Xo--- X5 € X(M)

S

(da)(Xo -+ Xo) = (1'% (alXo- -+ Koy X))+ D (1) Pa (X0, X)) Xoy oo Koo, Koo LX)

i=0 0<i<j<s
or in short, for « € Q1(M), X, Y € X(M)

(da)(X,Y)=Xa(Y) - Ya(X) - a([X,Y)]) (13)

Proof for Prop 11.1 (iv) QY(M) case. By linearity in R, it suffices to assume o = fdg where f, g € C*°(U) for
U open set on M.

(d )( (df Ndg)(X,Y) = df (X)dg(Y) — dg(X)df (V) = (X [)Y g — (Xg)Y f
X((fdg)(Y)) = X (f)dg(Y) + fX(dg(Y)) = (X[)Y g+ fX(Yyg)
Y(fdg(X)) =Y fXg+ fY(Xg)

fdg(XY —YX) = fXYqg— fYXg

Ya(X

Y) =
Xa(Y)
)
a([X, Y1)

Example 11.7. o Let f € C(R?), then

O o+ Pay+ P a

df@ oy 0z

e Let a = Adx + Bdy + Cdz for A, B, C € C>®(R3). Then

da =dANdx+dB ANdy+dC Adz

0A 8A 0A 0B aB 0B oC GC oC
BA 0A 0B 8B 50 80

= fa—ydas/\dynLadz/\dl’Jr%dx/\dyf Edy/\dzf %dz/\derafydy/\dz
0B 0A oC 0B 0A 0C

= (8:5 - 8y> dzr A dy + <8y - aZ)cly/\dz—&- (82 - 8x) dz N dx

e Let a = Cdx Ndy + Ady A dz + Bdz Adx for A, B, C € C*®(R3)
da=dCANdexNdy+dANdyNdz+ dB ANdz A dx
ocC 0A OB
—a—dz/\dx/\dy—l—%dm/\dy/\dz—i-a—y
<8A 0B 0C

—+—+—|dxAdynd
3x+8y+8z) vAGyhdz

dy Ndz A dx

Since d* = 0, this is to say for any f € C°°(M), curl(Vf) = 0, and for any X € X(R3), div(curl(X)) = 0.
Definition 11.7 (Interior Derivative on forms). X € X(M). Define interior derivative
ix QM) = QN M) st a€Q (M)~ ixae€ QM)

by satisfying the following
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e ixf =0 forany f € C®(M).
o (ixa)(Y1, -, Y1) =a(X, Y1, - ,Ys_1) forY1,--- ,Ys_1 € X(M).
Proposition 11.2. Let ix denote interior derivative
(i) ix oixw =0 for any w € Q°(M)

(ii) a € Q"(M), B € (M)
ix(Oé /\B) =ixa B+ (—1)TC¥/\ixﬂ

(iii) Cartan’s formula.
doix +ixod=Lx

Lemma 11.7. For anyw € Q°(M), X, Y € X(M)

Lx(iyw) — iy(LXoJ) = i[ny]w
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12 Riemannian Metric

Let M be C°° manifold.

Definition 12.1 (Riemannian Metric). A Riemannian Metric on M is a C* (0,2)-tensor g on M s.t. ¥V p € M,
g(p) € TyM @ T M

g(p) : T,M xT,M —- R defines an inner product s.t. (v1, v2) — g(p)(vi, v2)
* 9(p)(v1,v2) = g(p)(v2, v1)

e 9(p)(v,v) >0 ifv#0

Let n = dimM. Then the tensor bundle TYM = T*M @ T*M = S*T*M ® A*T*M splits into product of
n(n+1) and n(n—1)
2 2

symmetric and anti-symmetric tensor bundles, with rank respectively.

For anype M,
o (S?T*M), = {symmetric bilinear forms on T, M }
o (A’T*M), = {skew-symmetric bilinear forms on T, M }

and g € C°°(M, S*T*M) = {C> symmetric (0, 2)-tensors}.
The pair (M, g) is a Riemannian manifold.

In local coordinates, let (U, ¢) be C* chart for M with ¢ = (z1,--+ ,zp).

dwida; = P22 ‘gdxj DdTi ooy, 52 T M)

So {dz;dz; |1 <i<j<n}is C* frame of S? T M|, = S2T*U. Recall that on the other hand
{dx; Ndzj =dor; @ drj —dej@dx; |1 <i<j<n}
is C* frame of A T*M|,,. One may write
darf = dx;dx; = dr; Q dx;
And on U
9= gijde; ®dx; = gidridr;  gi; = gji
ij ij
For dim M = 2 with (z1, z2),
g = gndﬂ?% + 2912d$1d5€2 + gzgdl‘g

Example 12.1 (Euclidean and Polar coordinates). Let M = R™ with Euclidean metric
i=1 ij

s _J1 oa=g
5091j—61]—{0 27&‘7

o For R? with (z,y) = (rcos(),rsin(0)), one may write in polar coordinates
go = da® + dy* = (cos(0)dr — rsin(0)df)* + (sin(0)dr + r cos(0)dd)* = dr? + r?d6?
o For R? with (x,y,z) = (psin(¢) cos(f), psin(¢) sin(), pcos(¢)) for p >0, 6 € (0,27) and ¢ € (0, 7).

go = dz? + dy® + d=*

= (sin(¢) cos(#)dp — psin(6) sin(¢)dd + p cos(¢) cos(0)dp)? + (sin(¢) sin(0)dp + p cos(#) sin(p)dh + p cos(p) sin(6)dep)?
+ (cos(¢)dp — psin(¢)d¢)?

= dp? + p*d¢? + p*sin®(¢)db?

One may also do for smooth frames
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o OnR?, da? + dy? = dr? + r2d9%. We have {a%, 6%} orthonormal with

0 0 0 0 0 0
— — Y =]l=(—. — _— — ) =
<8m’8x> <8y’8y> <8x’8y>
We have 5 19
g 10 2
or r 00 on R\ {0}

as orthonormal basis

o OnR3, da? 4 dy? + dz* = dp? + p?d¢? + p*sin®(¢)db? with orthonormal frame {a%, 8%’ %}, One has

0 10 1
o 19 9 .
9 06 psm(g)op  Onopen dense subset UC

as orthonormal basis.

Definition 12.2 (pullback of Riemannian metric). (M, g) Riemannian manifold. If f : M’ — M is C* map
from C*° manifold M’ to M. Then f*g is a C*° symmetric (0,2)-tensor on M’. Moreover, for f*g to define
an inner product so that it equips a Riemannian metric on M’, we have the following equivalent conditions: For
any p € M’, for any v #0 € T,M’

(f*9)(v,v) := g(p)(dfy(v), dfp(v)) >0

iff for any p € M,
dfy : T,M' — Ty,yM s injective

iff [ is an immersion

Remark 12.1. If (M, g) is Riemannian manifold and M' C M a C* manifold, i : M’ — M inclusion map as
C embedding. Then (M',i*g) is a Riemannian submanifold. For anyp € M' C M,

(i*g)(p) : T,M' x T,M" — R

is the restriction of g(p) : TyM x T,M — R.

Example 12.2 (Canonical metric on S™(r)). S"(r) == {(x1, - ,Znr1) € R* | S0 22 — 12} © R for
r > 0. Define i, : S*(r) — R"*1 inclusion.
Gean) 1= irg0 = i3(daf + - da )

defines canonical metric on the round sphere of radius r. For n =3
go = dp® + p*d¢? + p sin®(¢)do”

One has ,
G5 = % g = r2(de? + sin2(4)d62) ¥ (¢,0)

local coordinates on U C S?(r) open.

Definition 12.3. f: (My,g1) — (M2, g2) is a C* map between two Riemannian manifolds.
o We say f is an isometric immersion if f is an immersion and f*go = g1.
o We say f is an isometric embedding if f is an embedding and f*gs = g1-

o We say f is an isometry (local isometry) if f is a diffeomorphism (local diffeomorphism) and f*g2 = ¢1

Example 12.3. i, : (S”(r),gf;gr)) — (R go) is an isometric embedding.
Z1

Example 12.4. A € GL(n,R). Ly : R®™ = R"™ linear isomorphism x = | @ | = Az is C* diffeomorphism.
Ty,

For go = Y i, dz?, when is L an isometry between (R™, go)? i.e., when is L go = go?. Note for A = (a;;),

77
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(Az); = 32, aijz;
L:ZZZ?Z = Zaija:j

Ldz; = d(Lx;) Zawdajj

Ligo = LZ(Z dz?) = Z(a”da:] Vapdry) = Z (Z a”azk> dx;dxy,
i=1 ik Gk=1 \i=

Z ATA dxjdxk

7,k=1

So Lygo = go iff ATA=T, iff A€ O(n). ForbeR", T, : R" - R" s.t. &+ x+b. Here Tjx; = x; + b,
Tydx; = dx; and T) go = go-

Theorem 12.1. f: (R" go) — (R™, go) is an isometry iff
flx)=Az+b for A€ O(n) and b € R”
i.e., f is a rigid motion.

Observe that, A € O(n+ 1) and Ly : (R"1 go) — (R*FL go) is an isometry and La(S") = S™. So L, :
(S™, gean) = (S™, gean) is an isometry.

Gean =790 Lago = Lago
Theorem 12.2. f: (S™, gean) — (S™, gean) 18 an isometry iff f : S* — S™ is f(x) = Ax for some A € O(n+1).
Example 12.5. f: R — St = {(z,y) € R? | 22 + y? = 1} g R? where f(t) := (cos(t), sin(t)). So
FroS = Fri*(da® + dy?) = (d(cos(t)))? + (d(sin(t)))? = (—sin(t)dt)? + (cos(t)dt)? = dt?
(R, dt?) = (S, gean) is a local isometry, and in fact a covering map.
Definition 12.4 (Product Metric). If (My,g1) and (Ma,g2) are Riemannian manifolds, then
g1 X g2 '=T1g1 + T3z
is a Riemannian metric on My x M. For any p; € My, Ty, p,)(My x Ma) =T, My @& Ty, M> so that
91 X g2(psp2)lry, o yxanny = 1P, v, @ 92(P2)l,, 0,
i.e., the product metric writes
(91%92) (pr.p2) * T(py,po) (M1 X M2) X T, 1oy (M1 xMa) — R st {(ur,uz), (v1,v2)) = (ug, v1)+{ug, va) Y u, v; € Tp, M;
Example 12.6. f : (R, gy = dt? + ---dt2) — (T" =S x - xS gean X - X gcan) C (R?", go) the flat

n-torus.
flty, - tn) = (cos(t1), sin(ty), - ,cos(ty), sin(t,))

f is a local isometry.
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13 Volume, Length and Distance

13.1 Volume

Riemannian metric gives rise to volume, length and distance.

Definition 13.1 (Volume Form). A volume form on a C*° manifold M of dimension n is a nowhere vanishing
C*® n-formv € Q"(M) = C>(M, A" T*M)

Lemma 13.1. Let M be C*° manifold. Then the following are equivalent:
e There exists a volume form v € Q™(M) on M
o A"T*M is trivial.
o M is orientable.

Hence a volume form v € Q"(M) determines an orientation on M. vy and ve volume forms determine the
same orientation iff v1 = pra for some p € C°(M) with p > 0.

Proof of Existence of Volume form implies orientable. Suppose v € Q"(M) is a volume form on M. We may
choose C* atlas {(Uqy, ¢o) | @ € I} where ¢o = (2, ,2%) on M s.t., on U,

V=andzy A Adxh aq € C*(Uy,) aq >0

On U, NUg
V:agdxf/\-n/\da:g:aadsc‘f‘/\n#\a?%
For
$p0ba" i Ga(UaNUp) = ¢p(Ua NUs)  (af,+,25) = (2 (25, -+ ,23), )
Hence
Al A~ AdaB = Zaxlda A )
6 ;“ In
Jn n
B
— det(d(d5 0 671)) = det( 2L
8xj

= agdxf A ANab =agdet(d(gpo¢yt))daf A--- A da®
= andzy A--- Ndzxy
— det(d(¢5095") = =2 >0

@

O

Proposition 13.1 (Orientable implies Existence of compatible volume form). Suppose (M, g) is an oriented
Riemannian manifold. Then there exists a unique volume form v € Q™ (M) where n = dimM which is compatible
with g and the orientation. In fact, in local coordinates

vg(p) = 1/det(gi;)(dz1 A -+ Adxy,)(p)

Remark 13.1. For any p € M, let (e1, - ,e,) be an ordered orthonormal basis of (T,M,(,-),) where
(ej,ej)p = 05 is the inner product defined by g(p). Let {( oy Ga) | @ € I} be the atlas defining the given
orientation. For p € Uy, one has coordinates ¢o = (', ,2%). (€1, ,ey,) is compatible with the orientation
in the sense that

o — Zaij%(p) A=(a;)  det(4)>0
;

j=1
Hence
(dxS A~ Ndzy)p (e, ,en) >0
Let (e, ,e;,) be ordered basis of Ty M dual to (e1,--- ,e,). Then

vip)=ei A Ney € N"TM

iff v(p)(er, -+ ,en) = 1 for any ordered orthonormal basis (e1,--- ,en) of (LM, (-, )p) compatible with the
orientation.

(e ei)p = 9(0)(eire;) =05 gp) =) e @ef
=1
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Proof of 13.1. For Existence, for any p € M, define v(p) := e} A--- A el as above. (U, ¢) is C* chart on M
compatible with the orientation for ¢ = (z1,--- ,2,). On U, g¢;; = Zij gijdx;dx; for gi; = gj; € C°(U). Let
p €U, let (e1,--- ,e,) be the orthonormal basis of T, M compatible with the orientation. Then

&E waej B = (b;j) € GL(n,R) det(B) >0

Then

540) = (5-(0). 5o 0)

= <Z birer, Z bjcer)
k ¢
= Z birbjedne
Kl
= bubjr = (BB,

k

— V)5 () 5 () = v10) (Z bryer.- ,me.en)

= det(B)v(p)(e1, - ,e,) = det(B)
v(p) = det(B)(dxy A -+ Adxy,)

= \/det(gi;)(dxy A - A dz,)(p)

using det(g;;(p)) = det(BB”) = (det B)?. Now on U with g = > i gijdidzy, v = /det(gi;)dzy A<+ A dy,.
We write vg = v. O

Example 13.1. S%(r) = r2(d¢? + sin®(¢)d0?) with (¢,0) = (x1,22). Here

r? 0 .
(o 02)= (0 sramy) = @@ =rtsinto)
So v = \/det(g)de A df = r?sin(¢)d¢ A df. Hence
2T
Vol (S*(r), E’aﬁf / / r? sin ¢ dopdf = 4mr?

13.2 Length

Definition 13.2 (Length). For (M,g) Riemannian manifold, =y : [a,b] — M is a C*° curve for —oo < a < b <
oo. For anyt € (a,b), ¥'(t) € Ty)M.

Y Ol = V0, 7' () = Valy ) (V' (1), v (2)

b
— [ 1l

Recall f: (M,g) — (N, h) is isometric immersion, iff for any p € M,

(v1,v2)p = (dfp(v1), dfp(”2)>f(p)

the former defined by g(p) and the latter defined by h(f(p)). Then for any v : [a,b] = M C™ curve, f o~y :
[a,b] — N is also C*° curve. Moreover

Define

Lg(y) = La(f o)

Example 13.2. H = {(z,y) € R? | y > 0}. go = d2*+dy? Euclidean metric. h =
For vy : [wo, x1] = H s.t. 1i(t) := (t,50) and vz : [yo, y1] = H s.t. 72(t) = (20,t), then

2 2
de4dy” s hyperbolic metric.

RO = 5-00) %0 =5 ()
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Then

0 0 0 0
go(z,y) (aax + ba—y,c% + day> = ac+ bd
0 0 0 0 ac + bd
h@ﬂ)@ar+%m”ar+%@)—lﬁ

Vi ®)lgo =1 = 112(t)]g0
1

1
!
MO =43 =—
=)=
1
(0l = 1
1 ]
%wn=/|ﬂmmw= p——
xo o
Y1 Y1
%wa:/|ﬁ@mm=/ dt = y1 — o
Yo Yo
Ldt  x—x
lh(m) =/ e L
z0 YO Yo

v gt
thrz) = [ 5 =log(un) ~ log(uo) = los(2)
Yo Yo

Let A\ >0 ¢): H— H s.t.
oa(z,y) = (Az, Ay)

SO

o*r = \w o*dx = \dx
$r90 = PX(de® + dy?) = N (da® + dy®) = Ngo
Lgo (D 07) = Mgy (7)
dr? + dy2> _ N2da? + N2dy? _

Pxh = @) ( Y2 - 222 h

Hence for any X > 0, ¢y : (H,h) — (H, h) is an isometry.

13.3 Distance

More generally if v : [a,b] — [a,b] is a piecewise C*° curve s.t. v : [a,b] — M is continuous. i.e., let
a=ty <t <--<trp_1 <tp=>bwe have

’y|[ti»ti+1] Coo 'l = O’ e ,k
Then +'(t]) and /(t;) exist. so

k tit1
@m:zl I (8)], dt
1=0 i

Definition 13.3. Let (M,g) be a connected Riemannian manifold. Then for any p, ¢ € M, there exists
v:[0,1] = M piecewise C>° curve s.t.
10)=p A(1)=gq
We define the distance between p, q determined by g to be
dg(p,q) :=inf{ly(t) | v :[0,1] = M piecewise C* ~(0) = p, v(1) = ¢} € [0, 00)

Then

® dy(p,q) = dy(q,p) and dg(p,p) =0

® dy(p,q) + dg(q,m) = dg(p,7).
In fact, if M is Hausdorff, then dg(p,q) =0 = p =g, Then (M,d,) is a metric space.

Example 13.3 (Bugged-eyed Line). M = (R x {0,1})/ ((z,0) ~ (z,1) except for x =0). FEuclidean metric
dz? on R. Define m: R x {0,1} — M as the projection. There exists a unique metric g on M s.t. m*g = dx>.
Now [0,0] # [0,1] in M but d4([0,0], [0,1]) = 0.
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Lemma 13.2. If f: (M1,91) = (M2, g2) is an isometry, then

dg, (f(p), f(@)) =dgr(p,q)  Vp,q € M
Proposition 13.2. For z, y € R™ with go = dx? + --- + dx?

n

> (@i —yi)?

i=1

dgo (2, y) = |z —y| =

Proof. dg,(x,x) = 0. Suppose z # y, let d = |z —y| > 0. Then there exists A € O(n) s.t. upon rotation,
A(x —y) = (d,0,---,0). Then since translation by y is an isometry and that rotation by O(n) is isometry

dgo(xay> = dgo(x - yvo) = dgo(A(aj - y),O) = dgo((d’07 T 70)70)
:dyo((oﬂ"' 70)7(d707"' 70))

It remains to show that dg,((0,---,0),(d,0,---,0)) = d. Consider v : [0,1] 2% R™ smooth curve so

Y(t) = (z1(t), - ,zn(t))  ~(0)=(0,---,0), v(1) = (d,0,--- ,0)

Then

) = [ WOlwat= [ @2 raras [ ol
1

z/iﬂuﬁﬁ:d—ozd
0
= g!]o ('70)

where yo(t) = (dt,0,---,0) so v(0) = 0 and (1) = (d,0,---,0). In fact if ¢ : (R", go) — (R", go) is any
isometry, then

lp(z) — d(y)| = |z -yl
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14 Discrete Group Action
Let G be a group acting on M, where M is
e a set
e a topological space
e a topological manifold
e a C'*° manifold
e a (' manifold equipped with a Riemannian metric g.
Denote M/G as set of G-orbits, where M/ ~ s.t.
Ty ~ To iff dg€G st xo=gxy
e For M aset, 7 : M — M/G is a surjective map.

e For M a topological space, 7 : M — M /G equips M /G with the quotient topology. Hence 7 is a surjective
continuous map.

e For M topological manifold, when is M/G also a topological manifold?
e When does M/G admit a C* structure s.t. 7: M — M/G is C*° manifold?
e When does M/G admit a Riemannian metric § s.t.

m:(M,g) = (M/G,§)

is a local isometry?

