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1 Introduction

A brief summary of objectives for the semester.

e Laplace Equation. —Awu = f. Later: Elliptic Equation.

Heat/Diffusion Equation. dyu = Au. Later: Parabolic.

e Wave Equation. C%ﬁttu = Au. Later: Hyperbolic Equation.

e Schrodinger Equation. i0;¢ = —A for ¢ : R4 x R — C. Later: Dispersive Equation.
Question: Where do PDEs come from?

Example 1.1. Take a wire frame, dip into soapy water. What is the shape of the soap film that spans the
space which is interior to the wire frame? Imagine a surface of a wire frame ¥, whose boundary is 0%, =
{(z1.0,72,0, f(x1,0,220))} in R, with its projection to xy-plane U = {(x1, x2, 0)} open with boundary OU =
{(z1,0,22,0,0)}. In particular, one has u: U — R s.t. ¥, = {(x1, x2, u(z1, x2)) | (1, 2) € U} with u|y, = f.
The set of all possible surfaces we consider is the admissible set

A i={u(x1, z2) : U = R | uly, = f, and smoothness assumptions}

Physics principle: The shape taken by the soap film is given by that surface ¥,, where xs = u.(z1, x2),
Ul gy = [, dQ.e., ux € Ay, for which the surface area is minimized. Given u € Ay, let

E[u] := the surface area of %,

Purpose: Minimize E[u] among u € Ay. This is a classical problem in the calculus of variations. We claim that

Eu] = //U T Va(er, 22)F doidzs

Intuitively, the area element is the measure of the cross product of tangent vectors at the point (x1, xa, u(x1, x3)).
A priori, suppose that u, € Ay is a minimizer, one wish to derive the equation that u. satisfies. Claim: . (z)
satisfies the following boundary value problem

. 1 _
20z, =V ( 1+Vu*(m1,z2)2vu*(x)) 0 veel (1)
u(z) = f(x) YV xeoU

This is mean curvature equation. If [Vu.(z1, z2)| < 1, then Au, = V - Vu, = 0 with u.|y; = f gives the
Laplace Equation. In fact, one impose the smoothness criterion u € C%(U) in Ag.

Proof of (1). Let p € C?(U) test function s.t. ¢|,; = 0, arbitrary. Recall we're assuming u, € As and by
definition of the minimizing problem
Elus] = min E[u]
u€Ay
S0 uy +ep € Ay for all € > 0. Let’s study the object e : R — R s.t.
e(e) i= Elus + 4]

clearly e is smooth w.r.t. ¢ and it is minimized at the point ¢ = 0. From calculus we know ¢/(0) = 0. Let’s
write it out explicitly

N

e(e) = Eus + 0] = /(1+|Vu*(x)+6V<p(x)\2) do

1
1+\vu*\ + 2eVu, - Vo + 2|Vg|*) ? dz

—_

1
= (14 [Vua]? + 26V, - Vo + 2[Vp|?) 72 2V, - Vo + 2¢|Vp]?) dz
1
1+\w*\ +2eVu, - Vo +2Vp?) 2 (Vu, - Vo +¢|Vy|?) do

(14 |Vu,|?) ~3 (Vuy, - Vo) dx

\\\\

Hence the minimizer u, € Af satisfies
_1 _
/ (14 |Vusl?) 2 (Vus - Vo) dz =0 for all o € C*(U) s.t. ¢lyy =0 (2)
U

Recall an IBP lemma



Lemma 1.1. For f, gh € C*(U) smooth

V- (h(Vf)g) = (hVf)-Vg+V-(hVf)g
= hVf -Vg=V-(hVfg) =V -(hVf)g
— / WY f Vg = / (V- (hVfg) =V - (hVf)g) da
U U
_ of o . -
_/aUhaygdS /Uv (hV f)gd (3)

Apply (3) to (2) so that

0= / (1+|Vu.?) *
ou

But the first term vanishes due to choice of ¢, so one conclude from (4) that

aau; dS—/ V- ((1 + |Vu*|2)7% Vu*) pdr  forall p € C*(U) s.t. ¢lyy =0 (4)
U

O:/ V- ((1+|Vu*|2)7% Vu*)apdac for all p € C*(U) s.t. ¢lyy =0 (5)
U

Lemma 1.2 (Fundamental Lemma of Calculus of Variations). Suppose f € C°(U) for U C R™ open and
0 € COU) s.t. ¢lyy =0 and that

/ f(@)p(x)dz =0 for all such ¢
U

Then f =0 on U

Proof of Lemmal.2. Suppose there exists zg € U s.t. f(zg) # 0. WLOG, let f(x0) > 0. Then due to continuity
of f, there exists rg s.t. 0 < f(x) for all |x — x¢| < rp small enough. Let ¢o(z) be a function which is positive
for |z — zo| < % and @o(x) = 0 for |z — x| > 9. Then 0 = [}, f(x)po(z) dx by assumption, and moreover,
Jo f(x)po(z) de = fl$7$0|<m f(z)po(x)dr > 0 which is a contradiction. An example for such ¢y is

exp(—m) ;or ::r — x| < 7o
or |xr —xg| = 1o

po(x) = {

Indeed such g € C§°(R™).

Hence apply Lemma 1.2 to (5) to obtain (1). O



2 Laplace and Poisson Equation
Lemma 2.1 (Green’s Identity). For u, v € C%*(Q), for Q C R™ open. Assume 9S) is smooth

ulAv =V - (uVv) — Vu - Vo (6)
vAu =V - (vVu) — Vv -Vu (7)

Integrate (6) over Q@ gives Green’s first identity

/uAvdx:/ u@dS—/Vu-Vvdx (8)
Q oo On Q

(6) minus (7) gives Green’s second identity

uAv —vAu =V - (uVv — vVu)

ov ou
uAv — vAudx :/ (u —v) dsS 9
/sz o on on ®)

2.1 Fundamental Solutions

Definition 2.1. Laplacian operator Au = A,u + 5 Aga-1u where radial Laplacian Ayv = v"(r) + 2=/ (r) if
v =uv(|z|) for r = |x| radial.

Good about the radial equation is that its ODE, with

"(r) + v'(r)=0
—1
iff (v')/—l—n =0
r
—1
= letting w = v/, W+ =0
W = n—1
w' = — w
r
zw’_ n—1
w o r

= log(lw|) = —(n—1)log(r) + C
— w(r)=Cr'™"

Hence v'(r) = C'r1~" gives

A2 o £2
— 2—n
v(r) = { dlog(r) n=2

Hence for = # 0, one writes

[ bz n#£2 0o
v(z) = {blog(x|) noo € C*(R) (10)

and indeed satisfies Av = 0. Note for z # xy € R™, one has v(x — zg) € C®(R™ \ {z0}) and Av(z — x9) = 0.

Definition 2.2. Newtonian Potential ® is

_ 1 2—n 2
B(x) = { e T

—%log(m) "o for x#0 (11)

for wy, surface area of S*™1, and ®(x) € C*°(R™\ {0}) where A® =0 for z # 0.

We seek for solution of Poisson’s Equation —Awu(z) = f(x) for any x € R™ with any f defined on R™ with some
conditions. For now say f € C?(R™) with compact support, i.e., supp(f) := {z € R | f(x) # 0} is compact.
Our aim is to construct the inverse of Laplacian (—A)~!f.

Theorem 2.1 (Fundamental Theorem in Potential Theory). Define the fundamental solution as the convolution
of Newtonian potential with force f € CZ(R™)

n n

u() = (B f)(z) = / (o — y)f(y) dy = / B(y)f(z — y) dy (12)

o u e C?*R")



o —Au(x) = f(x) for any x € R"

Remark 2.1. Look at ®(z) = \zl”% forn > 3, this is actually singular. But this is weakly singular.
[ e-nmal<c [ 1ea-plwld

Rn
1 1
< c/ L i)y < ||f||oc/ Ly
yi<r |7 —y|"? wi<r [z —y["?

1 i 1 n—1 n—1|p2
|z|<R z sn—1Jg T

Remark 2.2. Formally —A®(z) = §(z).
Proof of Theorem 2.1. For any € > 0

~u(a) = [ w)(-Afe - y)dy
[ sw-afe-u)dy
[yI<R
where R < oo depends on z due to compact support. So

ORI NSRS BN ICTE

e<|ly|I<R
= I.(z) + Je()

So
L@ < 1Al [ Iewldy

lyl<e

€ _ C
<Ml [ gl dy = S 1AL

ly|"—2
now

—Au(z) = —A(® * f)(z) = L(2) + J.(x) = J.(z) + O(?)
Now we compute J.(x) using (9) with « = ® and v = f, and that f compactly supported

Jo(z) = / ATy

28(y)
= - x—y)A — flx — S
{ /wa( 1A, B(y) dy + /{ o B e ) T <y>}

= / —‘P(y)L(g Y | y)Lz(y) ds(y)
{lyl==}u{ly|=R} n n

=/ —¢(y)w+f(w—y)8§7<y)d5(y)
{lyl=¢} n n

= 571(:17) + Js,2(z)
Look at J, 1(x)

1
Tea@)| < [ gy o V=)l dS() < VS [ P as < ce
n = 2)wn lyl==

Hence
—Au(@) = Jo(z) + O(2) + O(e)

Now just compute J; 2(z)




Definition 2.3 (Hélder Space). 0 < a < 1, C%(Q) := {f € C%Q) | |f(z)— f(y)| < Clz—y|® for any =, y € Q}

Remark 2.3. We've done for f € C3. If f € C!, it still holds. But what if f € C°? Is ® x f € C?? No. But
if f € C% for some 0 < a <1 Hélder, then still true via Schauder theory.
If f € C%, then (& x f) € C* and —A - (¢ * f) = f. What about f on C°? There are counter-ezamples.