14.1 Group Action on Set

Definition 14.1 (Left/Right Group Action on Set). Let G be a group and M be a set. A left (right) action of
G on M is a map
o:GXM—>M s.t. dg,x)=g-x (x-g)

where for any g € G, the map
Gg: M — M s.t. ¢g(z) =g x

s a bijection s.t. the following holds
e ¢ € (G identity gives ¢ : M — M identity map.
e Forany g1, go € G
1. For left action, ¢4, © @g, = Gg1g,- In other words
g1 (92 7) = (9192) - x YexeM
2. For right action, ¢4, © ¢y, = ¢g,q,- In other words
(x-92) g1 =2 (9201) VeeM
o In both cases, ¢pg—1 0 ¢y = ¢ = idyy = Qg1 = qﬁ;l : M — M. Hence ¢4 as bijection is automatic.
For any g € G, it corresponds to bijection ¢4 : M — M s.t. ¢p4(x) =g-x on M. Hence
G — (Perm(M), o)
where Perm(M) = {¢ : M — M | ¢ is bijection} and o denotes composition. We have group homomorphism
1. For Left group action

g€ G ¢y € (Perm(M), o) s.t. g, © Ogy = Dgigs

2. For right group action

geG— (bg*l S (Perm(M), O) s.t. (bgfl o (bg;l = (bg;lgfl = (b(glgz)*l
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Definition 14.2 (Free and Transitive). Let G be group and act on a set M. We assume left action.

e The G-action is Free if for any p € M

g-p=p < g=cec identityc G

o The G-action is transitive if for any p, ¢ € M, there exists g € G s.t. g-p=4q

Definition 14.3 (Stabilizer and Orbit). Let G be group and act on a set M. We assume left action. For any
peEM

o Gp,:={g€G|g-p=p} denotes the stabilizer of p € M.

e G-p:={g-pe M| ge G} denotes the orbit of p € M.
Lemma 14.1. One has interpretations using stabilizer and orbit.

o G acts freely on M if G, = {e} for eachp € M.

o G acts transitively on M if M = G - p for some p € M, which further implies M = G - p for anyp € M.

14.2 Group Action on Topological Space

Definition 14.4 (Continuous Group Action on Topological Space). Suppose M is a topological space and G is
a group acting on M (on the left/right). We say the action of G on M is a continuous if

Vged ¢g : M — M is continuous
A continuous action of a group G on a topological space M gives rise to a group homomorphism
G — (Homeo(M), o)
where Homeo(M) := {p: M — M | ¢ is homeomorphism}.

Definition 14.5 (Properly Discontinuous Group Action). Let M be topological space and let G be a group
acting continuously on M. We say the action of G on M is ‘properly discontinuous’ if for every p € M, there
exists open neighborhood U of p in M s.t.

Ungy(U) =0 VgeG\{e}
where e denotes the identity.

Remark 14.1 (Properly Discontinuous Group Action => Free Group Action). This implies

¢, (U)N¢g,(U)=2 Vg #g€eG
This further implies G acts freely on M in the sense that if p € M, then g-p=1p iff g =e.

Proposition 14.1. Let G be a group and M be a topological space. If G acts continuously and properly
discontinuously on M, then
7 M— M/G

with M /G equipped with quotient topology is a covering map.
Proof. Let p € M/G and p € 7~ '(p) € M. There exists neighborhood U of p s.t. ¢4, (U) N ¢, (U) = @ for any
91, 92 € G with g1 # ¢g2. Let U =7(U) C M/G then p € U and

T 1(0) = || 4,(0)

geG

is disjoint union of open sets in M. Hence 7=1(U) is open in M and so U is an open neighborhood of p in M/G.
Moreover, for any g € G

7T|¢H(U) oy (U) =T

is a homeomorphism. O

Corollary 14.1. If M is topological manifold of dimension n and G is a group acting continuously and properly
discontinuously opn M, then M/G is a topological manifold of same dimension n.
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Proposition 14.2 (M /G Hausdorf). Let M be a topological space. Suppose that a group G acts continuously
and properly discontinuously on M, and if p, ¢ € M are not in the same orbit of the group action, i.e.,

m(p) # m(q) € M/G
for quotient map ™ : M — M/G, then

e there exists an open neighborhood U of p in M and V of q in M s.t.
UnNegg(V)=o VgeG\{e}

which implies

¢q, (U)Ng,(U) =2 Vg #g2€G
o M /G with the quotient topology defined by 7 : M — M /G is Hausdorff.

Proof. Suppose D, § € M/G s.t. p#q. Choose p, ¢ € M s.t. w(p) =P and 7(q) = g. By assumption that G acts
continuously and properly discontinuously, there exists U; open neighborhood of p in M s.t. U1 N¢y(U1) = @
for any g € G\ {e}. Similarly there exists Vi open neighborhood of ¢ in M s.t. Vi N¢4(V1) = & for any
g € G\ {e}. Secondly, by assumption that p # g, there exists Us open neighborhood of p in M and V; of ¢ s.t.
Uy N¢y(Va) = @ for any g € G\ {e}. Then define

UI:W(UlﬁUQ) VZZW(Vlﬂ‘/Q)
U is open neighborhood of p in M/G and V is open neighborhood of § in M/G where U NV = @&. Thus M/G
is Hausdorff. O

14.3 Group Action on Smooth Manifold

Definition 14.6 (Smooth Group Action on Smooth Manifold). Suppose that a group G acts on a C*° manifold
M. We say that the action is smooth if

VgeG ¢y M =M is C™
Hence ¢g4 is C° diffeomorphism. We have a group homomorphism
G — (Diff(M), o)
where Diff(M) ={¢: M — M | ¢ is C* diffeomorphism}. Note Diff(M) C Homeo(M) C Perm(M).

Theorem 14.1. Let M be C*° manifold and let G be a group. If G acts on M smoothly and properly discon-
tinuously, then there exists a unique C*° structure on M/G s.t. the covering map m : M — M/G is a local
diffeomorphism.

Proof. Let M be C° manifold with smooth charts {(V;, x;)} where x; : V; = M.

e Since G acts properly discontinuously on M, for any p € M, we may choose (V,z) open chart where
(V) C U for U open neighborhood of M around p s.t.

UNney(U) =2 Vg#eeG

Thus 7|, is injective, hence y = mox : V. — M/G is injective. The family {(Vj,y;)} covers M/G. It
suffices to show for any y17 = mox1 : Vi - M/G and yo = moxe : Vo = M/G st. y1(V1) Nya(Va) # &,
we have y; L6 yy smooth.

o Let m; := 7|, (y;)- Let ¢ € y1(V1)Ny2(V2) and r = yy H(q) = 25 omy ' (q). Let W C Vi be a neighborhood
of 7 s.t. (mg 0 x2)(W) C y1(V1) Ny2(Va). Then the restriction of ;' o yo to W is given by
yr ozl = eyl o omows
It suffcies to show 7, * o 7y is smooth at py = 7, *(q).

e Let p; = 7r1_1 o ma(p2) then p; and po are equivalent in M, hence there exists g € G s.t. gps = p1. Thus

the restriction 77{1 O7T2‘$2(W) coincides with the diffeomorphism ¢g|$2(W). Since G acts smoothing on

M, we know it is smooth at po.

O
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14.4 Group Action on Riemannian Manifold

Definition 14.7 (Isometric Group Action on Riemannian Manifold). Let (M, g) be a Riemannian manifold
and let G be a group acting on M smoothly. We say this G-action on (M,g) is isometric w.r.t. the given
Riemannain structure if

VaeG o (M,g) = (M,g) is an isometry, i.e., ¢rg=g

Theorem 14.2 (Existence of Riemannian Metric § on M/G). Let (M,g) be a Riemannian manifold. Let G
be group. If G acts on (M,g) smoothly, properly discontinuously, and isometrically, then there exists a unique
Riemannian metric § on M/G s.t.

m: (M,g) = (M/G,g)

is a local isometry, i.e., 7*g=g.

Definition 14.8 (Metric on (M/G, g)). Notice for anyp € M/G, for any p € 7~ 1(p) € M,
drp : T,M — TH(M/G)

s a linear isomorphism. In particular

dr) ' T(M/G) — T,M

is injective. We define
§(p)(v1,v2) = g(p)(dﬂgl(m), dﬂgl(w))
This is well-define independent of p.

Example 14.1. G = {£1} = Z/27Z acts on (S", gean) s-t. for any g € G, ¢4 : S* — S" mapping x — g - x.
Here the only choice is ¢41(p) = £p for any p € S® C R, Then G acts smoothly, isometrically and properly
discontinuously on (S™, gean). There exists unique Riemannian metric g on P,(R) = S"/{£1} s.t.

T (Snagcan) — (PH(R)ag)
s a local isometry G = Gean and a covering map of degree 2. In particular forn =1,
1 e (L) 4
™ (87 gean) = (P1(R), §) = ( S7(5). géan

diffeomorphic to circle of radius a half. To see this, we consider

(R, dt (R2, dz? + dy?)
(S gcan %)7gcan)

Here

cos(t),sin(t))
1

5 sin(21))
*(dz? + dy?) = (— sin(t)dt)? + (cos(t)dt)? = dt?

*(dx? + dy?) = (—sin(2t)dt)? + (cos(2t)dt)? = dt?

=(
1
— 2t
(2 cos(2t),
7T1gcan (Zl oM
(i

\_/\_/

7"'Qgcan 12 O T2
Example 14.2. G = (Z",+) acts on (R", go = >, dz?) by
dm(z) =2 +m

for any m € Z™. This action is smooth and isometric and properly discontinuous. Then there exists a unique
Riemannian metric § on R™/Z"™ s.t. 7 is a local isometry

N\ A 1 A\" L L
w0 gn) /2 0) = (8100 ) ol x oo x ol )

is diffeomorphic to flat torus. In particular for n =1, m(t) := (5t cos(27t), 5 sin(2nt)). Thus

1

7* g2 = (i o m)*(da? + dy®) = (—sin(2mt)dt)? + (cos(2nt)dt)* = dt*
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Definition 14.9 (Orientation preserving map). Let f : My — My be a local diffeomorphism between oriented

C> manifolds. We say f is orientation preserving if for any p € My, there exists smooth chart (U, @) for M,
around p that is compatible with the orientation on My, then f:U — f(U) C My is a diffeomorphism

M 5" U

/|

My 5 FU) F eU) E R

¢

where (f(U),¢o f~1) is a C chart for My around f(p) compatible with the orientation on M.

Theorem 14.3. Let M be an oriented C*>° manifold and let G be a group. If G acts on M smoothly, properly
discontinuously and for any g € G, ¢g : M — M is orientation preserving, then there exists a unique orientation
on M/G s.t. m: M — M/G is orientation preserving.
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15 Lie Group

Definition 15.1 (Lie Group). A Lie group is a group G with the structure of a C*° manifold s.t.
AMGxGE—G s.t. (z,y) — xy
is a C°° map.
Remark 15.1. Given Lie Group G, its smooth structure satisfies the following
o Inverse. G = G s.t. x — 7' is a C™ map.
o Multiplication. G x G — G s.t. (x,y) — zy is a C* map.
o Left Multiplication. For any x € G, L, : G — G s.t. y+— L,(y) == xy is a C* map.
e Right Multiplication. For any x € G, Ly : G = G s.t. y— Ry(y) := yx is a C* map.
Example 15.1. We have a sequence of examples.
o (R",+)
e (GL(n,R),0) with global coordinates (a;;), and group action given by matriz multiplication.

— The manifold GL(n,R) has connected component GL(n,R); = {A € GL(n,R) | det(4) > 0} as a
connected Lie Group.

— The Special Linear Group SL(n,R) = {A € GL(n,R) | det(4) = 1} € GL(n,R) is Lie subgroup of
GL(n,R).

— The Orthogonal Group O(n) = {A € GL(n,R) | ATA = I,,} and the Special Orthogonal Group
SO(n) = O(n) N SL(n,R) are Lie Subgroups of GL(n,R).

e (GL(n,C), o) with global coordinates (a;;) with values in C, and group action by matriz multiplication.

— The Unitary Group U(n) :={A € GL(n,C) | A*A = A A= I}
— and the Special Unitary Group SU(n) :={A e U(n)|det A =1}

15.1 Left/Right/Bi-invariant Tensor
Definition 15.2 (Left/Right/Bi-Invariant Tensors). Let G be Lie group.

o A tensor T on G is left-invariant if
LT=T < (L;).T =T VeeG
due to (Ly)s = (L))" = (L1)*.
o A tensor T on G is right-invariant if

RIT=T < (R, T=T Vaz€eG

o We say T is bi-invariant if it is both left invariant and right invariant.

Remark 15.2. Given Lie group G. If T is either left or right invariant on G, then T is determined by the
value T'(e), i.e., the value of T at the identity e € G.

o A function f € C®(G) = C®(G,TYG) is left or right invariant iff f is constant.
o A vector field X € X(G) = C>(G,T}(G))

1. left invariant iff

2. right invariant iff
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Remark 15.3 (Evaluation Map as Linear Isomorphism to (77 G).). Given G Lie group. Then a tensor T on
G is an element of

T € C*(G,TIG) = {smooth (r, s) - tensors on G}

Write eve as evaluation map of the tensor at the identity element e € G
ev. : C*(G,TI Q) — (T:G).
and its restriction ev. on either Left/Right/Bi-invariant Tensors as
eve : {left/right/bi invariant (v, s)-tensors on G} — (Ta G).
o For left-invariant tensors, the diagram commutes

{left invariant (r, s)-tensors on G}

R—Linear Subspac)| eve
C*(G, T;G) (T7G).
W w
o T(e)
where
(TI @) = (T.G)®" @ (TFG)®" = R@m O™
Observation:

eve : {left invariant (v, s)-tensors on G} — (Ta G). s a R — linear isomorphism (14)
— Injectivity. If T is left invariant, then for any x € G,

(dLz)e
.G —— TG
(dL—z)a

(L)}
TG — T*G
(@L 2}

— Notice for any x € G,
T(z) = ((dLs)e)®" ® ((dLs)3)®" (T(e))
o Similarly, for right-invariant
{right invariant (r, s)-tensors on G} £ (T:G). as linear isomorphism
e However, for Bi-invariant tensors on G
{bi invariant (r, s)-tensors on G} <% (T Q).
The evaluation maps is only injective linear map. The image is
{£ € (TIG). | & is invariant under the adjoint action }
15.2 Left/Right-Invariant Vector Fields as Lie-Subalgebra
We first recall the definition for F'—related vector fields.

Definition 15.3 (F-related smooth vector fields). Let F' : M %N between smooth manifolds M and N.
XeX(M),Y e X(N). Wesay X andY are F-related if for any p € M

dF,(X(p) = Y(F(p))

Lemma 15.1 (Equivalence for F-related). Given F : M EiN N, and X € X(M), Y € X(N)

e X andY are F-related iff
X(Ff)=F(Y(f) V[feC*NN)
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o If F is diffeomorphism, then X and Y are F-related iff

Y =F.X

Lemma 15.2 (F-related preserves Lie-Bracket). For F : M S N where X1, Xo € X(M) and Y1, Yo € X(N)
and X;, Y; are F-related. Then (X1, X2] and [Y1,Y3] are F-related.

Proof. Let f € C*(N)

(X1, Xo](F* f) = Xa(X2(F7 f)) — X2 (X0 (F7 1))
= X1 (F*(Ya(f))) — X2 (F(Y1(S)))
= F*(Y1(Ya(f))) — F*(Ya(Y1(f))) = F*[Y1,Y2)(f)

Corollary 15.1. F: M % N is smooth diffeomorphism, hence pushforward under F
F.:X(M)— X(N) X=X
defines X and F, X as F-related vector fields. Thus
F.[X1, Xo] = [F. X4, Fi X0
One realize that Left/Right-invariant vector fields are automatically L, /R,-related to themselves for any a € G.
Definition 15.4 (Left/Right Invariant Vector Field). G Lie Group.

X(G)L = {Left Invariant C*° vector fields on G}
X(G)! := {Right Invariant C*™ vector fields on G}

Lemma 15.3. Using (14) we have R-linear isomorphism
o T,G =g = X(G) described by
£ (X{)(x) o= (dLy)e(§) V2 el
where XEL is the unique left invariant vector field on G s.t. XgL(e) =¢.
o T.G = g = X(G)® described by
€= (X)) = (dRe)e(§)  VweG
where XER is the unique right invariant vector field on G s.t. XfR(e) =¢.
Lemma 15.4 (T.G as Lie-subalgebra of X(G) w.r.t. Lie-Bracket). For X, Y € X(G)F
e [X,Y] € X(G)E. This is because for any a € G,

(La)*[Xv Y] = [(La)*Xa (La)*Y] = [X’ Y]

e This shows that X(G)L = T.G = g C X(G) is a Lie-subalgebra of (X(Q), [, -]) where we define
[ TGX TG = T.G (&) = [XE X[)(e)
Definition 15.5 (g). The Lie Algebra g of G is defined to be T,G equipped with the above [-,-].
Similarly, for X, Y € X(G)E
e [X,Y] € X(G)E.
e X(G)E2T.G =g C X(G) with Lie Bracket forms Lie-subalgebra

[ T.GXT.G = T.G  (&n) — [XE XF(e)

Proposition 15.1 (Trivial TG). The Tangent Bundle of a Lie Group G is trivial, i.e. TG has a global
trivialization. In fact
TI'G = (TG)*" @ (T*G)®*

is a trivial vector bundle for any r, s € Z>y.
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Proof. Let &1,---,&, be a basis of g = T.G. Then Xng,-~~ ,XgLn forms a global C'*° frame of T'G. This is
because for any z € G, g — TG s.t. £ — XgL (z) = (dLy)e(€) is a linear isomorphism. Define the map

p:Gxg—-TG s.t. (z,8) — (a:,XgL(z)) (15)

Notice ¢ is a O diffeomorphism. Then ¢~ : TG — G x g is a global trivialization of TG. O
Example 15.2. Let G = (R",+). For any ay,--- ,a, € R, the vector field

S0

p " Ox;

1s bi-invariant. We have

3

- 0
X(@r=xG)" = i - a,) ERMP R
(@ =" = (L] o) €R)
Then the Lie bracket [-,-] on T.G = g = ToR™ = R" is trivial. The map (15) is given by
¢:R" xR" - TR" (xy)»—)(xzn:yzi)
) 7.:1 8361

Example 15.3. Let G = GL(n,R) = {A € M,(R) | det A # 0}. Recall g = gl(n,R) = M, (R) = R"*. Then
for any A € G, define map
4:GCM(R) =G st B AB

and consequently
(dLA)In : TjnG = M,L(R) — TAG = M,L(R) (dLA) (f) = Ag

(dRA)In : TjnG = M,L(R) — TyG = M,L(R) (dRA) (5) = fA

We see hence, for A = (a;;) € GL(n,R) and § = (&;) € gl(n,R) = M, (R), where % are global C* wvector
fields on GL(n,R), we have

XgL(A) = A§ — <Z alkfkj) da.
1,5=1 g

={A = Z <Z §ikr; 8@
ij

1,5=1

The map ¢ (15) is given by
¢:Gxg=GL(n,R) x gl(n,R) - TG = GL(n,R) x gl(n,R) (A4,8) — (A, AS)
If moreover H is a Lie subgroup of G = GL(n,R) and b = T.H is the Lie subalgebra, ¢ restricts to
¢|Hxh:H><hCG><g—>THCTG
e Let H=SL(n,R)={A € GL(n,R) | det A =1}. Then b =sl(n,R) = {¢£ € gl(n,R) | Tr{ = 0}. Note
TSL(n,R) = {(A,&) € GL(n,R) x M,(R) | det(A) = 1, Tr(A™'¢) = 0}

and we have
¢ : SL(n,R) x sl(n,R) = T'SL(n,R) (A,8) — (A, A¢)

e Let H=0(n) or H=SO(n). Note I, € SO(n) C O(n) and
h=s0(n) = {¢ € My(R) | " + € =0} = T7,0(n) = T, 50(n)
Also note
TSO(n) = {(A,€) € GL(n,R) x M, (R) | ATA=1,,0= (A1) + (AT = AT¢ +¢T A}
hence we have

¢ :SO(n) x so(n) — TSO(n)  (A,€) — (A, A¢)
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15.3 Integral Curve and Local Flow of Left/Right Invariant Vector Fields

Lemma 15.5. For F: M &5 N, X € X(M) and Y € X(N) F-related. If v is integral curve of X, F o~ is
integral curve of Y.