2.2 Harmonic Functions

Definition 2.4. u € C2(Q), for Q open, is harmonic if Au =0 for all x € Q.
Remark 2.4. Intuition: n = 2. Ugy + Uyy = 0. If u(i, j) = wij, then (uge)(3,5) ~ wit1,; — 2w 5 + wi—1; and

(tyy) (i, 7) ~ uij—1 — 2u; j + ui jp1 leading to

1
0= (Au)ij = i1, — g + Uimrj + Uit + Uigar = Ui = 7 Uiy + o1+ ij-1 + Uigen)

One wish to prove the following
e Mean Value Property: u is harmonic iff it satisfies a mean value property.

e Maximum Principle: If 4 harmonic on €2 but non-constant, then its maximum and minimum are attained
only on the boundary 0f2.

Notations: B,(z) ={y € R" | |y — x| < r}. 0B, (x) ={y € R" | |y — z| = r}. Moreover, for w, = |0B1(0)]

1B,.(0)] = %r 10B,(0)] = wpr™ L

fr=ml

fotwd=gm [ sy
B, (x) ly—z|<r

n

1
oo f 0= [ s as

Theorem 2.2 (Mean Value Property). Assume u harmonic on Q. Let x € Q, assume r > 0 s.t. By(x) C Q.
Then

One also introduce averages

1
r) = u(y) dS
o) = G [ ) as)

This is well-defined if r sufficiently small. Indeed, by Lebesgue Differentiation one has lirr%) o(r) = u(z). On
r—

the other hand, if we're able to prove ¢'(r) = 0, then this immediately implies ¢ is constant independent of
r. Combining with lil% ¢(r) = u(x), one may conclude u(z) = ¢(r) for r sufficiently small. Tt suffices to see
r—

¢'(r) = 0. By a change of variables y = z + rz for |z| = 1 so dS(y) = r""'dS(z), one may use Gauss Theorem

o(r) = 1n_1 / u(z +r2)r" "t dS(2)
WnT |z|=1
¢ (r) = € Vu(z +rz) - 2dS(z)
Wn J|z|=1
- 1 Yy—x
= o V) R asw)
-l / Ayu(y)dy =0 = (13)
Wit ly—z|<r



Now to prove (14),

/Iyz|<r uly) dy = /OT /Iyxs u(y) dS(y) ds
= /OT wWns"tu(x) ds anu(m)% — (14)

O

Theorem 2.3 (Maximum/Minimum Principle for harmonic functions). Let Q@ C R™ bounded open, u harmonic
in Q, i.e., u€ C*(Q)NC°%Q) and Au=0 in x € Q. Then

e mazimum over () is attained on the boundary 95, i.e., maxu(z) = m%éu(x)
z€Q z€

o IfQ is connected. If u attains its mazimum over 0 in  its interior, then u is constant throughout €.

e Since —u is harmonic, the same holds true with max replaced by min. Note minu = —max(—u)
€ zeQ

Recall a connected set is not a disjoint union of 2 nonempty, closed and open sets.

Proof. We start with the second item. Let 2 open connected. Assume there exists zp €  s.t. u(xg) = M =

maxu(x). Consider the partition @ = {x € Q | u(x) = M} U {z € Q | u(z) < M}. Call the first A; and the
e
second As. A; is nonempty as assumed. Clearly A; is closed by continuity of u. We wish to show that A; is

open and since A; is nonempty, by connectedness, Ay is empty. Suppose 0 < r < dist(zg, 0£2). We know

M = u(xg) = ][ U
Br(fo)

M = M = u
Br(zo) Br(zo)
= (M —u(z))dx =0
B, (zo0)
But M — u(x) > 0 on B,(zg). Hence A; is open. O

Corollary 2.1 (Instantaneous Propagation of Boundary Information throughout Q). © C R" connected. And
u € C*Q)NCYQ) s.t. Au=0 forz € Q and ulyg = g € C°(2). Assume g > 0 all along I, and g > 0
somewhere on 9. Then u > 0 everywhere on Q.

Remark 2.5. Contrast with simple wave phenomena.

0 0
au(w,t) + %u(x,t) =0 u(z,0) = ¢(x)

here u(xz,t) = p(x —t) solves the equation. This has finite propagation speed.

Corollary 2.2 (Uniqueness to Dirichlet Problem). 2 bounded connected open. Dirichlet Problem for Poisson’s
Equation —Au = f in Q and u = g on 0Q. Then there exists at most one solution u € C*(2) N C°(Q) to the
Dirichlet Problem.

Proof. Suppose u; and us are 2 solutions to Dirichlet Problem. Define w = u; — us. Then Aw = 0 in © and
w = 0 on 0f). Hence w takes both maximum and minimum on 9). Hence w = 0. O]

Definition 2.5 (Standard Mollifier). For e > 0, and Q C R™ open,
o Let Q. :={zx € Q|dist(z, 0Q) > }.

e Define
Cexp(gp=y) |zl <1
— P—1
) { 0 o] > 1

C > 0 is chosen so that [g, n(x)de = fll’\<1 n(x) = 1. Notice n € C*°(R"™) and supp(n) = B1(0).

e For anye > 0, n.(x) := &n(%) so supp(n:) C B:(0). Notice

/T]dez/ 17)(|x|>dx:/ n=1
n |z|<e en 3 n

If fix x € Q., then y — n.(x — y) has support in
o If f€ Ll define f¢:= (n. * f)(x) the mollification.

loc’



Lemma 2.2. One has tools from mollification

e For f € Li (), f¢ € C®(%) fore>0.

o f¢— fae ase—0in Q.

o If f € C%N), then f¢ — f uniformly on compact subsets of .
().

e 1<p<ocoandfell (Q)then f¢— f inlL?

loc loc

One then wish to do the following
e Converse to mean value property of harmonic functions
e size estimates on harmonic functions and Liouville Theorem
e Green’s functions and BVP.

Theorem 2.4 (Converse to Mean Value Property). Suppose u € C(Q)) and u satisfies the mean value property
on Q. Then u € C*(Q) and Au = 0.

Proof. Define u® := (1. *u)(x). Strategy: To show u € C*°(Q), it suffices to show u®(z) = u(x) for x € Q. and
that u® € C°(£2.), where the latter follows directly from DCT. To see the former,

ue(w)—/Qns(x—y)U(y)dy—/Q;n(|x;y|>U(y)dy
5 () / /.m (= ) ast) i
/ /| o) u(y) dS(y) dr = /| s

= ; n (E) W™t u(x) dr = u(x) /Iw<5 Ne(x) de = u(x)

En

One needs to show Au = 0. By Gauss Green theorem and change of variables y = z + rz for |z| =1

ou
/|m-y<r Auly) dy:/lw_yqv'(w(y))dy:/_ 5, (1) dS(y)

|e—y|=r
— 0
~[ v Easw) = [ Slutera)ase)
lo—yl=r r jz=1 OF
= % - u(z +1rz)dS(z) = %(wnu(m)) =0
Divide the LHS by the volumne of the ball =", But take » — 0 on LHS to conclude Au(z) = 0. O
Remark 2.6. i5(y)
Y
o= [ u = [ du)
ly—z|=r WnT ! |ly—z|=r
where du(y) == wffﬁﬁ?)l 1s probability measure. In general this defines the harmonic measure

ulz) = /8 o) e o0 )

Theorem 2.5 (Estimates on the Size of Harmonic Functions). Let u be harmonic in domain  C R™ open.
Let xg € Q and By(xg) CC Q. Then

n 1
lu(zo)] < o ||u||L1(BT-(zo)) "
2ntlp (' :
[ w0l < (wn) lllzs oy VEEALon) "

Proof. u(xzg) = WT% fBr(%) u(y) dy.

1
u(z u(y)|d 15
) < g [ @y = (09

n



Note that u harmonic implies that u satisfies the MVP and further implies that u € C*°. Hence we may take

derivatives
0 0
0= (Au) = A5 -u)
Hence %u(w) = u,, (x) is harmonic.
1
Ug; (gjo) = on

Note that

o
/ Uy, (y) dy = / u(y)v; dS(y) where v = (11, -+ ,vy) is unit outer normal
Bz (20) 9Bz (z0)

now
1 n2" T
U o0) = s [ ulpnedS(y) £ T (3 max Ju(y)
22 (3) 0B (w0) Wn T 2 ly—zo|<3
2n
=— max |u

. |y*wo\§%| )l

now for any y s.t. [y — xo| = 5, Bz (y) C B.(20), so
n 1 n 1

U — — ||u < — U
lu(y)] < B (%)n | ”Ll(B%(y)) = on (%)n [ ”Ll(BT(mg))
Hence

n

2ntln ('
o0 £ 2 () Wil ey = 19)

O

Theorem 2.6 (Liouville Theorem). Suppose u : R* — R, u € C? with Au = 0. Suppose there exists M > 0

s.t. |u(x)| < M for all x € R™. Then u(x) = C constant.
Proof. Fori=1,--- n,

9 Cn Cn Wn, 1
< dy < —r"=C"=-=>0 -
‘amlu(x)l = pntl /l;J—rc<r lu(y)| dy < ot n r ; as r — 0o

2.3 Dirichlet Boundary Value Problems
Let u,v € C?(9).

uAv —vAu =V - (uVv —vVu) = / ulAv — vAudr = / (uav - vau) ds (9)
Q Fle) an on

Now fix u € C?(Q), fix z € Q and let Q. := Q\ B.(z)

colr —y|>™ n>3

e C*(Q.
=loglez —y| n=2 (€2)

o) = 2o 9) = {
Hence applying (9)