Proof.

Corollary 15.2. Let G be a Lie group.
o If v be integral curve of X € X(G)*. Then for any a € G, L, o~ is an integral curve of (L)X = X.
o Similarly, if v is integral curve of X € X(G)E, then R, o+ is an integral curve of (R,).X = X.
Definition 15.6 (Local Flow of Left/Right-Invariant Vector Field). Let G be a Lie group. £ € g = T.G. Then
o let ¢§L denote the local flow of XgL e xX(a)t

e and ¢§ denote the local flow of Xg € X(G)E.

Remark 15.4. Indeed by Local Existence Theory of integral curve 8.1, there exists € > 0, an open neighborhood

V of e and
¢€L:(—E,E)XVC—> G

such that
FOE(tx) = XE(E (L, @)
$L(0,2) =@

Lemma 15.6 (Left/Right multiplication preserves left/right invariant integral curves). Let G be a Lie group.
Eeg=1T.G.

o Let (;Sg be local flow of XEL. For anya € G

Lyo Q%(tvﬂ?) = d)g(t’ La(l'))

7.€.
ag¢ (t,x) = ¢¢ (t,az)

o Let ¢? be local flow of XgR. For anya € G

Ry o0 qﬁ?(t,l’) = (b?(t’ Rq(z))

i.e.
d)?(t, x)a = gzﬁg”(t, za)

This is to say left(right) multiplication by ‘a’ carries an integral curve of left(right) invariant vector field to
another integral curve of such vector field.

Proof. By uniqueness of local integral curve, it suffices to show

{ (L, 0 gbgL)((), x) =ax
E(La o ¢f)(t, ) = XE((La 0 ¢§)(t, 1))

The first item is true due to
(La o fi);gL)(Oax) =a- ¢’5L(0795) =ar
The second is true due to

d d
77 (La 0 08)(t,2) = d(La) gt (1.0) (7, 02 (£,7))

dt
= d(La)d,g(t’w) (Xé(gbé(t,x)))
= X} (La o 6 (t,x))
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Proposition 15.2. Let G be a Lie group. £ € g =T.G. Then nggL and d)? are defined on R x G.

Proof. We prove for ¢£~ There exists € > 0 and V' open neighborhood of e in G s.t.
(68)e:V =Gz ¢f(t )
is defined for any t € (—¢,¢). Since for any a € G, from Lemma 15.6
(0€)e(az) = (ag¢)e(z) <= (¢¢):© La(x) = La o (¢¢)¢(2)

We have
¢¢  Lo(V) = G

defined for any ¢ € (—e,¢) for any a € G. Thus by arbitrariness of a € G
(08)e(x) = ¢¢ (1, )

is defined for any t € (—¢,¢) for any = € G. Thus

(@€ )nt (@) = (¢€)e 0 -+ 0 (6F)e()

is defined for any t € (—¢,¢€), for any n € Z~¢ and for any x € G. Thus

(68)e(x)
is defined for any ¢t € R and for any = € G. O

Example 15.4. Take G = GL(n,R) or any Lie subgroup of GL(n,R) (e.g. SL(n,R), O(n), SO(n)), for any

€y
XEA) =4  XF(A)=¢A

and moreover

PE(t, A) = Aexp(te)  ¢f(t, A) = exp(t§) A

where exp(B) =Y > BTT for any B € M,(R). We use such observation to extend notion of exponential to any
Lie Group.

Definition 15.7 (Exponential Map). For G Lie group and g = T.G Lie algebra of G. Define
exp:g— G s.t. §|—>¢£L(1,e)
where e is the identity for G.
Remark 15.5. Note for anyt € R and £ € g
exp(tf) = qStLg(L e) = (;SgL(t7 e)
and for any x € G
gbé’(t, x) = xgbgL(t, e) = xexp(tf)

Thus

<¢§L)t = Rexp(tf) G—=G
15.4 Left/Right/Bi-Invariant Riemannian Metric

Definition 15.8 (Left/Right-invariant Riemannian Metric). As special case to Definition 15.2, let G be Lie
group and g € C*(G, S?*T*Q) be Riemannian metric on G. We say

e g is Left-invariant if
(Lo)'9g=9 < (Lo)ig=9 V2eG
iff
L,:(G,9) — (G,9) is an isometry ¥V x € G
e ¢ is right-invariant if
(Rp)'g=9g <= (Rz)«g =1y VeeG
iff
R, : (G,g9) — (G,g) is an isometry ¥V x € G
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Remark 15.6. Let G be Lie group and g be Riemannian metric on G. We have one-to-one correspondence
between
{left-invariant metrics on G} <= {Inner-products on T,G}

1. g is left-invariant iff

g(z)(U, V) = g(e) (d(Ly-1),U,d(Ly-1).V) VeeG, UV eTl,G
2. g is right-invariant iff

9(@)(U,V) = g(e) (d(Ry-1)aU,d(Ry-1).V) Va2 eG, UVel,G

We shall illustrate not every Lie group G admits a bi-invariant metric.

Example 15.5. Let
G={9g:R—=R|glt)=yt+=x zeR, ye (0,00)}

be the group of proper affine linear transformations of R s.t. multiplication is defined by composition. For
91(t) = y1z + 21, g2(t) = Yot + 22

g1 092(t) = g1(y2t + 22) + 21 = Y1yt + (Y122 + 1)
We may thus identity (G, o) with the Half plane (H,-) where the set
H={(z,y) €R? |y >0} C R?
18 equipped with multiplication given by
(@1,91) - (w2, 92) = (122 + 21, Y192)

The multiplication defines a smooth map G X G — G whose identity element is e = (0,1) and inverse is given

by (x,y)"1 = (—%, i) Hence G defined a Lie group. We note that the Left group action takes the form

La,b(‘r7y) = (b.%' + avby) = b(l‘,y) +a

Hence

(dLa,b)(x7y) : T(x7y)H = R2 — T(x7y)H = R2 s.t. v b
where the left-invariant vector fields on G takes the form

) ) ) )
LG)=Ry— @ Ry— = — +b— R

and the left-invariant 1-forms on (G, o) takes the form
1 1 1
R—dz ® R-dy = {—(adz + bdy) | a, b € R}
Y Y Y

One may also observe a left-invariant Riemannian metric on (H,-) = (G, o)
dz? + dy? dx d
h= T = ()P ()
Y Yy Y
h is in fact the unique left-invariant Riemannian metric on (H,-) = (G, o) s.t.
h(0,1) = dz? + dy?
It is easy to check that h is not right-invariant metric since
Rap(2,y) = (ay + x,by) # (bx + a,by)
Indeed there is no bi-invariant Riemannian metric on (H,-) = (G, o).
Example 15.6. Bi-invariant Riemannian metrics on (R™,+) takes the form
n
Z aijda?id:vj
i,j=1
for a; ; € R where (a;;) is symmetric positive definite matriz. In particular, go = Z?zl dz? is a bi-invariant

Riemannian metric.
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Lemma 15.7. If G is compact Lie group, then there exists a bi-invariant Riemannian metric on G.

Example 15.7 (Bi-invariant metric on SO(n)). Let a;; : GL(n,R) — R be entries of the matriz, hence a;; are
global coordinates on GL(n,R). Let g, be Riemannian metric on GL(n,R) defined by

n
_ 2
= E da;;
ij=1

Let
1:50(n) - GL(n,R)

be the inclusion map, which is smooth embedding. Then
gn = 'L*gn (16)
is a bi-invariant Riemannian metric on SO(n).

Proof. Recall
SO(n) = {(ai;) € GL(n,R) | ATA =1, det(A) =1}

Given g, := i*g, where g, = Zn] 1 da- . is Riemannian metric defined on GL(n,R), we want to show g, is

both left and right invariant, i.e. for any B = (bi,;) € SO(n), and for any A = (a; ;) € SO(n)
n n n n
(L) | D dai; | =Y dai;  (Rp) | > dai,; | = dal,
i,j=1 ij=1 ij=1 i,j=1
Indeed, since

Lg:SO0(n) — SO(n)  (ai) szk%

We may calculate explicityly

] k=1
n 2
= Z (Z bikdak3>
7 k=1

= Z lkbzmdakj damj
% n=1

k,m=1 ,j
n o n

= E g day;day; = g dak]
j=1k=1 7,k=1

Similarly, since

B :S0(n) = SO(n) (@ij) Za,kbk] i
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We do same calculations

(Ro)*(Gn) = S (3 aibiy)?
k=1

,J
n n
= Z (Z bk‘jdaik> (Z bmjdai'rrL)
07 \k=1 m=1
n
:Z Z bkjbmjdaikdaim
ij k,m=1
n
_ T
= Y > blibmjdairdain,
km=1 4,j
n n n
= Z dajrdajy, = Z da?k = gn
J=1k=1 Jk=1

O
Theorem 15.1 (John Miler). A connected Lie Group admits a bi-invariant Riemannian metric iff it is iso-
morphic to G x R™ where G is a compact Lie Group and (R™, +) is additive group.
15.5 Adjoint Representation
Definition 15.9 (Adjoint Representation Ad of Lie Group G). Let G be a Lie group. For any a € G,
R,~10L,:G—G s.t. T~ ara” !
s a diffeomorphism. For g = T.G the Lie Sub-algebra
1. R,-10L,(e) =e sends e to the identity e.
2. Hence we get Ad(a) := d(Rgq-1 0 Lg)e : T.G — T.G a linear isomorphism.
3. Furthermore we have a group homomorphism
Ad: G — GL(g) s.t. a Ad(a) == d(Rs-10 Lg)e (17)
where GL(g) = {R — linear isomorphisms from g — g}. One may in fact generalize this to
G — GL(g"" @ (8)*") = GL((T{G).)
‘Ad’ the representation of G is called the adjoint representation.
Remark 15.7. In particular, if G is abelian, then the adjoint representation is trivial

R,~1o0L,=1dg:G—G is the identity V a € G
Ad(a)=1dg:g— g VaeG

In this case, left invariant iff right invariant iff bi-invariant.
Example 15.8. (R", +) is abelian. For any a € R™
L,=R,:R" - R" rT—T+a
with
o 8%7 € X(G) bi-invariant vector fields.

o dz; € QYG) bi-invariant 1-forms.

) 78 . - . -y ) _ y 11,00y
. Zz‘;,--- i Gy T @ ® gy Qdrj, ®---Qdx;, are bi-invariant (r, s)—tensors ifaj’ ] are constants.

“9Js
J1ssds

Proposition 15.3 (Adjoint Representation ad of Lie Algebra g = T.G). Let G be a Lie group and Ad be its
adjoint representation (17). For any &, n € g

ad(§)(n) = — .

Ad(exp(t§))n = £, 1]

The map
ad : g — gl(g)
is the Adjoint representation of the Lie Algebra g.
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Proof. Let XgL be the unique left invariant vector field on G s.t. XgL (e) =¢ «<— Xé”(m) = (dLg)e(&). Similarly,
define X# . Then

[0 = [Xg, X)](e) € g = TG
Let (¢§)t = Rexp(te) : G — G be the local flow of X/}. Using (10) and then using X is left-invariant

X5y (e) = ((96)e) X (e)

[(XF, X! (e) = lim

t—0 t
i Xy (e) = (Rexpre)) = Xy (e)
t—0 t
d L
= it o (Rexp(—ti))*Xn (€)
d
= % ((Rexp(—tﬁ))*(Lexp(tﬁ))*XVL]/) (6)
t=0
d
=7 ((Rexp(*ti) © Lexp(tﬁ))*X#) (€)
t=0
d
= % d(Rexp(—tf) ° Lexp(ti))e(X#(e))
t=0
d
= — Ad t
atl,_, (exp(t&))n

O

Example 15.9 (Adjoint Representation for General Linear Group). Let G = GL(n,R) or its subgroups. For
any A € G,
Ri'oLs:G=GL(n,R)C M,(R)=2R"” -G B+ ABA™!
18 linear in B, so
Ad(A) =d(R ' oLa)g, : My(R) = M,(R)  nw— ApA~!
Thus
Ad(exp(t€))n = ' ne™*

and

d
ad(©)(n) = & = — ene ™ = ¢&n—né
t=0
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16 Continuous Group Action

Recall we have defined smooth group action. Let GG be in particular, a Lie Group.

Definition 16.1 (Smooth Lie Group Action on smooth Manifold). Let G be Lie group and let M be a smooth
manifold. Let ¢ : G X M — M be a left action of G on M

p:GxXM—M d(g,z) =g-x
The action is C*° if ¢ is C°° map, i.e.
VgeG pg: M — M s.t. T g-x

is C™ diffeomorphism.

16.1 Continuous Action of Topological Group

We want sufficient condition on ¢ : G x M — M s.t. M/G equipped with the quotient topology is ‘nice’. To
do so, we discuss bit of point set topology.

Definition 16.2 (Topological Group). A topological group G is a group equipped with a topology (hence a

topological space) s.t.

GxG—G (z,y) — oy~ !

15 continuous.

Remark 16.1. That G is a topological group indeed implies both group multiplication and inversion are con-
tinuous

G—dG x !
GxG—CG (,y)—z-y

Definition 16.3 (Continuous Group Action on Topological Space). Let G be a topological group and let M be
a topological space. Let
¢:GxM—M (9, 2) > g-x

be a Left G-action on M. We say this action is continuous if ¢ is a continuous map, i.e.
VgeG pg: M — M s.t. T g-x
is homeomorphism. Here ¢g—1 = (pg) L.
Lemma 16.1. Let G be a group equipped with the discrete topology. Then ¢ : G x M — M is continuous iff
VgeG Gg: M — M s.t. T g-x
18 continuous.
Proof. = . If ¢ is continuous, then
ig: M —GxM st x> (g,)

is continuous due to discrete topology on G. As composition, ¢, = ¢ o i, is continuous.
<= . Suppose each ¢, is continuous. Given U C M open subset, note

¢ (U) = | (g} x 6,1 (1))

geG
Since G itself is open as topological space and all qﬁgl(U) are open, ¢~ 1(U) is open. O
Recall the definition of ‘proper’.

Definition 16.4 (Proper Continuous Map). Let X, Y be topological spaces and f : X — Y be a continuous
map. We say f is proper if for any K C'Y compact subset of Y, we have f~1(K) C X as compact subset of X.

Definition 16.5 (Proper Group Action). Let G be a topological group and M be a topological space. Let
¢:Gx M — M be a continuous left G-action on M. The action is proper if

0:GxM—MxM s.t. 0(g, ) =(g-x, x)

is proper, i.e., for any K C M x M compact, the preimage 0~ 1(K) is compact.
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Proposition 16.1 (Equivalence for ‘Proper Group Action’). If G is a topological group and M is a Hausdorff
topological space, then the following conditions on a continuous group action ¢ : G x M — M are equivalent

(i) The action is proper.

(i) For any compact set K C M
Gri= g€ G| 6y(K)NK # 2}

is compact.

Definition 16.6 (Locally Compact). Recall M topological space is locally compact implies for any p € M, there
ezists open neighborhood U in M and a compact subset K in M s.t. U C K.

Given topological group G acting continuously and properly on a locally compact Hausdorff topological space
M, the quotient remains Hausdorff.

Theorem 16.1. If G is a topological group, M is a locally compact Hausdorff topological space, and G acts
continuously and properly on M, then M /G equipped with the quotient topology is Hausdorff.

16.2 Smooth Lie Group Action and Smooth Fiber Bundle

Definition 16.7 (Smooth Fiber Bundle). 7 : E — B is a C* fiber bundle with total space E, base B and fiber

e E B, F are C* manifolds.

e T is a surjective C° map.

e Local Trivializations. There exists {U, | « € I} open cover of B and C* diffeormorphisms
he : 7Y Uy) = Uy x F

s.t. the diagram commutes 7T|7T71(UQ) =priohg

7Y (Uy)
hal Tl 1 (wa)

U, x F 25U,

Hence m is a C*° submersion.
Example 16.1 (C* fiber bundles). One has some examples for fiber bundle.
e pr1: E= B x F — B product fiber bundle.

o m: FE — B C* vector bundle of rank r is indeed a C*° fiber bundle with total space E, base B and fiber
R". But the converse is not true. This is because that w is a fiber bundle only implies the transition
functions take the form

hgohy': (UaNUg) x R™ = (Uy NUG) xR™ (2, v) = (2, ¢,(v))
for some ¢, : R" — R" C diffeomorphism, but not necessarily GL(r,R).
e A covering space is a C™ fibration with discrete fiber.

Theorem 16.2 (Quotient Manifold Theorem). Let G be a Lie Group and M be a C*° manifold that is Hausdorff
and second countable. If G acts on M smoothly, freely and properly, then M /G equipped with quotient topology
is a topological manifold (hence dim M /G = dim M — dim G), and there exists a unique C*° structure on M /G

s.t. the quotient map
T M— M/G

is a C*° fiber bundle with fiber G (hence m is a smooth submersion).

Example 16.2 (Hopf Fibration).
Sti={zeC||z|=1}=U(1)

1s a Lie group. Let

n+1
¢ : S'x§*H - g2t = {(217"' Jna1) €CMTH Yz = 1} (A, (21,0 zng1)) = (Az1, - Aznga)
i=1
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Then S' acts on ST smoothly, freely and properly. The quotient map
7§ = P, (C) == 8* st = (€ {0}) /C

is a C°° fiber bundle w.r.t. the C™ structure on S**1 (which agrees with the C™ structure on S**1 as a
(2n + 1)-dim submanifold of C**! = R?"*2) and the C> structure on P,(C). Therefore the C* structure on
P,(C) agrees with the C* structure on S*" ™1 /S given by the Quotient Manifold Theorem. Here  is a circle
bundle (fiber bundle with fiber S') known as the Hopf Fibration.

16.3 Riemannian Submersion

Let f: (M, g) — N be a C* submersion (hence m = dim M > n = dim N) from a Riemannian manifold (M, g)
to a C'°™° manifold N.