0 0
/Q ) B —y)dy = /Q -yl dy + /a L 1(0) g, ) — 0 y) ) dS ()

For 0Q. = 0Q U {|x — y| = ¢}

0= /S D(x — y)Aul(y) dy + /BQ u(y)aiycb(x —y) — Bz — y)aany“(y) dS(y)

0 0
u(y) 53— —y) - ®(r —y)5—uly)dS
" /{w—yl—a} ®) Iy (==v) (@=y) ony (y)dS(y)

(17)



Thus sending € — 0 one get the Layer Potential Representation of function u € C?(Q)

u(z) = /Q Bz — y)(—Duly)) dy + /6 ) (—u<y>a@(m—y>+¢><x—y>£yu<y>) isy)  (18)

ony

where the first term is volume potential, the middle term is the double layer potential, and the last term is
single layer potential. This might suggest that we can solve the boundary value problem

—Au=f n Q
Uy =9 on N
%ubg =h on 0N

by taking u(x) = VP[f](x) + DLP[g](z) + SLP[h|(z). Recall Uniqueness Theorem to Dirichlet Problem

{—Au —f inQ 19)

ulgg =9 on 0

has at most 1 solution. Hence in fact, the uniqueness theorem says the solution is uniquely determined by f
and g alone. In other words, h is something we can compute afterwards. Here is Green’s observation. The layer
potential representation formula (18) holds if one replace ®(x —y) by ®(x — y) — ¢(y) where

—Ayo(y) =01in Q
et e 20)

one hence obtain the formula

ou

u(r) = /Q[‘I’(w—y)—dy)}(—ﬁyu(y)) dy—/aQ u(y);%@(fc—y)—wy)) dS(y)Jr/aQ(@(x—y)—qﬁ(y))%(y) dS(y)
(21)
for any ¢ satisfies (20).
Definition 2.6 (Corrector Function). Fiz any x € Q, define the corrector function ¢(y;x) € CyQ(Q)
: Ayo(y; ) =0 €Q
Huiw) o {qﬁ(y,x) z oz —y) yye 09 #2)

where this is a family of Dirichlet Problems with specific family of Dirichlet Boundary conditions. This is
extremely domain dependent.

If we can solve this specific family of BVPs for —A on 2, then we define

Definition 2.7 (Green’s Function).

Gpira(z,y) = @(x —y) — é(y; 2, Q) Green's Function (23)
Define
oG ir )
ue) = [ Giralea)(-uw)dy— [ )22 g, (24)
Q o0 Ty
= / Gpira(z,y)f(y)dy —/ g(y)aGDg’ism’y) dS(y) as solution to (19) (25)
Q a0 Ty

Claim: For nice domains, G p;rq(x,y) can be constructed and (24) solves the Dirichlet Problem (19).

Theorem 2.7 (Representation Formula for Dirichlet BVP). Suppose u € C%(Q) N C°(Q) s.t. u solves (19).
Suppose for any x € Q), there exists ¢(y;x) s.t. (22) holds, then u(x) has the representation (25).

Example 2.1. Apply (24) tou =1 so

1:7/ G pira(z,y) ds(y)
o0

on,

Notice that BG%M dS(y) is weighted surface measure. For harmonic function on balls, this collapses to

Mean Value Propeﬁty.

Lemma 2.3. Forz,y € Q s.t. x #vy, Gpira(z,y) = Gpira(y,x) is symmetric. This is essentially due to A
1s self-adjoint operator.

10



Proof. Introduce v(z) := G(z,z) and w(z) := G(y,z) with z,y fixed. v singular at x while w singular at y.
Remove small discs around the singularities of size ¢ small enough. Let Q. := Q\ (B.(z) U B:(y)). In Q.

0 = (=) Asw(2) — w(2)At(2) = V- (0(2) Vaw(2) — w(2)V.0(2))
0—/ V- ~w(z) —w(2)V,u(z)) dz

ow ov
—/{,m o) g~ () 5 dS ()

Look at v(z) and w(z) on 9Q. v(z) = G(x,z) = 0 for x € Q as z = 9N and w(z) = G(y,z) — 0 for y € Q as
z — 08, so

ow o ow P
O:/|zx|_av(Z)anz (z) —w(z )8nz( 2)dS(z) + /|zy|_av(z)anz (z) —w(z )6nz( 2)dS(2)

now as z — x, v(z) looks like ®(z — z) ~ W, which is a weak singularity, while w(z) = G(y, z) — G(y, x)

is bounded as z — z. Also, as z — z, gTw(z) ~ bounded, and apply similar argument to the second

term

0= 0(1) - G(y,l’) + G(‘Ta y) - 0(1) = G(ya‘r) = G(x7y)
O

Example 2.2. Green’s Function for B,(0) = {y | ly| < a}. Need to seek ¢(y;x, B,) s.t. for all x € B,(0),
Ayo(y; ) =0, and that for any yo € 0B,

1 1
lim jx) =
y—=yo |yl<a o(yi) wn(n —2) [yo — z|"2

=®(z —yo)
Key Geometric Property of B, (0): Given any |z| < a, there exists x* s.t. |z*| > a and for any yo € 9B,4(0)

B0l o(a, o)

|z — yol
and a “
ot = ()% Clafz]) = —
|z Ed
x* is reflection point to x w.r.t. dB,. To apply this,
1 Cla, |z|) 1 (C(a,|z])" 2 2
= = — =0 = P(z— —C(a,|z))"=®(z" — =0
R o R P L S P (=) = Clofal™ e =)
hence
O(z —y) — Cla, |2))"*@(z" —y) |, _ =0

Y=o, |yo|=a
where the left term is Newtonian Potential with singularity at @ € B,(0) and the right term is Newtonian
Potential with singularity outside B,(x), and A¢(y;x, B,) =0 for y € B,(0). Conclusion:

Gpirp, (2,y) = ®(z — y) — Ola, |z|)" 20 (z* — y) for all x,y € By(z) st. x #vy

Indeed

_AGDi”‘,Ba (xvy) = (5(1‘ - y)7 |(E| <a = hm GDir,Ba ($7y) =0
y—=yo |yl<a

Proposed Representation of the Solution of
{—Au:f in |z <a

Uiy =9 onlz[=a

for a given f defined on B,(0) and g defined on 0B,(0) is

u= /|y<a Gpirp, (2.9) (y) dy — /|y_a g(y)‘W as(y) (26)
:/|< GDir,Ba(m,y)f(y)dy-&-/l_ g(y)H(x,y) ds(y) (27)

where for n > 3

a a
Gpirp,(z,y) =®(x —y) — (|x| )20 (2 — g) for x* = (m)zx O0<|z|<a, |y <aand x #y
One may actually calculate Poisson Kernel for B,(0)

0Gpir B, (%,Y)

ony

1 a2 —|x|?
H(z,y) = — e i

= (28)
el<alyl=a  Wn [T —Y["

11



Theorem 2.8. u € C%(Jy| < a) N C%(Jy| < a) solution to (19) with Q = B,(0), then u is given by (27).
Theorem 2.9. Let g denote any continuous function on 0Bq,(0) = {|z| = a}. Let H(z,y) be the Poisson
Kernel (28), define
x zl=a
V(z)= {fm—a H(az(y;g(y) dS(y) IQCi <a
Then V satisfies the Dirichlet Problem (19) with f =0 and
o Ve C%z| < a) with AV =0 for |z| < a
o Ve %zl <a),ie., for any o with |zo| = a, one has

lim V() = g(zo) (29)

T—xzo |T|<a

Remark 2.7. Set z =0, so H(0,y) = =g, so V(0) = Jiy=a 9 H(0,) dS(y) = =T Jiyi=a 9(y) dS(y).
This may also be interpreted as probability of Brownian Motion starting at x escaping through I' C 0B, using
fr H(m, y) dS(y).
Proposition 2.1. Properties on H(x,y)

(a) H(z,y) € C* for y| < o, |z] < a with y £ =

(b) AyH(x,y) =0 for any |z| < a and |y| = a

(¢) [}y H(z.y)dS() = 1 for || < a

Proof. Look at w = 1 and apply (27). O

(d) H(z,y) >0 for |z| <a and |y| = a

(e) Pick ¢ with |(| = a with § >0
limCH(x,y) = 0 uniformly on {|ly| =a ||y — | > ¢ > 0}
r—r

a27‘z|2 a27|m‘2 < a27|x\2

Proof. H(:Cay) ~ Ta—ym ™ Te—ym = 5n

— 0 uniformly in y for |y| = a and |y — ¢| > 6 > 0. O
Proof of Theorem 2.9. For any zy with |zo| = a. For |z] < a

V(z) — g(zo) = /y|_a 9(W)H(z,y) dS(y) — g(xo) i H(z,y)dS(y)
= 6w g Hy s
Let & > 0, it suffices to show that as [& — x| — 0, [V (z) — g(x0)| < . For any § > 0
V(z) = g(xo) :/y|=a H(z,y)(9(y) —9(370))d5(y)+/|y|:a H(z,y)(9(y) — 9(w0)) dS(y) := 11(0) + I2(9)
By continuity, ther: e>:i|s<ts 5(e) > 0 s.t. o
ly —zo| <d(e) = lg(y) — g(wo)| <

Hence

IL(6)] < / L HE ) g dS) << / Hiz,y)dS(y) <

ly|=a
ly—zg|<s ly—zo|<d

Now send z to xg

Ol ) - o) Sl <2l [ Hp sy

lyl=a
ly—zg|26 ly—zg|>8

ly—zo|>6,|y|=a ly—=z0|>3d,|y|=a

< 2|9l max H(m,y)/ 1dS(z) =29/l wpa™ ! max H(x,y)
|z|=a
— 0 as T — xo

This proves (29). O
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2.4 Potential Theory Approach to solving general Dirichlet Problem (integral
equations)
Au =0

U|aQ =49

)= [ (g<y>£y¢><x )~ Bz y>f%u<y>) as(y)

Suppose that u solves { The layer potential representation formula says

One seek solution
u(zx) = —®(x —y)u(y)dS(y

for 11 to be determined. Note z € Q one has Ayu(x) = 0. Choose yt = py. One wish to Tune u so that

mﬁlzzlzorréaQ u(z) = g(o)

One has the key observation that

u(x) = —guleo) + [ K(wo,y)u(y)dS()

lim
z€Q—xo€N 90

_ 9%(z—y)

Therefore, ;1 must satisfy (this is very practical
Iy |yryeon [ y ( Y P )

where K (x,y) =

1
9(@) = —5u(x) + [ K(z,y)u(y)dS(y)
oQ
which is a linear integral equation on the boundary. It is in fact Fredholm alternative operator. T}, is a compact
operator on L?(09).