Definition 16.8 (Horizontal Distribution). We define a horizontal distribution H := {H, C T,M | p € M}
(defined by f and g) which is a C* distribution of dimension n = dim N as follows.

e Foranyp € M, let q = f(p) € N. By Preimage Theorem, F := f~1(q) is a C* submanifold of dimension
m —n where m = dim M. We have a short exact sequence of vector spaces

0= T,F - T,M % T,N >0

e Define Hy, to be the orthogonal complement of T,F in T, M, i.e.
H,={veT,M|{uv),=0 YuecT,F}
Hence dim Hy, = n. In fact we have orthogonal decomposition w.r.t. (-,-)p
T,M =T,F @& H,
o We check H :={H, CT,M |p e M} is C*> distribution of dimension n. Indeed, for any p € M
dfp‘Hp L Hy > Ty N

is a linear isomorphism.

Definition 16.9 (Riemannian Submersion). Let f : (M, g) — (N, h) be a C*° submersion between Riemannian
manifolds, and let {H, | p € M} be the horizontal distribution defined by f and g. We say f is a Riemannian
submersion if for any u, v € H,

(u, v)p = (dfp(u), dfp(v)) s (p) (18)

where (-, -),, is inner product defined by g(p) and (-, -) ¢y is inner product defined by h(f(p)). This is equivalent
to saying
dfp‘Hp cHy = Ty N

is a linear isometry (isomorphism of inner product spaces).

Theorem 16.3 (Metric on M/G for Riemannian Submersion). Suppose that a Lie group G acts on a Rieman-
nian manifold (M, g) (where M is Hausdor(f and 2nd countable) smoothly, freely, properly and isometrically,
i.e.

VaeG Gog: M — M org=g

Then there exists a unique Riemannian metric g on M/G s.t.
m:(M,g) = (M/G,§)

is a Riemannian Submersion, i.e.,
d7T|H,, : Hp — Tﬂ.(p)(M/G)

18 a linear isometry.

Proof. To define
§9(q) : T,(M/G) x T,(M/G) —- R
pick any p € 771(q) so that

dmp|

H, = T,M/G)
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as linear isomorphism. Then we may write for any u, v € T,(M/G)

a)u0) = 9) ((amly,) (0 (dmyly,)” ) (19)

Note this is well-defined because the RHS is independent of the choice of p € 771(q), since any other p’ € 771(q)
is of the form p’ = a-p for some a € G, and ¢}g = g, i.e., (dpa)p : Hy — Hy,(p) is linear isometry. The diagram
commutes
H,
dmy,
(d‘ba)pl \
dm,.
Hyp —5 T,(M/G)
O]

Example 16.3. S acts on (S, g.an) smoothly, freely, properly and isometrically. There exists a unique
Riemannian metric gean on P, (C) s.t.

T (82n+1’ gcan) — (Pn((c)agcan)

is a Riemannian Submersion. In particular, forn =1,
T (Sg7gcan) — P (C) = S?

and moreover .

(Pl((c)7gcan) = (827 igcan)

Hence )
7:83(1) — 82(5)

18 a Riemannian Submersion.

Proof for (Py(C), §ean) = (S?, igcan). One look at commutative diagram

S3
N
s? — P,(C)

with diffeomorphism

921 2 2
it P(C) - S? s.t. [21, 22] < F172 |22|* — |21] >

212 + |22 [21]2 + 222
and
f:S?= {(#1, 22) € C? | |21+ 22)? = 1} — S? = {(w, z) € CxR | lw|? =22 = 1} s.t. (21, 22) = (221Z2, |222— |21 %)

We've defined §eqn as the unique metric on P(C) s.t. m = j0 f : (S, gean) = (P1(C), Jean) is a Riemannian
submersion. To show that (P;(C), §eqn) is isometric to (S?, i Jean), it suffices to compute j*§eqn and verify that

v 1
J Gean = ngagzl)

To do so, write coordinates on S® as

29 = cos(\)et??

{21 = sin(\)e'™

and if we write z; = x; + v/—1y; we have

21 = sin(\) cos(61)
y1 = sin(A) sin(6;)
x2 = cos(A) cos(fz)
y2 = cos(A) sin(62)

3
as coordinates on S®. We compute metric gfag) so that

g5 = dx% + sin®(A)d6? + cos?(\)d62
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We use spherical metric on S? as

y = sin(¢) sin(6)

{x = sin(¢) cos()
z = cos(¢)

and recall that
Goall) = de® + (sin®(9))d0
Now we look at
[ (21, 20) = (sin(\)e™", cos(N)e™®) i (2sin(N)e? cos(A)e™"2, cos?(N)—sin(A)) = (sin(2X)e"?1792) cos?(\)—sin?(N))
But sin(2X)e?(?1=%2) = sin(¢)e’? in S?(1), so ¢ = 2) and 8 = 6, — 6,
) =t Vo= W) =5

0 0
ker(df) =R (691 + (%2>

and as its orthogonal complement, the horizontal subspace H writes

df (

50, = 90
Thus

(‘3 0 9 0
H = (ker(df))* ﬁ R (cos ()\)8—91 — sin ()\)692)

Hence

o (990N _ s (L0 10N _ 1

I 9ean \ 96709 ) ~ Y\ 208200 ) T 4

wo (90N sy (L0 a0 g2y 9

5 Gean <8¢’ 39) Jean” | 55 €08 N o sin ()\)802 =0

ok E 2 _ S*() 2 2 2 — sin?

7" Gcan (80’39) = Gogn’ | cos ()\)801 sin ()\)892 cos“(A )301 sin®( )692

= sin?(\) cos*(\) 4+ cos?(\) sin*(\) = sin*(\) cos?(\) = isin2(2)\) ism (29)

Thus

kA 1
J Ycan = d¢2 7Sln (2¢)d02 4 §a£L1)

16.4 Homogeneous Spaces

Theorem 16.4 (Cartan-Von Neumann). Let G be a Lie Group, and let H be a closed subgroup of G. Then H is
a C* submanifold of G. Therefore H is a Lie subgroup of G, i.e., H is both a subgroup and a C*° submanifold
of G.

Theorem 16.5. Let G be a Lie group and let H be a closed subgroup of G. From Cartan-Von Neumann, we
know H is a closed Lie subgroup of G.

(i) Then we consider the action H on G by right multiplication. This action is free, proper and smooth. The
Quotient
G/H ={aH |a € G}

is the set of left cosets of H. There is a unique structure of smooth manifold on G/H s.t. the projection
m:G—G/H

is a smooth fiber bundle with fiber H (hence w defines smooth submersion), using the Quotient Manifold
Theorem 16.2.

(i) Let G act on G/H on the left by
GxG/H—G/H s.t. (a,bH) — abH (20)

left multiplication. Note
(a,0) eGx G —"—— abe G

J/idc X J/ﬂ—

(a,bH) € G x G/H —— abH € G/H
Then G x G/H — G/H as in (20) is a C* G-action on G/H.
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Definition 16.10 (G-homogeneous Space). Let M be a C*° manifold. Let G be a Lie Group. M is a G-
homogeneous space if G acts smoothly and transitively on M.

In fact any G-homogeneous space is the form of (20) if we consider left action.
Lemma 16.2 (Stabilizer of G-homogeneous Space). For any x € M, recall
Gy ={aeGla-z=uza}

is the isotropy group (stabilizer) of x. Assume G Lie group and M is a G-homogeneous space.

e Using Carton-Von Neumann G, is a closed subgroup of G, hence G, is a Lie subgroup.

e Using G is transitive action, for any y € M, y = bx for some b € G. So

Va€Gy=Gyp, < a-(b-z)=b-z « (b lab) v =2 <= b 'abe G,
Then Gp., = bG,b~ 1.

Theorem 16.6 (Characterisation of G-homogeneous Space). Let M be a G-homogeneous space. Let x € M
and let H = G, be the stabilizer of the G-action at x. Then the bijection

G/H—-M s.t. aHw—a- -z (21)
is a C*° diffeomorphism.
Remark 16.2. Now for some M just a set, we identify it as transient action of some Lie Group G.

Example 16.4 (SO(n + 1)/SO(n) = S™). We run through the construction as in Theorem 16.5 with G =
SO(n+1) and H = SO(n). Then let SO(n + 1) act smoothly and transitively on

T
S" = {x € R"" | |z| = 1} where x =
Tt
via
SO(n+1) xS" - S" s.t. (A,z) — Az
Hence by definition, S"™ is SO(n + 1)-homogeneous Space. Using Theorem 16.6, we expect

i) H=50(n) = SO(n+1 stabilizer of column vector in R" T with all 0 but 1 at the bottom, under
() 0 )

group action SO(n + 1). Indeed, the stabilizer of | - | is
0

1

{<’§ (1)> IBe SO(n)} ~ 50(n)

(i) As a consequence, S™ is diffeomorphic to SO(n+1)/SO(n) via (21)
SO(n+1)/S0O(n) S  ASO(n) — A

For simplicity, denote

f:8" = 50(n+1)/SO(n)
as the diffeomorphism.

Example 16.5 ((SO(n+1)/50(n), §) = (S™, 2gcan)). In fact, (SO(n+1)/SO(n), §) is isometric to (S™, Agecan)
for some X\ > 0 constant. On one hand, equipped with Riemannian Metric, it is easy to check SO(n + 1) acts
isometrically on (S™, gean). On the other hand
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(i) Recall

i:S0(n) — M,(R) = (R”Z, zn: daij)

ij=1

n
gn ‘= Z* Z da?’j
i,j=1

is a bi-invariant Riemannian metric on SO(n).

Then as in (16)

(i) Since SO(n) C SO(n+ 1) is closed subgroup, as in Theorem 16.5, (SO(n), gn) acts on (SO(n+ 1), gn+1)
smoothly, freely, properly by right multiplication.

(iii) In fact SO(n) also acts on SO(n + 1) isometrically. Then using Theorem 16.3, there exists a unique
Riemannian metric § on the quotient SO(n +1)/SO(n) s.t.

m: (SO(n+1),gn41) = (SO(n+1)/S0(n), )

is a Riemannian submersion. We can indeed check that SO(n + 1) acts smoothly, transitively, and iso-
metrically on (SO(n+1)/S0(n),§) on the left.
Since SO(n + 1) acts transitively and isometrically on both (SO(n+1)/SO(n), §) and (S™, gean), it suffices to
show that
0

f*g = AJean at les

which implies (SO(n +1)/SO(n), §) is isometric to S*(V/X).

Proof. We want to show
f*g = Agcan
for some A > 0. Recall that

f71:80(n+1)/SO(n) — S" s.t. ASO(n) — A

is a diffeomorphism. Also recall that

7 (SO(n+1),gn11) = (SO(n+1)/S0O(n), §) s.t. A ASO(n)

hence
0
Flom: (SO(M+1),gns1) — (S, gean) st Ars A 0
1
Also notice
Tr,,,SO(n+1)={A€ GL(n+1,R) | A+ AT =0}
and
0
T o\ S"={veR™ [0 0 —0) = {v e R"™ | 0,1 = 0}
; 1
0
1
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So the differential of f~! on at I,,;1 writes

0
d(f 7 om)p i Try SO +1) 5T o S" st Bo B
0
: 1

0

1

and the kernel writes
Ker(d(]“1 OT) o) = {<§ 8) | B €T7,50(n)} CTy,,,SO(n+1)

We would love to determine the Horizontal Distribution. Indeed,

i,y i= Kot omr)t ={( e ) 1ve®)

so that Hy, , ® Ker(d(f~tom);,.,) =1Tr,,,50(n+1). To compute f*g, we need to recall

n+1
Jna1 :=1" (Z da?j) where i:50(n+1) = GL(n+ 1,R)

i,j=1

We compute for any v € R"*! s.t. v,,41 = 0. We denote 9 := (vy,--- ,v,)T. Using (19)

[ asom)(v,v) = (f)*gsom)(v,v)

* —1 —1
= (f) (gn+1)1n+l(dﬂ—1n+l ’an+1 (U)7 d/ﬂ—InJrl |an+1 (U))

_ -1 _ —1
— (gn+l)1n+1(d(f 1 o 7T)IV,L+1 |H1n+1 (U)a d(f 1 o) 7T)In+1 ‘HI7L+1 (U)>

e (B 2)- (2 )

n

= QZ(dU1)2 = 29can(vvv)

i=1
Hence f*§ = 2gcqn and so A = 2. O
Example 16.6 (Real/Complex Grassmannian Gy ,(R) or G, (C)). As a set
Grn(R) :={V C R" | V k-dimensional subspace of R"}

In particular, G1 ,(R) = P,_1(R). Aiming for Theorem 16.6, let G = O(n) and M = Gy ,(R), here O(n) acts
transitively on G ,(R). For the first k coordinates R* x {(0,---,0)} C R", the stabilizer is

O(k) x O(n — k) = {(Jg g) | B, CeO(n)}

As a set,
Gron(R) = O(n) /O(K) x O(n — k)
the RHS is a C'°° manifold. Since
O(n) 5 My(R) g, =i"(y_ da}))
ij=1

is a bi-invariant Riemannian metric on O(n). O(k) x O(n —k) acts smoothly, freely, properly and isometrically
on (O(n), gn). There is a unique Riemannian metric g on G ,(R) = O(n)/O(k) x O(n — k) s.t.

(O(n); 9n) = (Grn(R) = O(n)/O(k) x O(n — k), 3)
is a Riemannian submersion. In particular take k =1 and n + 1

O(n+1)

Py(R) = G1n41(R) = O(1) x O(n)
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Notice O(n+1)/O(n) = SO(n+1)/S0(n) hence

P(R) = On+1) 1 Om+1) 1 SOn+1) S*(VA
" 01) x0(n) {#1} O(m)  {£1} SO(n)  {*1}

How about Complex Grassmannian? For Gy, ,(C), we replace O(n) with U(n) where
Un) :={A € GL(n,C) | A*A=A" A=1,}

and identify '

U(n) % M, (C) = C” =R
so that for a; ; = b; j + v —1c;

gn =1 | D db}; +dc},

i,j=1
Then there is unique Riemannian metric § on
Gen(C) =U(n)/U(k) x U(n — k)
and
(U(TL), gn) — (Gk,n((c)a g)

is Riemannian submersion.
Un+1)  S™(VX)
Ul)xUn)  U(®1)

Example 16.7. Recall
m:C"\ {0} = P,_1(C) s.t. z2=1(21,""" ,2n) = 21, ,2n] = Span{z1, -, zn}

for ® ={(U;,¢;) |i=1,---,n} and

U= A{lz1, - ,z0] | e 20y et st [217...7,2”],_)(“7@7...7'2“7%7...7%)
Zi Z Z Z Z
Then
211t Zln
Im: {A= | Rank(A) =k} — G »(C) s.t. A — Span of row vectors of A
2kl t Zkn
Here
éz{(UI7¢I) | [:{Zla 7ik} - {17 ,TL}, 1 Sll < e <7'k STL, |I| :k}
and
211 Tt Z1n Zliy ttt Rlig,
Ur=1I oL : | det : : #0
ZE1 t Zkn Zkiy ot Zkig
For A € Uy,

o1 [A= ((AnD)kxk | (A)kxn-m)] = [(Ix | A7 Ap)] = A7 Ap € My (1) (C)
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17 Connections on Vector Bundles

17.1 Connections on a C* Vector Bundle

Definition 17.1 (Connection on C*° vector bundle). Let M be C*° manifold and fix m : E — M a C* vector
bundle over M of rank r. A connection on E is a R-linear map

V:X(M)x C®(M,E) :={C™ sections of m: E - M} - C°(M,E) s.t. (X,s) — Vxs
s.t. for any X € X(M), for any s € C*°(M, E), and for any f € C(M)
(i) Vixs = fVyxs, i.e., C=(M)-linear in X.
(ii) For fived X € X(M), the map Vx : C=(M, E) — C=(M, E) satisfies Leibniz Rule, i.c.,
Vx(fs)=X(f)s+ fVxs

Here X(M) and C=(M, E) are C°°(M)-modules.
Remark 17.1. (i) implies given p € M, for any v € T,M and s € C*°(M, E), we may define
Vys€E,=n"'p)CE

Definition 17.2 (Affine Connection on smooth manifold). An affine connection on a C° manifold M is a
connection on the tangent bundle w : TM — M, i.e., a R-linear map

Vi X(M) x X(M) = (M) st.  (X,Y) = VyY
s.t. forany X, Y, Z € X(M) and f, g € C*(M)
(1) VixievZ = fVxZ +gVyZ, C°(M)-linear.

(i) Leibniz Rule, for fived X € X(M)
Vx(fY)=X(f)Y +fVxY (22)

Lemma 17.1. If E and F are C* wvector bundles on a C* manifold M and ¢ : C*°(M,E) — C>*(M,F) is
C®°(M)-linear, i.e. for f € C®(M) and s € C*(M, E)

o(fs) = fo(s)
Then ¢ € C*(M,E* ® F).

Proof. On U C M open, let {e1,--- ,e.}, {f1, -+, fs} be C* frame of E|; and F|; respectively. Then in local
coordinates

¢(ez) = Zaijfj f07" aij € COO(U)

j=1
we have
T S
6= aije; @ [
i=1 j=1
for {e}, - ,e;} C frame of E*|;, dual to (e,--- ,e,). O

We introduce the following notation.
Definition 17.3 (E-valued p-forms). Space of E-valued p-forms
OF(M, E) := C(M,\PT*M ® E)

In particular

1. Q°M,E) = C®(M,E) = Q' (M,E) = C*(M,T*M ® E).

2. QO(M,TM) = C=(M,TM) = X(M) — QY(M,TM) = C=(M,T*M @ TM).
Remark 17.2 (Vs). For a fized s € C*°(M,E) = Q°(M, E), let

Vs:X(M)=C>*(M, TM) — C*(M,E) s.t. X — Vxs
then Vs is C°(M)-linear by (i). We may view Vs as a smooth section of T*M ® E, i.e.
Vs € C®°(M,T*M ®@ E) = Q' (M, E) (23)
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Definition 17.4 (Connection on C* vector bundle (Alternative Formulation)). Let 7w : E — M be a C*° vector
bundle over a C°° manifold M. A connection on E is a R-linear map

V:QM,E)=C>®(M,E) - Q"(M,E) st. s~ Vs

such that for any f € C(M), and for any s € Q°(M, E) = C*(M, E)

V(fs)=df ® s+ fVs (24)
where Vs is as in (23).
Well-definedness. Recall in general, for any o € QP(M) = C°(M,APT*M) and s € C>*°(M, E)

a®seOP(M,E)=C®(M,AT*M & E)
Hence for f € C°(M), df € QY(M) = C>(M,T*M), and so
df @ s € C°(M,T*"M ® E) = Q'(M, E)
O

Lemma 17.2 (QY(M, End(E))). Given E as C* wvector bundle over M. Let F = T*M ® E. Then any
C>(M)-linear map
¢:C®(M,E)=Q°(M,E) — C®(M,T*M @ E) = Q(M, E)

can be viewed as ¢ € C°(M,E* @ T*M ® E) = C®°(M,T*M ® End(E)) = QY(M, End(E)) via Lemma 17.1.
Lemma 17.3. If Vy and V1 are two connections on the same vector bundle w: E — M, then
Vi—Vo:Q%M,E)=C®(M,E) = Q"(M,E) =C®*(M, T*"M ® E)  st. s+ Vis— Vs

is C°°(M)-linear. This corresponds to a section of

ErQT"M®E=T"M® End(E)
according to Lemma 17.1, i.e., V1 — Vg can be viewed as an element in

C>®(M,T*M ® End(E)) = Q'(M, End(E))
Proof. For any f € C*°(M) and s € C*(M, E)
(V1=Vo)(fs) =Vi(fs) = Vo(fs)

=(df ®@s+ fVis) — (df ® s+ fVys)
= f(Vis = Vos) = f(V1 = Vo)s

O

Definition 17.5 (A(E) Space of Connections on Vector Bundle). Let A(E) be the space of connections on
E. Then A(E) is an affine space associated to the vector space QY (M, End(E)). Indeed, for any Vo € A(E),
¢ € QY(M, End(E))

(Vo+¢): Q°(M,E) — Q' (M, E)

s0 Vo + ¢ € A(E). Note QY (M, End(E)) is co-dimensional if dim M > 0 and rankE > 0.