1
(—51 +Tr)p=yg

Recall linear algebra Az = b solvable iff b L ker(A*). Claim:
(—EI+T )= —EI+T
ot TR T gt TR

for K*(z,y) = K(y, =) and the nullspace Ker((—31+7Tk)*) = {0}. Note —3I+Tk- is associated to uniqueness
Au =0
of the Neumann boundary value problem %u| 90 =0 This converts the existence of Dirichlet Boundary
u—0as |z] = o0

Value Problem to the Uniqueness of the Neumann Problem. For a sketch, look at n =3 so ®(z —y) L

~ T 1
lz—y]

1 Tr—y

1
uw) = [ V() ) d5) ~ [ (Tt dS()

We try computing
1 1
@) < [ Sl ~ [ iyl

o0 [z —yl?
But this fails. On the other hand, observe

r—y

| I'ny—>0a5m—>m0andy—>:r0
rT—y
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3 Heat/Diffusion Equation

Motivation: Think about a random walk on 0Z, i.e., (—o0,---,—20,—9,0,6,24,-- ,00) for 0 < § < 1. For each
time increment 7, 27, ---, the walker which starts at x = 0 jumps right or left with probability % Question:
What is the probability that the particle/walker which starts at z = 0, t = 0 is at position x € 6Z at time
t=mnr.

& = microscopic spatial scale and T = microscopic time scale

Write v(z,t) = P(X,, =z | t = n7) and look at

v(@,t+7)=P(Xpy1 =z |t=(n+1)7)

=P(X, =2 — ¢ |t =n7t and the walker jumps right) + P(X,, =z + J | t = n7 and the walker jumps left)
=P(X,, =z — §)P(walker jumps right) + P(X,, = x + §)P(walker jumps left)
1

= fv(x—(S,t)—i—%v(x—i—&,t) for x € 6Z and t = TN

\V]

One may taylor expand so

(=9)?
2!

v(x,t) + v (2, )T + O(1?) = 1 v(x,t) + vy (2, )0 + Ve (2, t)ﬁ +O0(8%) + v(z,t) — ve(x, )0 4 Voo (2, t)

) . +0((=5)%)

1
=v(z,t) + 562vm(9€, t) + O(5%)

1.1 1
= v(z,t) + O(1) = 5(7(52)vm(az,t) + O(=6%))
T T
let D = 16% constant. Send 8,7 — 0. This leads to v, = §Dv,, with initial condition vo(z) = v(z,0) = (=)
and vo(z) > 0 and [vo(z)dz = 1.
Second Motivation: f(z,t) = concentration or density of a quantity at position x at time ¢. e.g. the density
mass_ - For V. C R3

P= volume*

/ p(x,t)de = Mass inside V at time t
1%

with our physcial model

4 plx,t)de = — F-ndS
dt Jv ov

One compute using Gauss-Green

d d
a/vp(x,t)dx—/vap(x,t)dx——/VV~de

Op(z,t) = =V - F(z,t) Y (z,t)

hence
Assume F' = —a(z)Vp. So
dup =V - (alz)Vp)

for a(x) = ap > 0 constant we simly have d;p = apAp

3.1 Initial Value Problem

Look for solution to initial value problem

uy = Au reR"t>0
u(

2,0)=f(z)  t=0 (30)

3.1.1 Fourier Transform

Definition 3.1 (Schwartz Class S(R')). ¢ € S(R') if ¢ € C*> and for any «, 8 > 0 integers, we have
2208 p(z)| < Cap, ¢ <00 forall x

Definition 3.2 (Schwartz Class S(R")). ¢ € S(R™) if ¢ € C and for any «, f € N, let % = 2191 -+ - ,%n
and 98 = 9P+ ... §fn.

Su]é) |29026(2)] < Ca g <00 = [2%05¢(z)] < Cu.p. o < oo for all x
we n

Some further notation, |al =Y.' | a;.
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For example, e~ 171" € S(R™). But e~ is not.

Theorem 3.1. S(R") is dense in LP(R™) for any 1 < p < co. Let f € LP(R™), there exists f; C S(R™) s.t.

||fj7f||Lp*>0a5j*>OO
Definition 3.3 (Fourier Transform). For any f € L*(R"), define

R 1 i
76 = (FN© = g [ e rway

Lemma 3.1 (Riemann-Lebesgue). For f € L*(R™), the simplest bound is

A 1
FO1< o 11
And in fact

lim f(¢) =0
€] =00
But we have no information about the decay rate.

Proposition 3.1. f € S(R")
(i) f € C=R").

. Then
Proof. f ~ [ €€ f(z) da then
9¢F(&) ~ / (—i€)Pe' ™S f(x) da
SO
02 F(©)] < /|§\B\f|d:c < o0

(ii) 0 f(¢) = 2

O
g J e (i) (@) da = §(6) where g(x) = (~ix)’ [ (a)
fiii) D2 1(€) = (i€)° f(€).
Proof.
[ @upde= [o.( @) - tn(e =) fw) o = [ G f ) da
Hence
B rE) = e (P F(z) dx = ! 1208 (e ) f(z) dx
0216 = g [ @@ = g [0 0l @) a
—71 DB (—i&)Be ™ E £(1) da
= g7 [ (Vi e @) a
= (4 oL e W f () dr = (i€)P f
= (19 sy [ ) e = (i€ 7O
O
(iv) Hence for f € S(R"), f € S(R™).

Proof. For any ¢q,r € N

c10r f(¢) = o0y / e f (o) do
zgq/efix'E(—ix)rf(z) dx

—71 &) (i) f(x) da

- = i iy (@)

_ 4= 8 (—ix)" f(x) dx

= = [ e i) f(w)a

—i e EP((—ix)" f(x)) da

= o [ty f@)a

— |earfe) < C / 109((—i)" f(2)) e < o

using f € S(R™).
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Definition 3.4 (Fourier Inversion). f(x) = (2771)% [ e e f(E)dE = f(=z)

Lemma 3.2 (Fourier Inversion Formula). (i) If f € S(R™), f(ac) =f
(i) | f]

Proposition 3.2 (Plancherel). F : S(R") — S(R") can be extended from S(R™) to all L*(R™) as a bounded
linear operator.

L2Rm) MIREOE

”]:fHL?(]R”) = ||f||L2(R")
In fact, F extends, by density, to be an operator on L*(R™). This is unitary operator.

Proof. Use S(R™) dense in L?(R") and BLT Theorem as the following
O

Theorem 3.2 (BLT Theorem). Let (X, |-||x) be a normed linear space and (Y,|-[ly-) be a complete normed
space (Banach Space). Suppose M C X is a dense subspace of X, i.e., M = X, and suppose

T: M —Y is a bounded linear transformation

i.e.,
Jer >0s.t ||Tzlly <crlzly forallze M

Then there exists unique bounded linear transformation T s.t.

T:X =Y
with properties
(a) For any x € M, T(z) =T(x)
(b) HTHB(X,Y) = HTHB(M,Y)
Proof. For any x € X, (x,) C M s.t. ||z, — z|x — 0. Define T(z) = lim Tz,. O

n—oo

3.1.2 Representation Formula

For uy = Au for x € R™ and t > 0, u(z,t = 0) = f(x). Let’s derive assuming f € S(R™). Apply F to them,
resulting in

(€, t) = Au(E, t) = —|e[Pa(e, t)

a(g,t=0)=f(&)
This is family of Initial Value Problems for ODE’s parametrized by £ € R™.
a6, 1) = e ()
1

:“W:wﬁ@ﬁyme

But we want a clearer representation where we can read of positivity. Using Fubini

_ 1 i —le2t_ 1 iy
u(z,t) = (2n)3 /Rg'e e (27r)3/R e fly) dy d§

n
Y

Hence one obtain
u(z,t) = . Ki(z —y) fy) dy = (Ki* ) (1)
where - 1 i) € o left
Ki(x—vy):= G /]Rg e e 3
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Compute by change of variables to ( = 515% so d¢ = tZdE.