Remark 17.3 (Connection on C'* Vector Bundle in Local Coordinates). Let w: E — M be C* vector bundle
of rank r over C'°° manifold of dimension n. We write our connection on E

V:QME)— QY (M,E) s+ Vs
i local coordinates.

(i) Suppose (U, ) for ¢ = (x1,-++ ,xy) is a C> chart for M where n = dimM such that E|; := 7= (U) is

trivial. So
h:n ' (U)=E|, CE—-UxR CMxR"
is local trivialization. Then we have {e1,--- ,e.} C C*(U, E|;) as a C* frame of E|;, = U
0
ej :U—n1U) s.t. ej(x) == h""(x,é;) where éi=1|1
0
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(i)

and r = rankE. For any s € C(U, E|;;), we write smooth section

s = Zakek e C*(U, E|,)
k=1

in local coordinates for a* € C>=(U).

We have {8%1, . ,%} as C* frame of TM|,; = TU. To let V act on s, we first discuss what V is
acting on e;. In fact, on U we define the Christoffel Symbols Fﬁj € C*(U) s.t.
Ve =Y Tijen € CX(U. Bly) (25)
k=1

We further define connection 1-form w;-“ € QY(U) s.t.
Ve; = wa ® ek (26)
k=1

holds. This uses only trivialization of E|, (but not trivialization of T*M|, ). This also used the observa-
tion that the element Ve; is an E-valued one-form on U, i.e.

Ve; € QY(U, E|,;) = C*(U,T*U ® E|;)

Plugging (25) into above (26) we may identify

T T a ) 8
Fﬁjek = Vagi ej = wa(am)ek = w;»‘(ax') = Fﬁj
k=1 k=1 v v

Thus obtaining
wh = "TF.dz; € Q'(U)=C>(U,T*V) (27)
i=1
Plugging back into (26) we have explicit form in both Christoffel Symbols and connection I1-forms.

T

T n
Ve, = wa Rep = ZZF%dzi R ex
k=1

k=111=1

Now we discuss how V transits between two intersecting coordinate charts.

(i)

Now take open cover {U, | o € I} of the base M and
ho : 7 N (Uy) — Uy x RT
local trivializations. Let
Uy — 71 (Uy) s.t. ea,; (x) = hy'(z,€;)

€a;

forg=1,--,r, ie, en, ,eq, are C frames of E|Ua. For any Uy, NUg # @,
980 1 Ua NUg o GL(r,R) s.t. €a; (T) = ep,(7)gpal)i,;
and we have transition functions
hgoh': (UyNUs) NR" — (U, NUg) x R s.t. (x,v) = (2, gga(z)V)

forv eR". Since s € C*(M,E) is a section, on U, we have

s = Zsieaj = €450 for 5{1 € C*(Uy), €a = [€ays " »Cals s =1 1 | € C®(U,R")
j=1 s;

(28)

Now s € C®(M, E) is a C* section iff s € C°(Uy,R") and sg = ggasa on Ua NUgs. Indeed, on U, NUg

S = €aSa = €39BaSa = €8Sp
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(ii) Now suppose that we’re given a connection V on E. On U, we define connection 1-form (wa)f € QY (U,)

forj,k=1,--- 7 as in (26) by

Vea, = 3 (wa)h @ €a, (wa)k € QY (UL)

k=1
So
(wa)1 (wa)r
Ve, =[Vea,, +,Vea,] = eawa s.t. We 1= € QY (U,, gl(r,R) = M,(R))
(wa ) (wa)y
where gl(r,R) is the Lie algebra of GL(r,R).
(iii) On U, we defined
(Vs)a
(Vs)q := € QY (U,,R")
(Vs),
by .
Vs=> (Vs)), ®ea, € Q' (Ua, El ) = C®(Ua, T*Us ® El;)
j=1
where (Vs)J, € Q1 (U,) = C>®(U,, T*U,). So

Vs =eq(V$)a
But on the other hand, by Leibniz Rule, we may unpack the definition

T T T
Vs =V E shea; | = g ds), @ eq; + E s}, Vea,
Jj=1 Jj=1 Jj=1

= stg ® eq, + Z Z st (Wa)§ © eay
=1

j=1k=1
= Z (dsg + Z(w@fgfi) ®eq; = Z(Vs)fl ® €q,
Jj=1 k=1 j=1
Hence
(Vs)a s4 (Wa)i -+ (Wa)r (54
(Vs)a = : =d| |+ : . : D | =dsa +wasa
(Vs)a So (Wa)T - (wa)y/ \s&

Or in short hand notation
Vs =V(easa) = Veasa + €adsa = eawaSa + €adse = € (dsq + wasa)
Combining with Vs = e, (Vs)q we obtain

(V8)a = dsa + waSa

(29)

(iv) One may ask: On U, NUg, how are w,, and wg related? On U, NUg, we align both representations, and

using (28)
Vep = esws = €agapwp
Veg =V (eagap) = Veagas + €aldfas = €aWadas + €adgas
for gag € C®(Ua NUg,gl(r)) , dgap € Q1 (Us NUg, gl(r)) and wp € Q1 (Ug, gl(r)). Hence
9apwp = Walap + dgas € A (Ua, gl(r))

Rewriting yields

Wi = gogWalas + Iagd9as
Hence that

V:Q%M,E) — Q' (M,E)

is connection on E iff for any w € QY (U,, gl(r)) it satisfies (30)

wp = g;éwagaﬁ + g;édgaﬁ on U, N UB
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Remark 17.4. Let E be C™ wvector bundle of rank r. Let P : GL(E) — M be the frame bundle over M, i.e.
GL(E), ={(e1, - ,e.) | ordered basis of E, 2 R"}
This is fiber bundle with fiber GL(r,R), so-called principal GL(r,R)-bundle. M = GL(E)/GL(r,R). Our
previous example G — G/H s principal H-bundle. There is notation of connection on GL(E) iff GL(r,R)-
valued 1-form w € QY (GL(E), gl(r)) with some properties. Then
€a = [elaa T 7€roc] : Ua — P_1<Ua)

with w, = ew € Q1 (U, gl(r)).

17.2 Pullback Section and Pullback Vector Bundle
Definition 17.6 (Pullback Vector Bundles). Let F': M — N be a C™ map between C* manifolds. Let

m:E—> N
be C*° wvector bundle on N of rank r. Define
T F"E—>M

the pullback vector bundle as C* vector bundle on M of rank r s.t.

(i) As a set,
F*E:= | | Ery)
peEM
where Epp) =R,
*E —— F
Pl
M —— N

In other words
F*E:={(z,(y,v)) e M X E | F(z)=y=m(y,v)} CM x E

st.xeM,ye N andv € E,.

(i) F*E is a C*° submanifold of M x E. Let {U, | « € I} be open cover of N with
ho : 7 N (Uy) = Uy x RT
as local trivializations. Then using F: M — N is C* map
{F7'(Ua) | a € T}

is open cover of M. We want to define
he : 7 Y F~Y(U,)) —» F~1(U,) x R”
as local trivialization of the vector bundles @ : F*E — M.

Definition 17.7 (Pullback Sections). Let 7w : E — N be C* wvector bundle of rank r over a C*° manifold
N. Let F: M — N be smooth map. For
s:N—=FE

C section of N. We define F*s € C*°(M,F*E)
F*s: M — F*E s.t. (F*s)(p) := s(F(p)) € Epwp) = (F*E), VpeM
as smooth section of F*E s.t. the diagram commutes

F*E —— F
sl ]
M—LE 5N
One hence view

F*:C>(N,E) =Q%N,E) - C®(M,F*E) s+ F*s
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Now, to define the local trivialization for F*E, given

he : 7 Y Uy) = Uy x R”

local trivializations of : El; — Us and {€q,, - €qa,} as C= frame of E|; , recall
0
ea; 1 Us = 7 1 (Uy) = Ely. s.t. ea; () == hy'(y,é5) for é;:=|1
0

We have pullback sections {F*eq,, -+, F"ea, } as C frame for F*E|p_. . ) and we define

ho 17 H(F N UL)) = FH(Ua) xR™ st hy'(w,65) i= (Freq,) () = ea, (F(2))
We define our surjective map as
7. F"E—> M s.t. (p,v) € M x ((F*E)p, = Epgy) — p

(i11) Transition Functions. On Uy NUg, for eq = eﬁgga where €q = [€ays** 5 €a,)

gk, UanUs S GL(r,R)
Note for F~Y(U,) N F~Y(Ug) = F~Y(U, N Up), the diagram commutes

M B FY(U,NUp)

F*ggazggaoF
F
E

N B U,nU; —2 GL(r,R)

Then
Freq=[F*ea,, -+, Freq,] = FregF*gf,
and hence
i = Fof,
Notice s € C*°(N, E) iff

1
a

sa=| | €W, R

S

r
Sa

and sg = ggasa on Uy NUg upon writing s = e,So. Hence we have F*s € C°(M,F*E) s.t.

* o1
F*s,,

(F*s)q = F*sq = : € C™(F1(U,),R")

F*sl,
Now we consider the special case £ = T'N. Then the pullback tangent bundle writes
7: F*TN - M
We consider the space of connections on the C* vector bundle F*TN, i.e. C*°(M,F*TN)

Definition 17.8 (Pushforward and Pullback of Vector Field into Section of Pullback Tangent Bundle). Let
F: M — N smooth map. Define

F,:X(M)=C*(M,TM) - C>*(M,F*TN) s.t. X = (F.X)(p) =dF,(X(p)) € TpyN = (F*TN),
This is smooth section of pushforward bundle. Also, we have pull-back as particular example of Definition g?;l’)7
F*:X(N)=C*(N,TN) —» C*(M,F*TN) s.t. Y = (F*Y)(p) :==Y(F(p) € TppyN = (F*TN),
If moreover X € X(M) and Y € X(N) are F-related as in Definition 15.3 then o

F.X = F*Y € C®(M, F*TN)
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In particular, we study elements in C*° (M, F*TN), i.e., sections of pullback Tangent Bundle.

Definition 17.9 (C*° vector field along F'). For F': M — N smooth map between C> manifold. A C*° vector
field along F is a C*° map

V:M—=TN  st. VpeM, V(p)eTNpy = (F'TN),
We may view V as a C* section of F*TN, i.e., V. € C*°(M,F*TN).

M
Pl N
N +——TN
More generally, for smooth vector bundle 7 : E — N, we study elements in C*°(M, F*E).
Definition 17.10 (C*° section along F'). For F : M — N smooth map between C° manifold. Let
m:FE— N
be C'*° wvector bundle of rank v on N. A C*° section of m: E — N along F is a C* map
V:M—FE s.t. Vpe M, V(p)e€ Epyp = (F"E),
We may view V as a C* section of F*E — M, i.e., V € C®(M,F*E).
M
N +—FE
17.3 Pullback Connection
Definition 17.11 (Pullback Connection). Let F' : M — N be C™ map between C* manifolds. Let
m:E— N
be C'*° wvector bundle, and on it a connection
V:Q%N,E) - QY(N,E)
Then

1. there exists a unique connection on 7 : F*E w— M called the pullback connection s.t. symbolically

F*V:Q'(M,F*E) — Q' (M,F*E)  F*sw (F*V)(F*s):= F*(Vs) VscQ'N,E), F*scQ"(M,F*E)

(33)
2. Equivalently using (F*V)(F*s) € QY(M,F*E) = C*(M,T*M ® F*E) so
(F*V)x(F*s) € C*°(M,F*E)
One can write explicitly as in Definition 17.1
(F*V)x(F*s):==Vpxs VscQ(N,E)=C®N,E), VXecZXM)
3. In particular, pointwise
VpeM, Yve,M,  (F'V)y(F"s):= (Var,ws) (F(p)) € Erp) = (FE), (34)

Remark 17.5. We make sense of the definition (33). We’ve defined pullback as in Definition 17.7
F*: Q%N,E) = C®(N,E) = Q°(M,F*E) = C>°(M, F*E)
We may extend
F*:QP(N,E) —» QP(M,F"E)
as R-linear map s.t. for any oo € QP(N) and s € C*°(N, E)
F'(a®s) = Fra® F*s (35)

where F*a € QP(M) and F*s € C°(M,F*E). Thus for any s € Q°(N,E) and Vs € QY(N, E), (34) can be
rewritten as the following
F*(Vs) = (F*V)(F*s) € QY(M, F*E)
using
(F" ) (p)(v) := a(dFp(v)) VpeM, veT,M, acQ(N)
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Pullback Connection in Local Coordinates. Let r = rank E.

(i) 1. For {U, | a € I} as open cover of N, the local trivializations write

hY a7 (Us) = Ua X RT = €q,, -+, €q, C™ frame of E|;

[e%

On U,

Veq, = Z(wf’v)? ® eq, v (wf’v)f € QY (U,) U, C N open
k=1
and wZV € QY (U,, gl(r,R)) are connection 1-forms associated with V on U,,.
2. On U, N Ug, recall (30)
w}f’v = (gfﬁ)flwf’vgfﬁ + (gfﬁ)ildgfﬂ (36)

for transition functions gfﬁ onm: E— N
955 1 UaNUg — GL(r,R)

(i) 1. For {F~}(U,) | a € I} open cover of M, we have F*e,,, -, F*e,, C* frame of F*Elp .-
Using (35)

T T

(F*V)(Feq,) = F*(Vea,) = F*(O_ (WY @eq,) =D (FrwlV)E @ Fre,,
k=1 k=1
Now
WEBETY = PPV € 01 (Ua), 0l(r R))

2. On F~1(U,) N F~1(Ug), F* acting on (36) yields

F*E,F*V F*EN—1 F*E,F*V F*E F*EN—1,; F*E
wﬁ :(gaB ) W ga,(i‘ +(ga,8 ) dga,B

Hence
{wl BFVY c QNPT (UL), ol(r,R))

defines a connection F*V on 7 : F*E — M.

17.4 Covariant Derivative

Definition 17.12 (Covariant Derivative). Let m : E — M be a C*° vector bundle over a C*° manifold M
together with a connection
V:Q%M,E)— Q' (M, E) s.t. s Vs

or equivalently
V:X(M)x C*®(M,E)— C®(M,E) (X,s)— Vxs

For any C* curve
c:ICR—=>M s.t. t— c(t)

(i) Define the covariant derivative along c as the pullback connection under ¢ evaluated at % € X(I). Recall

(34)
D " . N Ds N
azcm(l,c E) = {C*sections of E along ¢: I - M} — C*(I,c*E) s.t. S = (c V)%s

(i) In particular if pick E = TM tangent bundle so that C*°(M,E) = C*(M,TM) = X(M)
V:X(M) x X(M) = X(M)  (X,Y) VxY

is an affine connection as in Definition 17.2, then

D DV
@ COO(I7C*TM)—)COO<I,C*TM) s.t. VHW
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(iii) Leibniz rule holds

D df | Ds . N
a(fs)—as—f‘fg VfEC (I), s(t)EC’ (I,C E)
Covariant Derivative in Local Coordinates. In local coordinates, for (U,¢) C°° chart with ¢ = (21, --
We have
9 9
(9561 ’ ’ 8xn

smooth frame of TM|, = TU where n = dim M, and
817 ... eT

C®° frame of E|,; where r = rank E. Then

Ve, :ZT:wa@ek :iiffjdxi(@ek
k=1

i=1 k=1

]

\% 2 e; = ZFfjek for Ffj e C*(U)
k=1

IfE:TMandr:n,soej:%Wehave
J

poc(t) = (za(t), -, wn(t))
and the diagram commutes
I~ M

| Lppen |Lppen

I —=—U
Y‘%
R'H/
The curve velocity writes
d(t) = - o -2 (e(t)) € C=(I', T M)
B — dt 0x; ’
for s € C*°(1,c*E) we have
s(t) =Y s (D)ej(e(t) = D 7 (t)(c"e;)(t)
j=1 Jj=1

Now we write, using Leibniz Rule (37)

Ds " o Je*e .
E(t) =(c"V)as=(c"V)a ZS €€

j=1
_ ds? . G *
=Y T Bese) + XSV ()
j=1 j=1
Here
(€9) 2 (€°¢3) = V(265 (e(8)) = Ve (e(t))
=V, s @) = 0 (V2 etpese®))
n o r d(,EZ .
- LT (e)er(c(®)
=1 k=1
Notice
0 de " dz;
(de(gg) = G0 = 30 G 05, (e € T
Hence for
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we have
0= 0+ 3 T 2 0)(0) | en(c(t) (38)
k=1 i=1 j—1

In particular, if we have affine connection V, then V() = Y7, VI (t)52-(c(t)) is a C* vector field along
J
c: I — M, and we have expression

DV K avF | e dmio ) 0
W_Z T (I'jj o) dtV Tm(c(t))

k=1 ij=1

17.5 Parallel Transport

Definition 17.13 (Parallel Section). Let V € C*°(I,c*E), i.e. a C* section of E along c. We sayV is parallel
w.r.t. V if
v

=0 Viel
dt

Proposition 17.1. Letc: I S M be C= curve. Given any to € I and any v € E.q,) = R" fiber of £ over
c(to) where r = rank E. Then there exists a unique parallel section V' of E along ¢ s.t. V(tg) = v.

Proof. WLOG assume c¢: [ — U C M open with ¢ = (z1,--- ,z,) and ¢(U) C R™ open, i.e., (U, ¢) is C* chart
for M. Let n = dim M. E|, is trivialized iff there exists e1,--- ,e, C* frame of E|;,. We thus have on U

e; = i Ffjek
k=1
For (¢poc)(t) = (z1(t), - ,xn(t)) and ¢/ (t) = Y1, Li(t) a‘zi (c(t)) and hence

= >V 0es(elv)

Using (38), the condition Z* = 0 holds iff

de E”:Z dxl i_o k=1 1

=1 j=1

Forv=3"_, v’e;(c(to)) € Eety) we have initial conditions V (to) = v iff
VE(t) = oF k=1,---,r
Thus we have 1st order ODE. Directly Apply Existence and Uniqueness theorem. O
Definition 17.14 (Parallel Transport). Define for any t € I
Petot : Eero) = By s.t. v="V(tg) = V(t)
where V€ C®(I,c*E) is the unique C™ section of E along c s.t.

v
dt

and V(tg) = v. Py, s parallel transport along ¢ (defined by (E,v)).

Example 17.1. In particular, let E = TM, V is affine connection on M (which is a connection on TM ).
Then we define parallel transport along ¢ : I — M C*° curve, for any to,t1 € I,

Petot TC(to)M - TC(tl)M

This is a linear isomorphism.

80



18 Riemannian Connection

Recall Affine Connection as in Definition 17.2.