1 , 2
o) = L[ cive Pty
)= Gy / ok

1 iLa(tze) _phep 1 1
= Vit Td t2
(QW)n/e e pE3 (t2¢)
T)"t2 n

Let u = ”t SO

S

Here |(2 =¢- €. So

1 1 e dmi2_11,2
Ko(x) = (%)nﬁ/ e lE— = Hul? ge
1 1 1|2 Qg2
— "1 —lE=%1" ¢4
@m)m 15 € /ne ¢
1 o) i, 2 dE;
— —1 —(&i—5mpi)" 257
el (/Re ) 27r)

where p; = % By Cauchy’s Theorem

1 12 1 n
Ki(x) = et (27r)"ﬂ2
B e I fort>0
© (4nt)%
This is heat(diffusion) Kernel on R™ so
1 _lz—y|?
w(t) = (Ki+ (@) = —— [ e p)dy  fort>0
(47Tt) 2 JRrn
As with our study of the Poisson formula for the Dirichlet problem for
Au=0 x € B,(0)
=2
Proposition 3.3. We have basic properties of K;(x) = me*%
(i) Ki(xz) € C*® forallz € R", t>0
(ii) (& — A)Ky(z) =0 fort>0, z € R"
(i11) Ki(x) >0 for allt >0 and x € R™
(iv) Fort>0
Ki(y)dy =1
R’Vl

Proof. Fort >0

17
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(v) Fiz 6 > 0, look at amount of mass outside the small neighborhood

lim Ki(z—y)dy=0 uniformly in x € R™ (33)
t—0 |y7$|>5

: _y—z _ 1
Proof. make change of variables £ = it for t > 0 so d¢ = @ dy

1 7\7E—?/|2 1 7|£|2
e T dy = —F e d¢ —-0ast—0
ly—a|>s (4m1)2 (m)2 Jjel> 2

O

Theorem 3.3 (Representation Formula for Heat Equation). Let f be bounded in R™. Define u as in (31), then
(i) For fixed t > 0, u(z,t) = (K * f)(x) € C(R™) smooth in space. In fact it is also smooth in t, so
u(z,t) € C*(R™ x {t > 0})
(i) uy = Au fort >0 and x € R™.
(#ii) Suppose moreover f is continuous on R™

u(z, t) = {fRn Ki(x —y,t)f(y) dy fort>0
, f(.%‘) fort=0,x€R"

Then this is continuous on R™ x [0, 00). Thus,

(,t)—=(£,0)
for any & € R™.
Proof. Since f bounded in R"™, there exists M > 0 s.t. |f(z)] < M for all x € R". Want to show (iii). Fix
£ e R, and let (x,t) — (£,0) for t > 0, using (32)

u(z,t) = f(§) = | Kz —y) (f(y) = £(£)) dy

R‘VL
By continuity of f, given any € > 0, there is a § = d(g) > 0 s.t. if |y — &| < 2(e), then |f(y) — f(§)| < e.

we) SO = [ K () S dy+ [ K ) ()~ F(€) dy

ly—x|26
=: Is(t,z) + Js(t, x)
Assume |z — €| < §(e). Then
ly—&l=ly—zt+z—&<ly—z|l+]z—¢ <25()
Look at the first part Is(t, x).

s [ Kl S©)dy <

For second part Js(t,x), use (33)

|J5(t, )| §/ Ki(x — )| f(y) — f()|dy <2M Ki(x —y)dy — 0 as t — 0 uniformly in x
ly—z|>6 ly—z|>6
Hence
limsup |u(z,t) — f(&)] <e
(z,8)—(£,0)
Conclude by taking ¢ — 0. O

Some notation
u(z,t) = (Ky * f)(x) = 2" f(x)
In fact the above generalizes to the model
u; = DAu reR"t>0
u(z,0) = f(x) t=0

for diffusion constant D with heat kernel

for D >0

Kt(z) = 7%67 iDt



3.2 Properties of Solution to Heat Equation

Take (30)
ur = Au reR"t>0
u(z,0) = f(z) t=0
3.2.1 Conservation Law and Dissipation

Theorem 3.4 (Conservation of L! norm). Assume u(x,t) solution with nice decay properties as |x| — co. One
may take derivative outside

4 u(z,t)dx = lim V- (Vgu(z,t))de = lim 9u ds =0
dt Jgn R0 Jiz)<R R0 J|z1=r On

This is conservation law. And for f € L*(R")

| awtae= [ [ Ki@-piwade= [ [ Ki@-pdema= [ s

But on the other hand, heat equation has dissipative character.

Theorem 3.5 (Dissipation of L? norm).

ur = Au
uuy = ulu
2
Gt(%) =ulAu =V - (uVu) — |Vul?

Now integrate assuming that u(z,t) and Vu(x,t) — 0 as |x| = oo sufficiently fast for any fized t > 0

A / V. - (V) — [Vul2d
—_ J— = . — €T
dt Jgn 2 * wo uv “

d

— u2dm:—2/ |Vul|?>dz <0

dt Jgn o

Hence energy Hu||L2(Rn) (t) dissipates as t — oo. Alternatively one may view from the ODE on the Fourier Side

atﬁ(é-a t) = |£|2ﬁ(§7 t)
ale,t) = e € a(e, 0)

e~ 2%t q2 (¢, 0) de
R‘n

[ et de =
R’n
= i/ a2(§,t)d£:—2/ |Vu(z, t)|*de <0
dt Jgn n
Hence using Plancherel we have

[t as < [ ()P as

3.2.2 Instantaneous Propagation and Comparison Principle

Proposition 3.4 (Instantaneous Propagation of Information). Consider IVP to heat equation (30). Take f > 0
for all z € R™. Suppose also f € CP,,(R™). If f(zo) > 0 for some xo € R™. Then u(z,t) > 0 for all z € R™
and t > 0.

Proof. Assume f(x) > ¢ > 0 on some B.(zg) for 0 < e < 1. Then for any x € R" and t > 0

u(at) = [ Kilw—y)fy)dy = / Ki(@ — y)f(y) dy
R BE(I())
|2
ZC/ 1&“‘*3' dy
B.(xo) (471)2
1 lz—y|?
>c min [ ——pe w ||B
N cye%lgl(r;o) ((47rt)2 c ) |Be (o)l
. 1 _ e_(dist(x,BiiétQ))‘Fs)Q ﬁgn -0
(4rt)z
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Proposition 3.5 (Comparison Principle). Suppose f1, f2 € LY (R™) N CO°(R"). Assume fi(z) < fa(z) and
fi(xo) < fa(wo) for some xo. Let {uj(x,t)}3_, solve the heat equation

(O —A)u; =0 fort>0 with u;j(z,0) = f;(z)
Then uy(z,t) < ug(z,t) for v € R™ and t > 0.
Proof. Let §(z,t) = ua(z,t) —ui(x,t), so
(0r=A)0 =0 6(x,0) = folz) = fr(z) 20
and §(zg,0) > 0. Hence by instantaneous propagation, d(x,t) > 0 for all z € R™ and ¢ > 0. O

3.2.3 Stability and Uniqueness
Proposition 3.6 (Stability). Suppose fi, f € L*(R") N C*(R™). Let {u;(x,t)}3_, solve the heat equation
(O —A)u; =0 fort>0 with u;j(z,0) = fj(z)
Define §(x,t) = us(x,t) — ui(x,t), then
Op0(x,t) = Ad(z,t) with 0(x,0) = fo(x) — f1(x)
Now
50,6 = §AS

1
at(§52) =V (6V8) —V5-V§

= %8,5/ 62(z,t) da = f/ \Vé(z,t)[*dr <0
n ]Rn

This contrasts with Oy [, 0(x,t)ds = 0. Then for anyt >0

8% (x,t) dx < 5%(x,0) dx
R"L R"L

— \u2<x,t>—u1<x,t>\2dxs/ falz) — fi(@)? dx
R™ Rn

2

j=1

(O —A)u; =0 fort>0 with uj(z,0) = f(x)

Proposition 3.7 (Uniqueness). Let {u;(x,t)}5_, solve the heat equation

Then
0< / s (2, £) — s (a, )|2 dz < 0
R’IL

for any t > 0. So uy(x,t) = us(x,t) for any t > 0 and a.e.x € R™.

3.2.4 Semigroup Property of Heat Flow
For u(x,t) = e f = K; * f.

Lemma 3.3. Fort, s >0
eA(t—i—s) _ eAteAs _ eAseAt

Proof. For f € LY(R™) N C°(R™) nice,
ts eAUFs) g up = Au u(x,0) = e f

with solutions u(t + s).
t = eBteBef) uy = Au u(z,0) = 2 f

Hence by uniqueness, they give rise to the same solutions. O
Note
AN = | Kipo(x—y) fy) dy
R"
eMe®f= | Ki(z—2) | Ki(z—y)f(y)dydz
Rn R‘n

= / 5 Ki(x — 2)K (2 —y)dz f(y)dy

= Kiis(x—y) = Ki(z — 2)Kq(z — y)dz
RVZ

This converts integral type information into pointwise information.
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3.3 Heat Equation on Bounded Domains

Let uy = Au for t > 0 and z € Q with boundary condition
e u|y, = g(x) Dirichlet B.C. with prescribed temperature distribution.
. %’69 = g(z) insulating B.C.

Ju ’89 = —c(u(z) — ¢g) Newton’s Law of cooling.

3.3.1 Maximum Principle

Theorem 3.6 (Maximum Principle for Heat Equation).  bounded in R", 0 < T < co. Q x [0,T]. Assume
0w = Au in Q x (0,T). Claim: u(x,t) attains its mazimum either on Q x {t = 0} or on 02 x [0,T].

Proof. Let € > 0. Set v®(x,t) := u(x,t) + e|lz|*> > u(z,t). Then
(O — A)v® = —2ne <0

Take 7" < T. If the maximum value of v occurs at an interior point of  x (0,7”). Then it is necessarily a
critical point hence 0;v° = 0, and since it’s maximum 0 > tr(Dv®) = Av® at such (zo,%o) hence

(8,5 - A)Us(l‘o, to) > 0
contradiction. Hence the maximum of v® occurs either on  x {¢t = 0} or on 9 x [0,7"].
~max u < _ max v°
ax[o,1]  9x[0,7]

= max &
Qx{t=0}UdQx[0,T"]

< max u+e max x|?
Qx{t=0}Uo2x[0,T"] Qx{t=0}Uo2x[0,T"]
Let e -0, 7" — T so
max u < max u
Qx[0,T] Qx{t=0}U0Q2x[0,T]
O
3.3.2 Separation of Variables and Exponential Decay
Think about Initial Boundary Value Problem
Oru = Au in Qg x (0,00);
u(z,0) = f(x) (34)

ulpg =0
One may try for separation of variables. Let u(x,t) = F(z)G(t).
F(z)G'(t) = AF(2)G(t)
G'(t) AF(x)

Gt)  F(x)
G'(t) = \G(t)
G(t) = eM
{AF = \F
Flao =0

We have an eigenvalue problem for A on a space with Dirichlet Boundary Value Problem.

Theorem 3.7. There exists {F;};>1 s.t. F; € C*(Q) and corresponding \; eigenvalues (counting multiplicity)
s.t. 0> =1 > =Xy > —A3 > - with the first eigenvalue Ay simple (multiplicity 1) s.t.

{AFJ = —Aij
Fj|asz =0

One can arrange for {F;} to be orthonormal set

/Ffdx:1 /Fngdxzo
Q Q
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In fact {F}} is orthonormal basis for L*(Q). Let N < oo and let f € L*(Q), define

N
= (Fj, /r2) Fi(z)

j=1

where

(f. 9 ey = /Q fgdu

Then we have

i.e., A Dirichlet Boundary Conditions on 9Q has an orthonormal basis of eigenvectors in L*()).

If f € Domian of A, ie., f smooth and f|;, = 0, one get stronger convergence of partial sums to f. Let
u(a,t) = 3277 ¢j(t) Fj(x) so

> ei(OF @) =3 e (AF@)

Then take inner product in L?(Q) with F,

—AmCm(t)
e Mmte, (0)

Em(t)
= ()

Hence u(z,t) := 372 ¢;(t) Fj(x) = 3272, e~Aite;(0)Fj(x) This satisfies the PDE for ¢ > 0. To match the initial
data

f(@) = u(@,t)]_o = ch
= ¢;(0) = (F}, f)

= u(x,t) Ze YFy, frz2 o) Fi(x)

One may estimate

/Q|’U,({L‘7t)|2 d{L‘:/ Z f L2 Q)F( ) <Z 6_)\mt<Fm7f>L2(Q)Fm(l‘)> dx

m=1

=S (B, )
m=1

<e N (B, £
m=1

:e—2/\1t/ ‘f|2
Q

where \; is the largest eigenvalue of A with Dirichlet Boundary Condition on 2
()l 20y < e 11220

Contrast with (0 — A)u = 0 with u(z,0) = f(z) for z € R™ where
1 lz—y|?
t) = K = — T at d
u(x7 ) t*f (47Tt)5 /”e f(y) y

1
|u(z, t)] < W ||fHL2(]R")
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3.3.3 Backward Heat Equation

For forward heat equation u; = 02u with u(z,0) = f(z) and u|,, = 0. Say we're dealing with Q =

o2t —Ait
He f L2 (0] < e 2o,
o
= |le]|, <712
For any ¢ > 0, if || f|| 2 < € then
Heaitf‘ <e Vt>0
L2

We have stability result: start small, we stay small.
But for the backward heat equation

Up = —Ugy (0,1) x (0,00)
u(0,t) =0 u(1,¢) =0
u(z,0) = fn(x) = asin(2nmz)

Look at solutions of the form

u(z,

( )sm(?mr:c)

t)
U'(t) sin(2n7x) = 2U(t) sin(2nmz)
U'(t) = 4n 7r2U( )
U(t) = " ™ U (0) = ae*™ ™t
Hence
u(z,T) = U(T)sin(2nnz) = e Ty sin(2nmzx)
Fixt=T

1
[ u(T)||%. :/0 8T T g2 gin 2(2nmx) dx

2_2 1 2 2
_ 68n T Ta2§ _ 6Sn 7T ||an%2

Instead of decaying, the solution grows exponentially.
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4 Weak Solution and Ellipticity

Look at

{—Au:f zeQ (35)

ulpg =g
Want solution via Hilbert Space Methods.

e We want to reduce to homogeneous Dirichlet Boundary Conditions. Given g defined on 0%, we would like
to extend g to a function Ext(g) defined on all of .

e Given Ezt(g), define U(x) := u(z) — Ext(g). Ask: What PDE does U satisfy?
—AU = —Au+ AExt(g)

we have
{—AU = f+ AFEzxt(g)
U|8Q =0

e So if we can solve A s
“Av —
v 36
{ vlgq =0 / (36)
Then we can solve for all f, g.
We now restrict to (36). We call v a classical solution to (36) if v € C%(Q) and satisfies (36).
Definition 4.1 (Test Functions). C§°(Q) := {u € C*(Q) | that have compact support in 2}.

Assume v € C?(12) classical solution, the Integration by Parts gives, for any u € C§°(Q)

/Vu~Vvda::/ufd:r
Q Q

We view the LHS as an inner product and the RHS as a linear functional. We need to develop Hilbert Space.
Denote

(u,v)p ::/QVu-Vv op(u) iz/Qufdx

Theorem 4.1 (Riesz Representation). Let H denote a Hilbert Space, which is complete normed linear space,
i.e., Banach Space, where ||-||; = /(-,-)u. Let H* denote the set of all bounded linear functionals on H.
¢ € H" means ¢ : H — C or R s.t.

linearity d(au + fv) = ap(u) + Bo(v)
bounded I M >0 st |p(u)| <M |ully, Vue H

Given any ¢ € H*, there exists a unique vy € H s.1.
o(u) = (vgou)  VueH

Furthermore ||¢|| . = [[vgll ;- Note it is trivial that for any v € H, ¢,(u) := (v, u) defines a bounded linear
functional. The Riesz Representation tells us that all bounded linear functionals are of such type.

Note C§° is not a Hilbert space.

4.1 Weak Derivatives and Sobolev Space
Note for u € C1(Q), let ¢ € C§°(Q),

/Q oy $ = /Q (), — U, do = — /Q w by, do

We wish to generalize this to arbitrary derivatives. For any o € N with o = (a1, -+ , ) and 9 = 951 --- 05"

/ o2 u(x) o) dz = (~1)l°! / u(@)deo(x)de Vo e O
Q Q

loc
0%u = v in the weak sense, or v is the a-th weak derivative of u provided

Definition 4.2 (Weak Derivative). Let u, v € L}, (Q), i.e., for any K C R™ compact, Ji u dz < co. We say

(—1)'“‘/Quagqb(x)da::/gvagqﬁdx Vo € C°(Q) (37)
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Lemma 4.1 (Uniqueness of weak derivative). If u has an a-th weak derivative, then it is unique up to a measure
zero set.

Proof. If both vy, vy € L} () satisfies

loc
/ uD%pdx = (—1)° / vy ¢dx = (—1)l° / vepdxr for any ¢ € C°(Q)
Q Q Q

Then fQ (v1 — v2) pdz = 0 for any test function ¢. Hence v; = vy a.e. O

x 0<x<1

<z<
Example 4.1. Look at u(x) s.t. u(z) = { Now define v(z) := {1 Oszsl This is our

1 1<z<2 0 l<ax<2
natural candidate for the weak derivative of u. The claim is: v’ = v in the weak sense.

Proof. Clearly v € L'(0,2). Now for any ¢ € C§°(0,2).

_/O2u(x)¢'(x) du = —/Olu(x)gb’(x) da - /2u(x)¢>'(x) dx

1
:—/le(é’(x)da:—/isbl(x)dx

_ _/O 2 (z) da + $(1)
- /01 (xd(z))" — d(x)) dz + ¢(1)
—_ <¢(1) —0- /01 o(x) dx) + (1)

:/01¢(x)dx

T 0<z<1

o, L
9 1<z<2 Claim: v’ does not exist in the weak sense.

Example 4.2. Suppose u(x) = {

Proof. Want to show there is not v € L}, _(0,2) s.t.

loc

2 2
f/ uqb’dx:/ v dx
0 0
1

Suppose there is such v € L, (0,2). We probe the suspicious point x = 1 with a sequence ¢,,(x) € C§°(0, 2).
Choose ¢ (x) € [0,1] with ¢,,,(0) = 0 = ¢, (2) where ¢, (x) — 0 as m — oo for all x € (0,2) \ {1} and

dm(1) =1 for any m. If so,
2 2
/ v(bmdx:—/ ud., dx
0 0

1 1
:7/ xqb’mdfo/ ¢, dx
0 0

= —¢m(1) + /0 Om(x) dx — 20, (2) + 20, (1)
= ¢m(1) +/0 Om(2) dz

= /02 VO dx — /01 Om(z) dx = P (1)
But LHS goes to 0 as m — 00, yet ¢, (1) = 1. O
Definition 4.3 (Sobolev Space). 1 <p < co.
WEP(Q) = {f € LL,.(Q) | 0°f exists in the weak sense ¥ |a| <k, 0°f € LP(Q)}
For p =2, we often write H*(2) = Wk2(Q). Norms on W*P(Q)

1
<Z|a\§k Jo10%ul? dm) ’ I<p<oo
> lal<k essg;sup|DO‘u| p =00

ullvwen oy = llully,p, :
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We say w, — u in WEP(Q) if
[t — U||Wk,p(ﬂ) —0 as m — oo

Definition 4.4 (WF?(Q)). WEP(Q) := closure of C§°(Q) w.r.t. WEP(Q) norm, i.e., u € W2 (Q) iff there
exists {um} C C§(Q) s.t.
||Um - u”Wkp(Q) —0 as m — o0

Roughly speaking, Wéc’p(Q) consists of all u € WrEP(Q) s.t. 9%u|yq =0 for any |a| <k —1.
Of particular interest to us is the space Hg(Q) = W, %(Q).