Definition 18.1 (Symmetric affine connection). An affine connection V on a smooth manifold M is symmetric
if for any X, Y € X(M)
VxY - VyX =[X,Y]

In Local Coordinates. Recall as in (25) with e; = ai

) ) o 0
Votiom; Vo5 0m o Oz,
(Tr —1%) =0
zk: Bxk
Hence Ffj = Ffz O

Definition 18.2 (Compatible with metric). An affine connection V on a Riemannian manifold (M,g) is
compatible with the Riemannian metric g if for any X, Y, Z € X(M) we have

where g(X,Y) € C®°(M). In fact, compatibility with the metric in equivalent to
Vzg=0 YV ZeX(M) (40)

Proposition 18.1 (Equivalence with Compatibility with Metric). Let % be defined along ¢ : I — M smooth
curve by an affine connection V on M which is compatible with a Riemannian metric g on M. For V, W smooth
vector fields along ¢: I — M, i.e., V, W € C®°(I,c*TM), the metric inner product writes

(VW) (t) = (g(c() (V(2), W(t))
where (VW) € C*°(I). Then we have

d DV DwW
SV = (S S

(i) In fact, V is compatible with g iff (41) holds.

(41)

(i) In particular, V is compatible with g implies whenever V, W are parallel, we have
(V,W) = constant
In fact the converse holds as well.

In the following we note the more general relationship between V and pullback connection.

Proposition 18.2. Suppose F : M =% (N, h) from smooth manifold M to Riemannian manifold (N,h). Let
F,:X(M)— C*(M,F*TN) s.t. X = (F.X)(p) == dF,(X(p)) € TppyN = (F*TN),

be pushforward as in (31). Let V be affine connection on N and D := F*V be the pullback connection on M in
F*TN as in (33).

(i) If V is symmetric , then

Dx(FY) - Dy(F.X) = F*Vx(F.Y) - F*Vy(F.X) = F.(X,Y]) VX, YeXM) (42)

(i1) If V is compatible with the Riemannian metric h then
XV, W)= (DxV,W)+(V,DxW) VXeX(M), VW VeC®MFTN) (43)
Theorem 18.1 (Levi-Civita). Let (M, g) be a Riemannian manifold. Then there exists a unique affine connec-

tion V on M which is symmetric and compatible with the metric g. Such connection is called the Levi-Civita
Connection.
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Proof of Uniqueness. Take any X, Y, Z € X(M), if we have compatibility with the metric g, then

X(g(Y,2)) =9(VxY,Z)+g(Y,VxZ)
7Z,X))=9(VyZ,X) +9(Z,Vy X)
X,Y))=g(VzX,Y)+g(X,VzY)

Now add up first two and subtract the third, using g is symmetric tensor, and then using V is symmetric affine
connection

X(g(Y,2))+Y(9(Z, X)) - Z(9(X.Y)) = g(VxY + Vy X, Z) + g(Y,VxZ - VzX) + g(X,VyZ - VzY)
= QQ(VyX, Z) +g(Z, VXY — VYX) +g(Y, VXZ — VzX) + g(X, VyZ — VZY)
= 29(VYX7 Z)+g9(Z, [X7 Y]) +g(Y, [X, Z]) + g(X, [Y7 Z])

Then
1

9(Vy X, 2) = 5 (X(g(Y, 2)) + Y(9(2, X)) = Z(¢(X,Y)) = g(Y, [X, Z]) — 9(X,[Y, Z]) - 9(Z, [X, Y]))  (44)
This uniquely determines Vy X for any X, Y € X(M). O
Proof of Existence. We define Vy X as above and check that V is symmetric and compatible with the Rieman-
nian metric g. O
Local Coordinates. Let Y = 8%1_, X = T and Z = Tk as in (44). Then making use of (25) with e; = a%j S0
that .

4
91 83:J Z 9 8xk (45)
Then
o 0 -
LHS = — = | !
S g(v (')2 81‘] axk;) g(ZZI 17 8.’1}[ axk Z 'L]g[k
1/ 0 o 0 0 o 0 8 o 0 0 0 0
H = — _— _— _— ) - — _— ) — — R —
RHS 2 <6xjg(6xi’ 8xk) + 8xig(8xk’ 8acj) Bxkg(axi’ axj) g(ami’o) g(ﬁxj’o) (83% 0)>

1
=3 (Gik,j + Ghji — Gijk)

where g;; 1 = 89

1 n
=3 Z 9" (Girj + rji — Gijik) (46)

Example 18.1. Consider (R", g = dx? +---dz2) where g;; = 8;j. Then g;j r = 0 with

0
L _ \V4 _ v _
Fij_o aii 8xj =0 82 =0

Then for ¢ : I — R™ smooth curve with c(t) = (z1(¢t), -, z,(t))

=SV e
. x]
j=1
C™ wvector field. Then plugging in (38) we see
S dVJ
¢ @ ()
Jj=1

and Y =0 iff d;;j (t)=0.
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Example 18.2. Consider (S?, gean = d¢? + sin®(¢)db?). For spherical coordinates € (0,27) and ¢ € (0, 7).
(z,y,2) = (sin(@) cos(0), sin(¢) sin(6), cos(¢))
And (x1,22) = (¢,0). We have

g1 =1
g12 =921 =1
922 = sin2(¢)
gll -1
g2 =g =0
22 _ 1
sin?(9)
Thus g;j = 0 for any i # j and gk = gﬁ‘ Using (45) we derive relations
g ., 0 5 0
Va’%% Fu% ‘*‘Fu%
g 0 4 0 5 0
Va%% = V%% = FlQé)Tb +F12%
0 1 0 5 0
Vias ~ 295 T12gg

Since gao1 = 2sin(¢) cos(¢) and g5, = 0 otherwise, So using (46) we compute

Fh = F%l :F%Q :Fél :I%Q =0

2
1 1 0
r2 - 2k n _ - Y
2= ; (*"(g10,2 + g2 — 912,1)) 593 95722
_lﬁ -2 _ cos(¢) _ 2
=299 log(sin“(¢)) = ) cot(¢) =T%;
1 10,. .
[y = 5911(0 +0—g221) = —5%(51 %(¢)) = —sin(¢) cos(9)
Thus
o 1 0 2 0
Va%% Fn% +F11% 0
a g 5 0 5 0 0
V%%—V%%—F12%+F12@ COt((b)%
13} ;0 5 0 , d
Vo 50 D) 9% + Fzz@ sin(¢) COS(¢)%
Hence for (26) with e; = %
0 &~ . 0
Vaix] - w]- ® 879%
we have
0 0 0 0
V% d¢®V%%+d9®V%%—(COt((ﬁ)da)@%
0 s, 9 0 . d
V% do ® V%% +do® Va%% = (cot(¢)dg) ® i sin(f) cos(6)df ® 90
Hence wi = 0, w? = cot(d)dl, wi = —sin(¢) cos(¢)dd and w3 = cot(p)dp. The connection 1-form writes
11 :
wi ws\ 0 —sin(¢) cos(¢)db 1
(wf w§> = (cot(¢>)d0 cot(p)dg ) € (U 8l2R))
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Alternatively, we can choose a different frame. Using Leibniz rule (22)

Vi=V_o = V%
Vo=V o =Va
eri= 2
1= 56
__ 1 9
2= sin(¢) 00
0
V161 = Vé%% =0
B 1 0\ _ cos(¢) 0 1 0
Vier =V sin(¢) ae) ~ sin(¢) 90 sin(@V% 96 ="
0 0
Vaer = Vﬁ%&T;S = cot((b)% = cos(¢)es

1 9 1 0 1 . 0
Vaea =V | = > = Sm((b)v%% = sin(¢)(_ sin(¢) cos(qb)a—qS) = —cos(@)ey

_ 2 ~k .
Hence for Ve; =3 1 @ @ ex, since

Ve =d¢®va%el +d9®V%el =df @ Vaey = cos(¢)df ® es
Ves =dp @ Vies +df ® Voeg = — COS(¢)d9 X e
hence

0
cos(¢) 0

(g% gé) - <Cos((g)b)d9 _COS()(d))de) € Q1 (U, 50(2))

Remark 18.1. In general if eq,--- ,e, are local orthonormal frame of TM|, = TU, and V is an affine
connection compatible with the Riemannian metric, then

[Ver, Ves] = [e1, €3] < - COS(@) a0

and so our W writes

d(ei,e;) = (Ves, e5) + (ei, Ve;)

n
_ k
Ve; = E w; @ e
k=1

wh = —w] = we Q' (U,s0(n))

Lemma 18.1. Let F': (M, g) = (N, h) be an isometric immersion. For any p € M, let m, be the orthogonal
projection from Tp,) N to the image of
dF, : TyM — Tp N

Let X, Y € X(M) F-related to X, Y € X(N), and let V, V be Levi-Civita connections respectively on (M, g)
and (N,h). Then for anyp € M

dF,((VxY)(p) = mp((V£V)(F(p)))
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19 Geodesic

Definition 19.1. Let (M,g) be a Riemannian manifold. Let v : I C R — M be C*® curve. We say vy is

geodesic at ty € I if
D d~

aa(%) 0€Tyu)M
where % is the covariant derivative defined by the Levi-civita connection on (M,g). We say vy is geodesic if
D
dt " dt
Lemma 19.1. If~v:I — M is a geodesic in a Riemannian manifold (M, g) then

)=0

d d d
=121 = \/g<t>< 210, ZL(t)) = constant
Proof. Using % defined by Levi-civita connection, which is compatible with the metric, (41)

d iy dy, Dy dy

sy dy )+ (2 Dy
dt“dt’ dt’ “dt dt’ dt dt’dtdt’

Local Coordinates. Let (U, ¢) for ¢ = (x1,--- ,xn) be C* chart on M where n = dim M. On U we have

fn azj Z ij ark
where .
Ffj =5 Zg% (Gikj + Grji — Gijk)
k

WLOG assume
NI U AR
then

0= 202 (0
k
= 0
— keaoy_~
VO =3 Vg, 0
n k l’l
0= (dv Zr VOV | 56(0)

Now take the curve velocity V(t) = /() = ‘flz to be the C*° vector field along . By matching coefficients we

have V*(t) = d(f—t’“(t). S0

D d~ dacl dxj
Z—Z1 = k=1--. 4
dt dt Og)dt2+; Yo a0V " (47)
This is a system of 2nd order ODEs in x1(t), -+ ,2,(t). Denote
dl’i

4
)

Then they satisfy
{d dT =Yk
n
%:_Z'L] 1F O'szyj

This is a system of 1st order ODE in 1 (¢), - ,2,(t) and y1(¢), -+ ,yn(t). Hence there exists unique solution
if given initial data a;,b; € R
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or in other words
'Y(t()) = (2571(0,1, . 7an) =p
. 0
"(ta) = b, —
¥ (to) ;:1 i (p)

O

Theorem 19.1 (Existence and Uniqueness Theory for Geodesic). Let (M, g) be a Riemannian manifold. Given
anyp € M andv € T,M

e There exists a geodesicy: I — M s.t. 0 € I, v(0) = p and ~'(0) = v.
o IfB:I' = M is a geodesic s.t. 5(0) =p, 5'(0) = v then we must have
I'ciI B=pn
Example 19.1. Let (R", gy = dz} + ---dx?2) then
g9ij =065 I=0
Hence using (47)
D APz,

7/t :O 720
g7 =0 55

so for
v: I —=TR" s.t. t (21(t), -, zn(t))

Given any a € R™ and b € T,R™ 2 R" the unique geodesic v(t) with v(0) = a and v'(0) = b writes
yt)=a+bt teR
Example 19.2. Let (S™, gean). Given p € S™ and v € T,S™. Recall
(p,v) € TS™ C TR = R+ x R H!
for |p| =1 and (p,v) = 0. The unique geodesic Y(t) in (S™, gean) is given by

P ifv=20
v(t) = {Cos(vt)p +sin(vft) g if v#0

|v

19.1 Geodesic Field and Geodesic Flow
For v : I — M smooth curve in M and V a C'* vector field along =, the tuple

() = (v(®), V(1))

defines a smooth curve in TM s.t. the diagram commutes
-l \
5
™ —— M

In particular we prescribe initial data v(0) = p and 7/(0) = v for (p,v) € TM. Notice v is a geodesic in (M, g),
ie., B4~ =0iff y(t) and V(t) satisfy

Y (t) =V(t)
DV
—-(H=0

3(0) = (p,v)

Here we send «y to (v,7') and 4 to m o 4. Now for any (p,v) € T'M, define G(p,v) € T(,, ., (T M) as follows.

Definition 19.2 (Geodesic Field). Let v : (—e,e) — M be the unique geodesic in (M,g) s.t. ~(0) = p,
~'(0) = v. Let
Vi(-ee) = TM st () =((1),7(1)
Define
G(p,v) :=7'(0) € Ts(0)(TM) = T, (T M)
Claim that G € X(T'M).
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Local Coordinates. For (U, ¢) where ¢ = (z1,--- ,2,) is C° chart for M. We have (7=1(U), ¢)

leﬂil(U)—)Qb(U)XRnCRzn s.t. ¢:($17"'7Inay17"'ayn)

Now for any (p,v) e 7' (U),pe U andv= >, yia%i(p) eT,M,

¢(p7 U) = (qb(p)a Y1, 7yn)

note
goy(t) = (z1(t),--- ,an(t))

implies

Hence writing into equations

i=1 O = dt o
" dx; 0 " & o .
=3 T 0500~ 3 om0, (0)
On 7~ 1(U) we have
o9 .9 90 0
8.131 ) ) axnv 3y1 ) 9 ayn
as C* frame of T(T'M)|,-1 ;. Hence
G= Xn:yki - Zn: (T oo (z1,- - xn))yiy‘i (48)
= Ok i, k=1 Y C ! Oy

G is a C* vector field on T'M known as the geodesic field. The flow of G is called the geodesic flow. For any
(p,v) € TM, using Theorem 8.1, there exists § > 0 and an open neighborhood U of (p,v) in TM s.t. geodesic
flow ¢ exists

¢:(=6,0) xU S TMm s.t. (t,q, w) — P(t,q,w)

for any ¢t € (—4,9), ¢ € M and w € T,M. (From here on we abuse of notation to denote ¢ as flow instead of
coordinates) Then they solve

{%‘f(t, g, w) = G(¢(t,q,w))
(;5(0, q, U)) = (qa U))

Using the geodesic flow, one may construct geodesics in M using any initial data in the neighborhood U of (p, v)
yi=mo¢:(=4,0)xU - M (t,q,w) — ~(t,q,w)

For fixed (q,w) e U C TM s.t. ¢ € M and w € T, M, we have
Yo : (—0,0) = M s.t. t—=y(t,q,w) = Yguw(t)

as a geodesic with v,.,,(0) = ¢ and 7, ,,(0) = w. O

Example 19.3. For (R",g = da?+---dz?), we know Ffj = 0. One identify TR™ = R2™ s0 geodesic field writes

n
G:TR" =R™ » T(TR")  st.  (z,y)— Zy’“a%k
k=1

and solving ODEs give the geodesic flow
¢:RxTR"™ - TR" s.t. (t,z,y) — (z + ty,y)
along with nearby geodesics in R™

v :RxTR" - R" s.t. (t,z,y) — x +ty
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Example 19.4. For (S, gcan) we have geodesics in S™

x ify=0

VRATS DS st D)= i sl iy 20

For geodesic flows, we either have
¢p:RxTS" = TS" s.t. (t,z,y) — (z,0)

or
o(t,z,y) = (cos(|y|t)z + Sin(ly\t)ﬁ7 —sin(|y[t)|y|z + cos(|y[t)y)

making use of

6(t.0,0) = (411, 0,0), 221, 9,)
o

so0 |51 (t,q,w)| = [w|. Geodesic Flow preserves the sphere bundle, for
S| (TM) = {(p,v) € TM | |v| =r}
with v > 0. The geodesic field G(p,v) is tangent to S|, (T'M).

Proposition 19.1. If (M, g) is compact Riemannin manifold. Then the geodesic flow is defined on R x TM.

¢:RxTM —TM
y:RxTM — M

19.2 Exponential Map
Now we study homogeneity of geodesics. Let ¢ : (—d,8) x U — TM be geodesic flow with &/ C TM. Let
v:(=8,0) xU — M s.t. v:=mo¢ and so

8(1..0) = (6D, 0), oA (Ep,0)) Y (1pv) € (<6,0) x U

Lemma 19.2 (Homogeneity of geodesics). For ~v(t,p,v) flow defined for t € (—6,0) as above, then for any
a >0, the flow v(t,p,av) is defined fort € (=2 %) and

a?
v(t,p, av) = y(at, p,v)

Proof. Fix (p,v) € U and consider v = v, , : (—=6,9) — M as geodesic on M. For another curve 3, observe

)
B0 )M st B =Aar) ) =ay(a)
also satisfies the geodesic equation Dd—f/ = 0 but with 3(0) = p and 5'(0) = av. By uniqueness Theorem 8.1

v(t, p,av) = B(t) = y(at) = y(at, p,v)
O

Now consider (p,0) € TM. For any p € M, there exists open neighborhood & C TM of (p,0), and there exists
4> 0 s.t.
v (=6,0)xU—>M s.t. t— (t, q,v)

is the unique trajectory of geodesic field G € X(T'M) which satisfies initial conditions
70,q,v) =(¢,v)  V(gv) el

In particular, it is possible to choose U with parameter £ > 0 controlling the size of tangent vectors. There
exists V' open neighborhood of p in M, ¢ > 0 and

Uye ={(qw) |qeV, weT,M, |w| <e}
this is to say v(t,q,w) is defined for t € (=4,9), ¢ € V, |w| < . But then by homogeneity 19.2; choose a = g
~(t,q,w) is defined for t € (=2,2), g €V, |w| < %.
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Lemma 19.3 (Interval of Existence for geodesic uniformly large in Neighborhood of p). For any p € M, there
exists open neighborhood V. of p and there exists € > 0 s.t. v(t,q,w) is defined fort € (=2,2), g€V, w e T,M
and |w| < e, i.e., on

v:(=2,2) xUye CRXTM - M s.t. (t,q,w) — ~(t,q,w)
as the unique geodesic with v(0,q,w) = g, %7(07(1, w) =w for any ¢ €V and |w| < e.
Definition 19.3 (Exponential Map). For any p € M, there exists Uy as in Lemma 19.3. Define

w
exp: Uy CTM — M st exp(qw)=7(1lqw)=7(wlq, m) VgeV, |uwl<e

on Uy, CTM open. Also define its restriction to the tangent space TyM for any g € V
exp, : B:(0) C TyM — M s.t. exp, (v) 1= exp(q,v) VYqgeV, Jv<e

Remark 19.1. Why is this called an exponential map? If given G Lie group and g bi-invariant Riemannian
metric.
exp=-exp,: 1.G=9g— G

is defined for the whole Lie algebra and coincides with the previous definition 15.7.
Proposition 19.2 (Exponential Map as Diffeomorphism). For any p € M, there exists € > 0 s.t.
exp, : B:(0) CT,M — M exp,(v) := exp(p, v) Vvl <e
is a diffeomorphism of B:(0) onto an open subset of M.
Proof. By Inverse Function Theorem, it suffices to prove that
(dexpy)o : To(Tp,M) = T, M — T,M
is the identity.
0
=l expp(tv) = 5.7(t,p,v) LT

Hence exp,, : B:(0) — M is a local diffeomorphism at the origin 0 € B.(0), i.e., there exists ¢ > 0 s.t.

(dexp,)o(v)

exp,, : Be(0) C T, M — exp,(B:(0)) C M

is a diffeomorphism.
B:(p) := exp,(B:(0))
is the geodesic ball of radius € > 0 centered at p. O

Example 19.5. For M =R",
exp, : T,R" — R" s.t. v P+

Example 19.6. For M =S"
B P v=20
expy (v) = cos([v])p +sin([v])ry v #0

This is diffeomorphism of Br(0) onto S™ \ {—p}.