Theorem 4.2. H'(Q) is Hilbert space with norm defined by

2
oy = [ [V + P do
with inner product
(f,9) () = /QW Vg + fgdx
HY(Q) as a closed subspace of H* () is also a Hilbert Space w.r.t. ||u||§{1(9).

Lemma 4.2 (Smooth Approximation). For Q bounded open subset with 9Q smooth, one has smooth approzi-
mations

e For anyu € H'(Q) = W12(Q), there exists {u,} C C>®(Q) s.t. |lu, — ul| g1 () — 0. Here
2
lullipo = 3 [ 0wt da
|| <1
e For any u € HL(Q) = Wy %(Q), there exists {un} C C°() s.t. ||luy, — ull g1 gy — 0 as n — oo.

More generally, for 0 < s € Ny
e = X [ 107 @) de
|| <s
4.2 Weak Solutions
Recall (36)

{—Av:f v f

Vg0 =0

We first study CA+1) ; 0
A+ 1)v= T e
{ Vg =0

If v is a classical solution, then for any ¢ € C§°

Jeasvo= [ ro
/QV’U~V¢-|—U¢>:/Qf¢

Definition 4.5. We say v is a weak solution to (38) if v € Hi() and for all u € HE(Q)

/Vv Vu—HJu—/fu
Equivalently, v is a weak solution to (38) if

(v, W) = ¢s(u) YV ue Hy(Q)

Ezxistence of unique solution. Note u — ¢r(u) := fQ fudz is a bounded linear functional on H}(Q). Linearity
is trivial. To see boundedness

[or(u)l =1 | fude] <[[fll 20 l[ull g
Q 0

using Cauchy Schwarz. Thus there exists vy by Riesz Representation. O
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Claim: work with H := (H}(Q), ||u||2D = Jo |Vul?*dz) and (f,9)p := [, V[ Vgdz.
Definition 4.6. Let f € L?(Q2). We say v € H () is a weak solution to (36) if for all u € H}(Q)

/QVU-Vu:/qu

The goal is to use functional analysis techniques to construct weak solutions using Riesz Theorem 4.1. Recall
we’ve defined for any u, v € Hg ()

(u,v)p ::/Qvu.w op(u) 1:/Qufdg:

Then v is a weak solution to the Dirichlet problem iff for any u € HE(Q)
(u,v)p = ¢g(u) Y u € Hi(Q)
Now is (u,v)p an inner product? Notice inner product requires (u,u) = 0 iff u = 0.

Lemma 4.3. ||ul|p, := \/(u,u)p is a norm on H}(Q). In fact, it is equivalent to the standard norm on H} (),
i.e., there exists c¢1, co > 0 independent of u s.t. for any u € H} ()

c2 |[ull gy < llullp < e llullgr gy

It follows that
(Ho (), Il 1) = (Hy (), I p)

as Hilbert space.
Assume the above lemma, then there exists unique vy € H} s.t.
¢5(u) = (v5; u)p
from Riesz Representation Theorem provided that the functional ¢ € (H}(€2))* is bounded.

Proof of Lemma 4.3. We want to show that
2 2 2
¢ [[ullzr ) < lullp < ¢ lullz o

The second inequality indeed holds for ¢; = 1. We essentially want to show [, [ul> < C [, |Vul? for any
u e HA (). 0

Theorem 4.3 (Poincaré Inequality). Consider any domain Q bounded between 2 planes. There is a constant
Pqo >0 s.t. for all u € H} (), lull 20y < pallullp-

Poincaré Inequality clearly implies equivalence of norms between

(Ho (), 1l 12) = (Ho (), [l p)

And furthermore, it implies that the mapping from u — ¢f(u) := fQ fudzx is a bounded linear functional on
the Hilbert space with Dirchlet inner product norm.

Proof of boundedness of ¢f.

\¢f<u>\=|/ﬂfudw|

< fllpz) lullpz
< Clfllz2q llullp

It all boils down to proving the Poincaré Inequality.
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Proof of Poincaré (4.3). After possible rotation of coordinates. We may assume that € lies between 2 hyper-
planes {x; = —a} and {21 = a} for some a > 0. The distance in between in 2a. Let w € C§°(§)). We prove
for such w and then extend to all Hj(2). Namely let u € H}(Q), then there exists {u;};>1 C C§°(Q) s.t.
|lu; — ull, = 0. So we first do for C§° and let u be 0 outside 2. Let u(x1,2’) where 2’ = (z2, -+ ,2,). Do

u(zy, / O u(s, )
2y, (/ Oy, u(s, o) s) < (/ 1ds> (/ (O, u(s,z"))? ds)

uter ) < ) ([ Onutona) s

[t < [ @) ([ @t i)
— 202 ( /_ x (s ,u(s,2'))? ds>

/ / lu(zy, )2 d(xy) de’ < 2a* | |Vul? dx
Rr-1.J_¢q Q

/|u|2 d$§2a2/ |Vul|? de
) Q

Then use this to extend to Hg(£2) by density. O
Now to generalize a little bit

- Y o

4,j=1 5‘

for a;; = aj; € C*°(Q) and symmetric. L is uniformly elliptic if there exists 0 < A_ < Aj(x) < Aa(z) <--- < Ap
for A_ and Ay independent of z. What if we want to solve for

{Lv =f for x € Q (39)

U|aQ =0

Now for u € C§°(9), if v is a classical solution v € C*(Q) s.t. v[y, = 0.

SIS
8%1'0/” . 8xjv

ou 0
Z/Q%aij(x)%vdxz fudz
ij v J

=uf

Q

Definition 4.7.

Now note

8u

UUDa—/Z —d:v>)\

1,7=1 1]1

so one may define

HUHD,a =1/(u,u)p.
Notice
(Vu)Ta(z)(Vu) > A\_|Vul|?
Nl < (ww)pa < Ar ulp
Then

(B, el )
is a Hilbert Space.

Theorem 4.4. Given any f € L*(XY), there exists unique vy € H} () s.t. solving the weak Dirichlet Problem
in the sense of Definition 4.6.
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4.3 Elliptic Regularity

We will show that if f € L?(Q2), then vy € HH(Q)NH?(Q). In fact, if f € H™(Q) then vy € H™2(Q) N H (D).
Then if f € H™(Q) for any m, we have vy € H™(Q) for any m, hence v; € C*(Q2). Always 2 degrees smoother
in the Sobolev sense. Then in the classical sense.

vy =(—A)"Lf i Q
Idea: If vy € H (), then
/w.vfuf:/uf Y ue Hy(Q)
Q Q

2
vy
g7+ SO We have

82vf 8 ’Uf
INCERIAIA -

We integrate by parts then taking € = %

9 0 02y
;L%wﬁ%%ﬁ—ﬁwﬂ
02 0%v 0%v
S | Gorntae= [T 1< [155 0
j I T

€ 0?vp , 1 9

< Z il
_2/Q|6xf|+25/g|f|

ZZ/( LAEY <E/ZZ| > v+ o [P
—~ — [q 8x¢x-vf ) Q< (’“)xiacjvf 2e Jq
) [ s d ~ oyl < [ 147

This suggests vy € H?(Q).

Instead of u, put in second order derivative formally u = 9

Theorem 4.5 (Interior Regularity). vy € H*(Q2)

Proof. To justify interior regularity, let V' C €2 be arbitrary open set. Want to show that vy € H 2(V). Now
take any V. C W C Qs.t. W C Q.

Definition 4.8 (Difference Quotient).

Note for f smooth
82

DI:hDI}clf($) — @f
2

as h — .
Take ¢ smooth cutoff s.t. 0 < (<1, {(=1onV and (=0on Q\W. Let
u:=—D;"¢?Dlv; € HY(Q) for |h| < 1

Hence
/V (D "¢*Djvy) - vadx—/(D "C2Dvy) f dx
notice LHS writes by commuting V with Dk_ and throwing to the other side
—/D,;hV(CQD,’;vf) Vs de = /V(g2DQvf)-D2Wf dx
Z/V(CZDZUf)'V(DQUf)dx
= /CQV(Dguf)-VD,’;Uf d:c+2/<v<D,’;vf-VD’,;uf dx

= /<2|V(ngf)\2dx+2/nggvf.VD,ifvfdz
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Hence throwing this to RHS gives
[ Lo s = [ DD d~ 2 [ (T¢DLoy - TD)osda
=I1+1I
I < 2/ IV ¢|[ Dk |V Dlos | dae
Q
1
< —/ |VC|2|DZUf|2dx+81/C2|VDva\2dx
€1 Jq Q
1
1< [ D7Dk o+ o [ 11 do
Q €2 Ja
1 1
/ V(D) d < e / VDl P di + 2 / D (2 Dlvg) P di + — / V¢RI Doy P d + — / P da
Q 2 Jo €1 Ja 2e2 Jq
E

_ 1 1
(1-2) / CIV(Dvg) dr < 2 / D¢ Dfug)P de + / V¢RI Dy [ dar 4+ / P da
2 Ja €1 Jo 2ea Jq

Choose ¢ = %

1 € _ 1

3 [ VP <2 [ DD do 2 [ [VOPIDp P o+ o [ (P de

2 2 O Q 252 Q
Lemma 4.4. x(z)DIF(z) € H}(Q) for all |h| < 1. In particular,

/x(w)QIDZF(x)Fd:c < c/ \VF(2)|? do
Q Q

RHS independent of h < 1.
Proof.