Lemma 19.4 (Geodesic Frame). Let (M,g) be Riemannian manifold of dimension n and let p € M. There
exists an open neighborhood U C M of p and n vector fields E1,--- , E, € X(U) s.t.

(i) For any q € U, {E1(q), -, En(q)} is an ONB of T,M.
(it) (Vi E;)(p) = 0.

Proof. Choose a normal neighborhood U of p, i.e., there exists a neighborhood 0 € V' C T, M s.t. exp, : V = U
is a diffeomorphism. Consider an orthonormal frame {Ei(p),---,En(p)} of T,M. For any ¢ € U, there is a
unique geodesic 7y in U s.t. ¥(0) = p and (1) = ¢g. Define

{El(Q)v to aEn(Q)} C T‘ZM

to be the parallel transport of {E;(p),- -, En(p)} along v to g. Since parallel transport is linear isometry,
{E1(q),- -+, En(q)} C T,M remain orthonormal frame. Suppose 7 is geodesic with v(0) = p and 7/(0) = E;(p).
Since E; is parallel vector field along «y, we have

Vi Ej =VEEj(p) =0
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19.3 Minimizing Properties of Geodesics

Some notations.

o Lets: ACR2SS Mbea parametrized surface in a smooth manifold M. Let (u,v) be global coordinates

on R2, then
0 0 0s 0Os
— 7~ €X(A — - To(unyM = (s"TM
ou v € ( ) Ou (u,v) v (ua U) € s(u,v) (S )(u,’u)
o We used s*a and s*a— in place of Do Carmo’s notation 82 and 65 € C®(A,s*TM), i % and % are

vector fields along the parametrized surface s : A — M.

e If V is an affine connection on M, then let D = s*V, we denote
D D

@::D%, %::D%:C (A, s"TM) — C*(A,s*TM)

Lemma 19.5 (Symmetry). If V is a symmetric affine connection on M, then

D 0Os D Os
dodu ~ dudv (49)

Proof. Using (42)

Dos D 0os 0 0
Qo dudw D% ou PRy

. 0 . d
=s Va%s*%fs Vas*av

= S« ([;}, ai}) =0

O
Lemma 19.6 (Gauss Lemma). Let (M, g) be a Riemannian Manifold. p € M and v € T, M such that exp,(v)
is defined (i.e., defined on line segment connecting 0 and v as in Definition 33). For any w € T,M = T, (T, M)

0)

((dexp,)v(v), (dexp,)y(w)) = (v, w) Vo, wel,M (5
notice (dexp,),(v), (dexp,),(w) € Texp, ()M

Proof. Define
fi(—ee) x(=6,1+0) > M s.t. f(s,t) = exp,(t(v + sw))

for 8, e > 0 sufficiently small. For any s € (—¢,¢) define f;
fs:(=6,14+06) > M s.t. fs(t) == f(s,t) = exp,(t(v + sw))

Here f; is geodesic with initial position fs(0) = p and initila velocity f.(0) = v + sw. Now using f; is geodesic

Dof D\ _
%a(&t) = %fs(t) =0
Also
H Z(ﬂg<m:m@mm:mmﬂw

= (v + sw,v + sw)
= (v,v) + 2s(v,w) + % (w, w)
Now we differentiate

F(t,5) = exp, (t(v + sw))
of

o —(t,s) =(d expp)t(v+sw) (v + sw)
of

B —(t,s) = (dexpp)t(v+sw) (tw)

0

& (1,0) = (dexp, )un(v)

of

g(t, 0) = (dexp,) i (tw)
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Now the LHS is equal to

of af
1
(Z(1,0), 22 (1,0))
We differentiate using compatibility with the Riemannian metric g (41), and that metric is symmetric (49)
g ,0f Of Dof of of DOf of Dof

&<E’£>:<£E’E>+<E’£a>:<ﬁ’$ﬁ>
10 90f 0 10
= 5555 o) = s (000 + 250000 4 62 )
(v, w) + slw|?

Thus we compute

0F | o) 0F 0F o o) 0F Yo of of L
Grao.gam - oo oo - [ 2G Tena- [wwi-wu
L 0,0, 2 (1,0)) = (dexp, ) (v), (dexp, )u(w))
0.0, % 0,00 = 0

O

Proposition 19.3 (Geodesic Locally Minimize length). Let (M, g) be a Riemannian manifold. p € M. Let U
be a normal neighborhood of p in M, i.e., there exists U’ open neighborhood of 0 in T,M s.t. exp,, is defined
on U" and maps U" diffeomorphically to U = exp,(U’). Let B = Bs(p) C U be a geodesic ball of radius 6 > 0
centered at p. Let v :[0,1] — B be the geodesic segment s.t.

y0)=p ) =q#p A(0)=tvoeT,M

i.e.
V(1) = expy(tvo), ¢ =7(1) =exp,(vo),  £(7) = |wol
Now for any c: [0,1] = M piecewise C*> curve in M s.t. ¢(0) = ¢(1) = q. We have

Moreover, £(c) = £(v) implies

Proof. WLOG

e Assume ¢([0,1]) C B otherwise consider the smallest t; € [0,1] s.t. ¢(¢t;) € 9B and show that £(c) >
(el 40) 2 6 > (7).

e Assume c(t) # p for ¢ > 0. Otherwise consider the largest ¢; € (0,1) s.t. ¢(t2) = p. Consider [, ;) and
show £(c) = €(c|, 17) = £(7).

Define b: [0,1] — B;s(0) C T,M s.t.
b(t) = exp, ' (c(t)) == c(t) = exp, (b(t))
so b(t) is piecewise smooth curve in T, M. By our assumption, b(t) # 0 for ¢ > 0. Let r(t) = |b(¢)| so
r:]0,1] = Rxo

is piecewise C*°. We have r(t) > 0 for any ¢t > 0. For t > 0

so v : (0,1] = T, M is piecewise C*°. Hence using Compatibility with the metric

(v(t),v()) =1 = (v(t),v'(t)) =0
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Then for 0 <t <1
c(t) = exp,(b(t)) = exp,(r(t)v(t))

2160 = (dexpy o (' (E)o(t) + ()0 (1)

+ +
[\
<
—~
~~
~—
S

—~ o~
~
~—
—~
—

dexpp)r(t)v(t)( (t)) (dexp,), t)v(t)(v ()
XPp)r(t)u(t) (V' (1)), (dexp,)riyo(e) (V' (1))
(v(t),v(t)) + 2r(t)r'(t )(U(t)ﬂf (1)) + (r(£)?|(d exp,)r(tyo(e) (V' (1) 2

[ V)
—
QU
]

ﬁ\
~
[\S]
—
<
—~
~
~
~—
—
U
@D
”
=)
hS]
~
3
—~
-
—
<
~
N
—
<
=
]

where the last step uses Gauss Lemma (50). Hence

= PO ORI dexpy a4 2 (0] 2 ()

)2/0 d(;l(tt)|dt2/a Y (t)dt = r(1) — r(e)

for any € > 0. Note lin%) r(g) = 0 so using r(1) = |vg| = £(7) yields
E—

SO

t(c) = £(7)
Furthermore ¢(c) = £(y) <= ¢'(t) =0 and 7'(¢) > 0. Then

Vo

v(t) =

[vo

is constant unit vector. Now

o(t) = expp(r(t)%) ) >0 r(0)=0 r(1)=0
and
v(t) = exp,(tvg)  ¢(0) =~(0) =p (1) =~(1) = exp,(vo) = ¢q
hence

19.4 Killing Vector Fields

Let (M,g) be a Riemannian manifold with metric g. Let X € X(M). Let p € M and U C M be open
neighborhood of p. Let

p:(—ee)xU—>M s.t. t— p(t,q) is trajectory of X passing through g at t =0 VqeU (51)
Definition 19.4 (Killing Vector Field). X if called a Killing Vector Field if for each tg € (e,¢), the mapping
o(t,): UCM—M is an isometry, i.e., o(to,)'g=9g  Vty€(—ce)

Proposition 19.4 (Killing Equation). X € X(M) is a Killing vector field iff
(VyX,Z)+ (VzX,Y)=0 VY, ZeX(M) (52)
Hence alternatively one has definition

Definition 19.5 (Killing Vector Field Equivalent Definition). Given Riemannian manifold (M,g). X € X(M)
is Killing Field if the Lie-Derivative of the metric g w.r.t. X vanishes

LXgZO
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Proof. Let Lxg = 0. Then

0=1Lxg(Y,Z) = X(g(Y,2)) —g(LxY,Z) — g(Y,Lx Z)
= X(g(Y, Z)) - g([X,Y],Z) - g(Y, [X7 Z])

Note for V Levi-Civita connection that is compatible with the metric
0=X(g(Y,2)) —9(VxY,Z) - g(Y,VxZ) =Vxg(Y,Z)

and substitute using ‘symmetric’
VyZ—-VzY =[Y, 7]

we conclude
0=Lxg(Y,Z)=(VyX,Z)+ (VzX,Y)

O

Proposition 19.5. Let X be a Killing vector field on a connected Riemannian Manifold M. If there exists
point g € M s.t.
X(g)=0 and VyX(q)=0 VY(q) e T,M

Then X = 0 identically vanishes.
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20 Curvature
20.1 Curvature on Smooth Vector Bundle
Let m: E — M be C'* vector bundle over a C* manifold M. Let » = rank E and n = dim M. Let
V:QM,E) = QY (M,E) s+ Vs
be smooth connection on E. For any X € X(M) we know Vxs € C*°(M, E)
Definition 20.1 (Curvature Fy). For any X, Y € X(M) define R-linear map
Fy(X,)Y):C®(M,E) —» C®(M,E) s+ VxVys —VyVxs—Vixy)s = Fy(X,Y)s
Then
o Iy is anti-symmetric Fy(X,Y) = —Fy(Y, X) and
o (X\Y,s)— Fy(X,Y)s is C®°(M)-linear in X, Y, s.

Linearity. Since Fy(X,Y) = —Fy (Y, X) it suffices to show that for any X, Y € X(M), for any s € C*°(M, E)
for any f € C*°(M)

() Fo(fX,Y)(s) = fFe(X,Y)s
(ii) Fo(X,Y)(fs) = fFo(X,Y).
We check (7).

Fv(fX, Y)(S) = VvayS - VYVsz - V[fx’y]s
= fVxVys = Vy(fVxs) = Vixyi-v(nHxs
=fVxVys—Y(f)Vxs— fVyVxs— fV[X7y]S +Y(f)Vxs
= f(vXVyS - VyVXS - V[X’y]s) = fFv()(7 Y)S

Remark 20.1. Since E* @ E = End(E), for any X, Y € X(M)
Fy(X,Y) e C*°(M,End(E))
On the other hand we write
Fg: X(M)xX(M) x C*(M,E) —» C*(M, E) (X,Y,s) — Fy(X,Y)s

is C°°(M)-linear. Hence
Fy € C®(M,T"M @ T*M ® E* ® E)

Since Fy(X,Y) = —Fy(X,Y) we in fact have
Fy € C°°(M,(A*T*M) ® End(E)) = Q*(M, End(E))

Definition 20.2 (Metric & on Smooth Vector Bundle). Let w: E — M be a C* vector bundle of rank r on a
C* manifold M.

(i) A metric on E is a C* section h € C*°(M, Sym?E*) such that for any p € M
h(p) : E, x E, = R
is an inner product on Ey.
(i) We say a connection V on E is compatible with h if for any X € X(M) for any s, t € C*°(M, E)
Xh(s,t) = h(Vxs,t)+ h(s, Vxt)
for h(s,t) € C=(M).

Proposition 20.1 (Anti-Self adjoint). If V is a connection on E — M compatible with a metric h. Then for
any X, Y € X(M), the curvature Fy(X,Y) € C®(M, End(E)) is anti-self adjoint.

WFy(X,Y)s,t) = —h(Fy(X,Y)t,s) = —h(s, Fe(X,Y)t) Vs, teC®(M,E)

94



Proof.
hEFy(X,Y)s, t) + h(Fy(X,Y)t,s) = M(Fy(X,Y)(s+ 1), (s +1)) — h(Fv(X,Y)s,s) — h(Fv(X,Y)t, 1)
It suffices to show that
h(Fv(X,Y)s,s)=0 VX, Y eX(M) VseC®(M,E)
so the RHS vanishes. But
h(Fy(X,Y)s,s) = h(VxVys,s) = h(VyVxs,s) — h(Vix y]s, s)
= Xh(Vys,s) = h(Vys, Vxs) = Yh(Vxs,s) + h(Vxs, Vys) — %[X, Y]h(s, s)

= %XYh(s,s) - %YXh(s,s) - %[X, Yh(s,s) =0

Now let V be an affine connection on a C'*° manifold M, i.e., V is a connection on T'M.

20.2 Riemannian Curvature and Riemannian Curvature Tensor

In the Riemannian setting, first consider Fy curvature over E = T'M over tangent bundle.

Definition 20.3 (Riemannian Curvature). For any X, Y € X(M), define
Ry(X,Y): X(M) = X(M)  st. Ry(X,Y)Z:= —Fy(X,Y)Z =VyVxZ - VxVyZ - VyxZ (53)
Lemma 20.1. We have for X(M) = C>®(M,TM)
Ry : X(M)x X(M)x X(M) — X(M) s.t. (X,Y,Z) = Ry(X,Y)Z
is C°(M)-linear in X, Y, Z.
Ry € Q*(M, End(TM)) = C®(M,\*T*M @ T*M @ TM) C C*°(M,TM & (T*M)%®?)
where TM ® (T*M)®3 = T4 M. Hence Ry is (1,3)-tensor on M.
Proposition 20.2 (First Bianchi Identity). If V is a symmetric affine connection on M, i.e.,
VxY - VyX =[X,Y] VX, Y e X(M)

Then
Rv(X,Y)Z+ Rv(Y,Z)X + Rvy(Z,X)Y =0

Proof.

Ry(X,Y)Z + Ry (Y,Z)X + Rv(Z,X)Y =VyVxZ - VxVyZ - Vyx1Z
+VzVy X —VyVzX — V[Z7y]X
+VxVzY —V,VxY — V[X,Z]Y

Now using that the connection is symmetric we reduce to

Ry(X,Y)Z + Ry (Y, 2)X + Ry(Z, X)Y = Vy[X, Z] + V5[V, X] + Vx[Z,Y] = Vix,2)Y = Viy.x)Z = Vizy) X
=YV [X 2]+ [2 [V, X[+ [X,[2,Y]]=0

where we used Jacobi Indentity (9). O
Now we define Riemannian Curvature Tensor using Riemannian Curvature.

Proposition 20.3 (Riemannian Curvature Tensor). Let (M,g) be a Riemannian manifold and let V be the
Levi-Clivita connection determined by g. Define

R:X(M)x X(M) x X(M) x X(M) = C=(M)  st. R(X,Y,Z,T):=g(Rv(X,Y)Z,T) (54)

Then R is a (0,4)-tensor, i.e. R(X,Y,Z,T) is C*°(M)-linear in X, Y, Z, T. Moreover

95



(a) First Bianchi Identity holds
R(X,Y,Z,T)+ R(Y,Z,X,T) + R(Z,X,Y,T) = 0
(b) R e C®(M,Sym?(A2°T*M)), i.e., for any X, Y, Z € X(M)

(b1) R(X,Y,Z,T)=—-R(Y,X,Z,T) anti-symmetric in first 2 coordinates.
(b2) R(X,Y,Z,T)=—-R(X,Y,T, Z) anti-symmetric in 2 coordinates.
(b3) R(X,Y,Z,T) = R(Z,T,X,Y) symmetric w.r.t. the 2 sets of coordinates.

(b1) and (b2) together gives R € C°°(M,A*T*M @ A*T*M). With (b3), R € C> (M, Sym? (A*T*

R is called the Riemannain Curvature Tensor of (M, g).

(55)

M)).

Proof. (bl) is clear from definition. That V is compatible with g implies (b2). Assume (b1) and (b2) we derive

(b3) using elementary algebra.

Local Coordinates of Riemannian Curvature. Let (U, ¢) be C* chart on M. Let (zq,---
nates on U. Let T be any (r, s)-tensor on M. Then locally on U, T takes the form (12)
; 0 0
— 1, 717‘
T= Z Tjh s Oz, ®-® Oz,

1<iy, - ,i,<n 1 T
1<j1,-,ds<n

For V Levi-Civita connection. Write
g = Zgwdxidxj
%,
oy € C°(U). Recall we have Levi-Civita connection s.t.

By 05
6’1 83:] Z ”81‘

where Gijimg(

where

1 d
I‘fj =3 ZQM (Gik,j + Grjyi — Gijk) 9ej,i = %gzg'

Define R € C*°(U) by
g 0,0

__ 7) m 9
8:}52-’ &rj

Ry ( T Rijege

On U, recall Ry € C*°(M, T3 M)

d
= Y RPdu; @ do; @ dug ® 5—

0T
i,7,k,m
as (1, 3)-tensor. Using definition (53)
o 0,0 0 0 0
R —)5—=V.oV -V.aoV -V —
V(al‘i7 (“):cj)ﬁxk % 521 oxy, 321‘ %Bxk [321’%](‘31}]@

where by computations
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O

, ) be local coordi-



Hence we have local coordinate representations

m

a m m
T = %r —F +ZF = T4 (57)
J ‘

Local Coordinates of Riemannian Curvature Tensor. For (U, ¢) with ¢ = (zq,---

9= gijduidz,

ij

, Tp) and

with T'¥; Christoffel symbols (46). On U, since R € C*°(M,T{M) is (0,4)-tensor
Z Ri7j,k7gd$¢ X dxj ® dry ® dxy
i.j k=1
and using Definition (54)

0 0 9 9 0 90 0
dz;” dz;’ Oxy’ Oxy AR dz;” Oz’ Oy, Oz

m 0 0 m -
= g(z Rijk%7 6‘755) = ;Rijkgmé e C>(U)

m

R; i = R(

Moreover, using Proposition 20.3
(a) Rijke + Rjkie + Riije = 0.
(b) Rijre = —Rjine = —Rijor = Rieij-

Example 20.1. For dim M =1 then
R = Ryi11(dvy ® dry ® doy @ day)

But this immediately implies R1111 = 0 via Bianchi identity. Hence for dimM =1, R = Ry = 0.

20.3 Sectional Curvature

In general, an inner product on a vector space V = R™ induces an inner product on A%V as follows. If
{e1,-+ ,en} C V is an ONB, then
{eine; |1 <i<j<n}

is an ONB of A?V.

Definition 20.4 (Sectional Curvature). Let (M,g) be Riemannian manifold with R Riemannian curvature
(0,4) tensor. Let p € M, let o be the 2 dim subspace of T,M, i.e., o € Gr(2,T,M). We define the sectional

curvature of o to be
R(p)(2,y,2,y)

(58)
where x, y is any basis of o and
|‘T A y‘Q = <I7I><y7y> - <I’,y>2

Alternatively, one may define
K(p7 U) = R(p)(ela €2, €1, 62)

where eq, e is an orthonormal basis of o. Then K(p,o) € R is well-defined independent of choice of x, y, e1, ea.

Remark 20.2. Given o C T, M 2-dim subspace, let e, ex be orthonormal basis and x, y any basis. If

T = aey + besy
y = cep + deg ad —bc #0
= R(p)(z,y,2,y) = (ad — bc)*R(p)(e1, ea, €1, €2)
lz Ayl? = (ad — be)?
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Theorem 20.1. The Riemannian curvature tensor R on a Riemannian manifold (M, g) is determined by its
sectional curvature K(p,o) for any p € M and for any o € Gr(2,T,M), i.e.

(R(X,Y,Z,T) | X, Y, Z, T € X(M)}

1s determined by
{R(X,Y,X,Y)| X, Y € X(M)}

Proof. Follows from the following lemma in linear algebra 20.2. O

Lemma 20.2 (Linear Algebra). Let V be an inner product space over R where dimg V =n, e.g. V =T,M.
Suppose that we have two maps r,r' € (V*)®4

rr VxVxVxV R (2,9, 2,t) = r(z,y,2,t), 7' (z,y, 2, 1)
R-linear in x,y, z,t and both satisfy
(a) Bianchi identity r(x,y, z,t) + r(y, z,x,t) + r(z, 2, y,t) =0
(b) r € Sym2(A2V*), i.e.
(b1) r(z,y,2,t) = —r(y,z, 2,t).
(b2) r(x,y,z,t) = —r(z,y,t, z).
(b3) r(z,t,x,y) =7r(z,y,2,t).
Define K, K' : Gr(2,V) — R s.t.

r(z,y,z,y)
Koy =" nyp
!
ro Ty, y)
Ko} = EXNE

If K =K', thenr =1
Proof. Let A =1 — 1" € (V*)® then A satisfies (a) and (bl) - (b3) and
Az, y,z,y) =0 Va,yeV

We claim that
Az,y,z,t) =0 Va,yzteV

Indeed for any z, y, z € V we have
2A(7,y, 2,y) = A2y, 2,9) + Az, 9,2, y)
:A(x—i—z,y,x—i—z,y) —A(m,y,x,y)—A(Z,y,z,y) =0

Hence
Az, y,2,y) =0  Va,y,zeV

Now for any x,y,z,t € V

0

Alz,y+t z,y+1t) — Alz,y, 2,y) — Az, t, 2, 1)
Az, y, 2,t) + Az, t, 2,y)
Az, y,z,t) + Az, y, 2, t)
Az, y, z,t) — Ay, 2, z,t)

using Bianchi we have
0=A(z,y,2,1t) + Ay, z,x,t) + Az, z,y,t) = 3A(z,y, 2,t)
O
Definition 20.5. We say (M, g) have constant sectional curvature Ky if for any p € M for any o € Gr(2,T,M)
K(p,o) = Ky
Theorem 20.2. (M, g) has constant sectional curvature iff

R(X,Y,Z,T) = Ko(9(X, 2)g(Y,T) — g(X,T)g(Y, Z))
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Proof. Define the RHS to be KoRo(X,Y, Z,T) then for any e;, e orthonormal vectors

Ro(er, ez, e1,e2) = g(er, ea)g(er, e2) — gler,en)? =1-1-0° =1
Hence
Ro(X,Y, 2, T) = g(X, Z)g(Y,T) = g(X, T)g(Y, 2)
satisfies (a) and (bl) - (b3). O

Definition 20.6 (Flat). We say a Riemannian manifold (M, g) is flat if it has constant sectional curvature 0.
This is equivalent to saying Riemannian curvature tensor R =0 due to Lemma 20.2.

Example 20.2. (R", gy = da? + ---dx?2) is flat since Fk =0 = R ik =0.

Example 20.3 (Riemannian Curvature Tensor and Sectional Curvature at n = 2). For Riemannian manifold
(M, g) with dim M = 2. Let (U, ¢) be C* chart on M and let (x1,x2) be coordinates on U. On U

2
9= gijdvidz; = gida} + 2g1adaydry + gaoda)
i,j=1
We have Riemannian Curvature Tensor
2

> Rijreda; @ daj @ day, @ dag
0,5,k 0=1
= Ri212d21 ® dzo ® dr1 @ d2g 4+ Ro112dze ® do1 ® d21 ® dxo + Ri221d21 ® d2o ® dzo ® dv1 + R2121d22 ® d2y ® doe ® d2y
= Ri212(dzy ® dxg — dxg @ dzy) & (dry @ dre — dxe @ dxy)
= nglg(dl‘l N dxz) ® (dxl A dxg)

R

The only 2-dim subspace of T, M 1is itself. So sectional curvature
K:M-—-R s.t. K(p) = K(p, T,M) VpeM

has

o 2 8 8
(501 8020 0010 B23) _ Ruzi
|a%1 A 3%2\2 911922 — i
Example 20.4. Consider (S?, gean = d¢? + sin® ¢d#?) for (6,0) = (x1,x2). Recall Example 18.2

g11 =1, goo = sin® ¢ g2 =921 =0

Where
0
0 0 3
9 i

Vo 0 —sin(¢) cos(¢) 9

We want to compute
K= Ri212 _ Riso

911922 — g7 sin’(¢)

In particular

a 90
—(—csc qb —&—cotqbvai% %>

Hence K = 1.
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20.4 Ricci Curvature and Scalar Curvature

Definition 20.7 (Ricci Curvature). First define a symmetric (0,2)-tensor Q on M. For anyp € M, z, y € T,M
and ey, - ,en, ONB of T,M

Qp)(z,y) :=Tr (v e T,M — R(p)(z,v)y € T,M)

= SR e = YR o) = D RO 00 50 ) )

Proof for Last FEquality of (59). The last equality follows by using computations

i Z i
=) QiK€ = E ajeee
X X
k Oz; [

and g;; as
9ij = <Z a;ier, Zajeee> = Zaikaj£<€ka eq) = Zaikajk
k ) ke k=1
=aa’
g—l (CLT) 1Cl_1
Hence
Z R(p>( xz, o .ayv 8ZE j = Z R 7Zaikek7y7 Zajfef)g I = ZR(p)(xa €k, Y, eZ) Z airg ]ajl
i,j=1 2,j=1 k 4 k£ 7,j=1
= Z R(p)(l', €k, Y, ef)(a’Tg_la’>k5 = Z R(p)(l', €k, Y, ef)(a’Ta’_Ta_la)k:Z
k0
= Z R(p)(xa €k, Y, ef>6k€ = Z R(p)(.’]}, €k, Y, €k>
kL k=1
O
We also make the claim that Q € C°(M, Sym?*T*M) is symmetric tensor.
Proof. Using (b3) R;jre = Rieij we indeed verify @ is symmetric
Q(p)(x»y) :ZR(p) x ez,yaez ZR yvehx,ei)
i=1
=Q(p)(y,x)
O
Hence the coefficients of Q writes
g 0 - 0 0
Rl - b = R b )
J Q(axl 81']) < (p)(a i ek)a j 6]€>
k=1
" o 0 g 0
B Z (p)(axz’ Oz, (), dx;’ Oxy ZRZkﬂg

k=1
OonU

Q= Z Rijdxr; ® dx;

4,j=1

= Z Rijd.’lﬁidl‘j

]

Here R;; = Rj; and dx;dr; = %(dmi ®@dr; +dr; ® dx;). We define Ricci Curvature Tensor as

ZR” dzydzy € C™(M, Sym>T* M)

0,J

Ric := LQ—
n—1

n—1
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Indeed the coefficients of Ric in local coordinates write

o 9 1 1 <
Ric;; == Rlc(@xl az]) p— 1Rij =7 ij — Z Rmﬂg
k=1 k =1
Remark 20.3. Why do we normalize by —5 ? If (M, g) has constant sectional curvature Ko, then

R(X,)Y,Z,T) = Ko(9(X, Z)g(Y, T)—9(X,T)g(Y,Z))
Rijie = Ko(9ikgje — 9ie9ijk)

Rig =Y Rijreg’ =Ko [ Y _gik 0”050 =Y g > ging"*
gt L J ¢ J
= Ko <gjk > 6 Z%‘ﬁﬁ)
‘ ¢

= Ko (gikn — gir) = (n — 1) Kogix
Hence Q = (n — 1)Kpg and Ric = Kyg.
Definition 20.8 (Scalar Curvature). Let (M, g) be Riemannian manifold. For any p € M, define a linear map
K(p): T,M — T,M s.t. (K(p)(x),y) = Qp(zx,y) Va,yeT,M
The (1,1)-tensor K is self-adjoint at each point p € M, i.e.
(K(p)(2),y) = (z, K(p)(y))  Va,yeT,M
Taking an orthonormal basis {e1,--- ,en} of T,M, we compute the Trace

TH(K ) = LGN = Qe

n
= Z R(p)(ei,ej,eisej) = (n—1) ZRIC (e, €;)
ij=1
Then we define scalar curvature S € C*° (M)

S(p) = %ZRic(p)(ei,ei) = %ZRicijgij = ——=Tr(K(p))

i i

1 g
- E i
n(n —1) iz

_ 1 k ij
- n(n . 1) Z Rikjg

0,5,k
_ ik j¢
= 7’L — 1 Z Rz]kﬁg g
7,k 0
Example 20.5. When (M, g) has constant sectional curvature Ky
Ric = Kyg
1 . 1 iy
i i,
Example 20.6. For dim M = 2,
R= R1212(d9€1 A\ dLL'Q) ® (dl’l AN dLUQ)
R
Ric — 1212 ,
911922 — Jia

R
S — 1212 .
911922 — 912

g=Kg

=K

We carry out the calculation

S = 3 (R12129 9% + Ro1129°" 9" + R12219"°¢°" + Ra1219%g™)
1
=3 (Ri2129"'9°* — R12129”' "> — Ri2129"2¢%" + Ri2129%9"")
R
= Ri2129"1¢"% — Rizia(¢'?)? = —22 =K

g11922 — 9%2
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21 Covariant Derivative of Tensors

Proposition 21.1 (Covariant Derivative on Tensor). Consider an affine connection V on C* manifold M.
Given X € X(M)
Vx : X(M) — X(M) Y —» VxY

defined on (1,0)-tensors. Then Vx has a unique extension Vx : C°(M,TIM) — C*(M,Tr M) to any (r,s)-
tensors s.t.

(i) Vx is R-linear.
(ii) Vx(e(S)) =c(VxS) for any ¢ contraction.

(i41)
Vx(S®T)=VxST+SeVxT

Proof. For (0,0)-tensor, for any f € C°(M) and Y € X(M), we need

Vx(fY)=X(/)Y + fVxY

Vx(fY)=Vx(feY)=(Vxf)oY + fa@VxY
= (Vxf)Y + fVxY

= Vx[f=X(f)

For (0, 1)-tensors, for any o € Q' (M), Y € X(M)

X(a(Y)) = Vx(aY)) = Vx(c(a®Y)) = c(Vx(a®Y))
=c¢((Vxa)®Y +a®VxY)
=(Vxa)(Y)+ a(VxY)
= (Vxa)(Y) = X(aY)) — a(VxY) (60)

It is good to compare with Lie Derivative
(Lxa)(Y) = X(a(Y)) — a(LxY)

Now for any (r, s)-tensor, for T' (0, s)-tensor, Y1,---,Y, € X(M)
(VxT) (Y1, Ye) = X(T(Y1,---,Ye)) = D T(Y1,Ya, -+, Vi1, ViV, Vi, -+, Vo) (61)
i=1
again, compare with Lie Derivative as in Lemma 11.6

S

(LxT)(Yi,-++,Ye) = X(T(Y1,-+,Ya)) = > T(V1,Ya, -+, Yio1, [X, Vi), Yign, -+, V3)

i=1
O
Definition 21.1 (Covariant Derivative of (r, s)-tensor).
V:C®(M,TIM) — C°(M,Tr, M) T+ VT
s.t. for any X1, -+, Xep1 € X(M) we have
(V) ( Xy, -, X, Xogn) = (Vx, o, T) (X1, -, Xo) (62)

and Vx ., satisfies (i) - (i) as in Proposition 21.1. Note we have (r,s + 1)-tensor on LHS and (r,s)-tensor
on RHS.

Theorem 21.1 (2nd Bianchi Identity). Let (M, g) be Riemannian manifold. Let R be Riemannian curvature
tensor (0,4)-tensor. Apply V Levi-Civita connection so that VR is (0,5)-tensor with

VR(X.,Y,Z,T,W)+VR(X,Y,T,W, Z) + VR(X,Y,W, Z,T) = 0

Definition 21.2 (Locally Symmetric Space). Let (M,g) be Riemannian manifold. Let V be the Levi-Civita
connection on M. M is locally symmetric space if

VR=0 for R Riemannian curvature tensor (54) of M
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Proposition 21.2 (Locally Symmetric Space). Let (M, g) be be Riemannian manifold.

1. Let M be locally symmetric space and
v:[0,) = M be geodesic of M
For any X, Y, Z parallel vector fields along ~

R(X,Y)Z is also a parallel vector field along ~y

2. If M is locally symmetric, connected, and dim M = 2, then M has constant sectional curvature.

3. If M has constant sectional curvature, then M is locally symmetric space.

Local Coordinates. Consider an affine V connection on a C* manifold M with (U, ¢) ¢ = (x1,--- ,2,) C™
chart.
fm 8£E] Z g am
for T'}; € C>(U). For cotangent bundle
V.od V.od 0 d
Oz e ; ( 527: $]> (ail'k) T
Where for a € QY(M), o = a;dz; and a; = O‘(a%i)' We have
0 0 0 0 ;
Vo da;) duj(——) ) —da; (V — 1)
( FF LL'] (a k:) azz ( x](axk)> xﬂ( Gauaxk> ik
where 9 9 9
drj(5—) = §; v =) Il —
x](axk) ik 321‘ oxy, ze: ik 0xy
Hence for T (r, s)-tensor with e; = %, el = dx; we have
Ve,ej = Ffjek Vel = —I’gkek (63)
For general (r, s)-tensors we write in local coordinates
T:T;ll” “’;'“e“ R ®e, el @@ el
where T;ll ;S € C®°(U). So VT € C*(M, T, M) is (r, s + 1)-tensor with
VT = (VT); 05 60 ® - ®ei, @ @ @ @ el
Define . ) ) )
L1y 5 . 01,00 iy _ L1y 5l
le,'" Jsik (VT)]L sk T (VekT)jl,“sz
We want to express 4 4
TRAITY
Jiy sk
in terms of T;ll ;T and Ffj. Using Leibniz rule for Covariant Derivative (61)
Ve, T =V, ( Tiv e, @ ®e;, @) ®~~~®ej5)
— e (Tu, ~.717') e, ® Qe ReN @ ® el
+ Z Ti e, @ ®ei,, ® Viey, @ei,,, @@ (e @ @el)
+ Z ;11 i (e, ® Re;, )R ®--- QeI 1 QViel @ittt ® ... ®els
Then we switch Ve, = I‘,“ ee and Vjels = —F]‘Ze as in (63) so
Ve, T
11, o 4 ,“,ia— Loty ir Z RIS j js
= (enl@)2 ) + DTt o e D TR ) B BB, @ @ e
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Hence we have formula
01, zr i1, a—1.L,0a41, " 0r 11
le sk T ek T Z F 1,5 Js Z Fk \JB ]1 JB 15,5841 1 Js (64)

where e, = %. O

Lemma 21.1. Let V be affine connection on a smooth manifold M. Then ¥V is symmetric iff for any f €
C*(M), the (0,2)-tensor Vdf is symmetric, i.e.

(Vif)(X,Y) = (Vdf)(Y, X) ¥ X, Y € X(M)
Proof. Using (60), since df € QY(M) for any f € C°(M), for any X, Y € X(M), using Definition (62)

(Vdf)(Y, X) := Vxdf (V) = X(df (Y)) — df (VxY)
= X(Y(f) = (VxY)(f)
Now assume V is symmetric.
(Vdf)(Y,X) = X(Y(f) = (VxY)(f) = XY (f) = (Vy X)(f) = [V, X](/))
)

) =
X(Y(f) = XX () +Y(X(f) = (VyX)(f)
Y(X(f) = (Vy X)(f) = (Vdf)(X,Y)

On the other hand assume (Vdf)(Y, X) = (Vdf)(X,Y). Then

0= (Vdf)(Y, X) = (Vdf)(X,Y) = (X(Y(f)) = (VxY)(f) = (Y (X(F)) = (V¥ X)(f))
= [X,Y](f) + Vy X(f) - VxY(f) V¥V [feC¥(M)

O
For (M, g) Riemannian manifold with V Levi-Civita connection.
Lemma 21.2. V is compatible with g implies
(Vo) (X, Y, Z) = (Vz9)(X,Y) = Z(g(X,Y)) = g(VzX,Y) = g(X,VzY) =0 VX,Y, ZeX(M)
= Vg=0
Gijik =0 Vi, j, k
as an answer to (40).
In fact, for f € X(M), we denote 5
fa=eilh) = 5
and
VS =t =3 g =
Definition 21.3 (Gradient). For f € C*°(M), we define vector field gradf € X(M) s.t.
g (gradf, X) = df (X) = X(f)
with gradf =3 (gradf)’e;, then
fg = ej(f) = df(ej) = (gradf,e;) = 3 _(aradf)'gy;
Therefore
df = fae' = gf da,
gradf = ffei = Zg” of 9 (65)

where ff =gf;.
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Definition 21.4 (Divergence). ForY € X(M) (1,0)-tensor, we define smooth function divY € C°(
div(Y)(p) =Tr (v € T,M — V,Y € T,M) =¢(VY)
ForY =Y'e;, VY =Y/e; @ el where Y., = e;(Y") + T}, Y* as in (64). Therefore

div(Y) =Y} = e;(Y') + T YF =" aa Yi4 Z riy"*
7 i,k=1

Lemma 21.3. GivenY € X(M) and divY as in (66)

divy =

\/diTg) Z a% (Vaet(g)v?)

Proof. Using Jacobi’s Formula
O (det(g)) = det(g)Te(g ™ 22

ox; g ox;
We look at
> T = ZZQ (Gijk + Gkji — Gik.j) Z 9" 8 9. %t 5 > 97 gkii — 97 gk
=1 i=1 j=1 z]— Tk i
1 0 1 1 0
- i “Tr(g  =—q) == —(d
Hzlg ax B9 = 3™ 59 = 5 gy By (et(9))
1 0 0 1 0
= ———log(det lo det = det
3 Gy 0Bl0et(0) = - log(vAoH(9)) = s (Vaet(y))
Hence

div(Y Z Fre +ngkyk

0
9 i
= det(g) Z; oz, (\/det(g)Y>

Definition 21.5 (Hessian). For f € C°°(M), define (0,2)-tensor Hessf € C°°(M, T M)
Hess(f) = VVf = Vdf

hence Hessf € C°°(M, Sym?T* M) symmetric (0,2)—tensor s.t.

Hess(f)(X, Y) = (Vdf)( V) = (Vydf)(X) = Y(df (X)) — df (Vy X)
X(f) = (Vv X)f
= XY( )= (VxY)f

= Hess(f)(Y, X)

Where VxY — Vy X = [X,Y] and weve used V compatibility with the metric. Define f;; s.t.

VVf = Vdf = V(fae') Zf”e ® e’

so one may calculate

of

rk

Jas = €3l fk Z (‘3x18x Z 4 Oy,
k
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Definition 21.6 (Laplacian). For f € C*(M), define smooth function Af € C>®(M) s.t.

Af :=div(gradf) = div(fle;) = f;ii = faig"

For e; = % we have
K2

[ 00f of
Af = if - | R
f izjg <8I28£L‘] ; K al’k>
For g;; = 6;; we recover
Af=>" 2f
o 3 (“)xﬂ
Lemma 21.4. In local coordinates, for f € C*(M)

Af (Mgﬂgfj)

)
Vdet(g) 5 Ox;

Proof. Using Af = div(gradf) where
L Af 8
— ig 97 9

plugging in (69) we have the result.
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