1 1
hDPF(z) = F(x — hey,) — F(z) = / %F(w — theg) dt = —/ V. F(x — theg)ey dth
0 0

Divide by h on both sides. O

Apply Lemma to first the second terms on RHS so
1 1
7/C2|V(Dl,§vf)|2d:s < 012/ |V(g2pgvf)|2dx+20/ \vuf|2dx+—/ [ da
2 2 Q Q 252 Q
Note
/ |V (¢* Dyvg)|* da < / CHVDRvg[* + 4 V||V Doy | Divg| + 4C VP Ditvy | dae
Q Q

Conclude with same trick, one obtain

[evwiugpar<c ([ 1vopa [ iPa)

Now integrating over V'

| wkoppa s [ <QV<D’,zvf>2dx<C( [ o [ |f|2dx)

since the bound is uniformly in A for |h| < 1. We take h — 0 to obtain

8’Uf
Ve
(%ck
exists in L? on LHS. Since k = 1, -+, n arbitrary, we have vy € H*(Q). O

Tterating this argument we obtain v € H™ () for higher order Sobolev Spaces.
Now we’d like to address the existence of classical solutions from weak solutions defined via Definition 4.6. Note
we’ve already proved

e Given any f € L*((2), there exists unique vy € Hg(Q) s.t. vy is a weak solution.
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o If f € H™(R), then vy € H™T2(Q) N HY(Q) for any m € N
vf = (=Apira)"'f

We're left to prove for f € C*°(2), then vy € C*°(2). To prove this, we use the Sobolev Lemma

|| <s

Lemma 4.5 (Sobolev Lemma). H*(Q) C C*(Q) if s > k + 2 pointwise regularity
iy = 3 [ 10" f@)P o

For simplicity, we prove this with = R™. Recall
1

/e_m'gf(sc) dx

and the Fourier Transform
f(g) = (27_‘_)75
_ 1 ix-& F
@) = G [ 4@y

lee| <

la|<s

Note S is dense in H*
I£117
|| <s
Observation: there exists Cy, C_ > 0 depending only on n, s s.t

C_(1+1¢P)
la|<s

c / (1 + )| F©)P de < |1f]
R
( [ o+ |£|2)S|f(£)l2d£)

ey = 2 [ o r@Pa= 3 [ era= S [ e

< EO P < Ce(@+ [P

H:.(Rn) S C+ An

()7 d¢

S

1+ (€)1 £ (©)[? de

Hence
and so
is an equivalent norm for H*(R")
Proof of 4.5 on R™. Take f € S(R™). Then
1 P
02 (0) = g [ @ Slig) F(€) de
(2m) 2
02 (@) < oy [l A€l
(2m)=
1 / gl 2
= = =[O+ [£]7)
(2m)=z J (1+]€7)2
1 €21 ) (/ 2 )
S n + Sd
e ([ o ORIy
<on ([ 4 emde) e
(1+[€?)
Fix k. Then we ask a condition on s so that |07 f ()| < Cpk || f| fs@n)- This is equivalent to observing when
does the integral ( Ik (ll +|2§‘\QI df) converge. Since |a| < k, we want to know when
2k
(1+1¢17)°
converges. We go to polar coordinates
= r
(1+€17)° §n-1 (1+r2)
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near 0 there’s no singular. It suffices to estimate

oo 7,2]@ oo
/ 727/ﬂ71 dr < / T2k72s+n71 dr
1 (L+r2)s 1

This converges if 2k — 25 +n —1 < —1 hence 2k +n < 2s so k+ § < s. Hence if s > k + 3, for f € S(R"), we
have

0% F ()| < Con 1f 1| 115 (em)
This is the Sobolev Inequality. Now let F' € H*(R™). Then there exists a sequence F; C S(R") s.t.

”Fj - F”Hs(]Rn) —0
as s — 0o. This is Cauchy in H*(R™). Hence by Sobolev inequality on R™
0°F; = 0°Fy| < Crn | F = Foll gy = 0

as j, £ — co. Hence {0“F}(z)} is Cauchy in (C°(R™), ||| ) for all || < k. Thus §*F}(x) converges uniformly
to 0%F(z) due to uniqueness of limits in weak derivatives. Moreover

0°F ()| < Cs,n |1 Fll g1 my
for any s > k + 3. )

Definition 4.9. A complete orthonormal sequence in L?() is a sequence ¢j C L*(Q) s.t. (¢j, de) = 60, and
for any f € L3(2), define

N
SNIf(@) =D (bs, Fro) b

j=1
we have
HSN[f]_fHL2(Q)—>O as N — oo

Theorem 4.6. For Q2 C R" open and Q0 smooth, L*(Q)) has a complete orthonormal sequence of eigenfunctions
of
{—Agbj = >‘j¢j reN
¢j|ag =0
where ¢; € C>(Q).
Proof. Let f € L?*(), there exists a unique vy € H}(Q) s.t.
/Vu~vadx:/uf Y u € Hy(Q)
Q Q

Let T : L?(Q2) — H{(Q) C L3(Q) s.t. T(f) := vy.
e First argue T is linear. This follows from uniqueness of solutions.

e Second argue T is bounded. Write

/QVU-V(Tf)dx:/Qufdx

| wanpa= [ risae< ( /Q |Tf|2)é ( / |f|2)é
< (/Q|V<Tf>|2)2 (/Qlf|2>2

by recalling Poincare for Tf € H}. Hence

(f v<Tf>|2)é <(/ |f2)é
L([rrea) = (freene) <o [ur)

So T is a bounded linear operator on L?(£2).

Take u =T f so

Again by Poincare
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e Thirdly claim T : L?(Q) — L?(Q) is self-adjoint operator, i.e., for any f, g € L?(£2)

/ fTgdx = (f,Tg)r2) = (Tf,9)12(0) = / Tfgdx
o 0

Recall
/ Vu-V(Tf)dx = / uf dx
Q Q
For g € L*(Q), Tg € HL(Q)
| e vrs)ie = [ (ro)fdo
But one may interchange f and g and conclude [,(T'g)f = [, 9(Tf).

e Fourth, we claim 7' : f — Tf = vy from L?*(Q) to L?(f2) is also a compact operator, i.e., if {f;} is a
bounded sequence in L?(), that is there is a constant M s.t.

Hfj”Lz(Q) <M vV

Then the sequence {7'f;} has a subsequence {T'f;, } that converges in L?(©2). The heart of this is Rellich’s
compactness theorem. Since

(u,Tfj)p /QUfJ T
/|V(Tfj)|2d$=(Tfjvaj)DZ/Tfjfjdl“
Q Q

2 2 2 : 2
() ([ne) =<

/ T+ [V(Tf;)Pde < C < oo
Q

So {T'f;}

is uniformly bounded in H{(€2).

Theorem 4.7 (Rellich Compactness). For Q bounded and 9Q C', HE() is compactly embedded in
L3(Q), i.e., for any sequence {u;} C HE(Q) uniformly bounded in H}, there exists a subsequence {uj, }
that converges in L?(Q).

Proof for d =1. Idea for n = 1 is to use Arzela-Ascoli. We want to show H}(a,b) CC L?(a,b). Take f
smooth, say f € C§°(a,b). WLOG let a =0, b = 1. Since smooth, we apply FTC so that

ro = [ o< ([ 1ds>2</0 (f’(8>)>
< VEIF o)
— @) < VEl lpny  VO<z<1

o=t [l ([ Tat ([ f,(s))2>%

<Jz = yl* 1 20,
This is true for C§°, so we extend to H{ by density. Now let {f;} be bounded in H}(0,1), we want to
show there exists {f;, } subsequence s.t. f;, converges in L?(0,1). Hence for M > 0 independent of j
[fi(x)| < M
i (@) = f;(9)| < Ve —ylM

Since {f;}; is uniformly bounded family of equi-continuous functions in C°(0, 1), by Arzela-Ascoli, the
sequence { f;} is precompact, so there exists a convergent subsequence { f;, } C {f;} uniformly to a limiting
function f. € C°(0,1), i.e.

2ax £y (@) = fu(@)| 20 ask — oo

But this is more than enough to bound

1
[ 10) = £ do < max @) = £.(0)] 0
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Theorem 4.8 (Rellich-Kondrachov Theorem). 9Q C'. Let 1 < p < n. Then WHP(Q) CC LI(Q) for
1<qg<p*= n"—f;.
Apply Rellich, there exists subsequence {T'f;, } s.t. converges in L*(Q).

e Now we’ve verified that T is self-adjoint and compact, by Hilbert-Schmidt theorem(Spectral Theorem for
self-adjoint compact operators), there exists ¢; € L?(2) s.t. {¢;};>1 is orthonormal basis for L?(Q) s.t.

T¢; = ;¢;
and a; — 0 as j — oo. Recall T¢p; € H{(Q) satisfies for all u € H{ ()
(u, Téj)p = (u, 95) L2
(u,250;)p = a;(u, ¢5)p = (U, 05)12(0)

Suppose there is a 0 eigenvalue a;, = 0. Then (u, ¢;,)12(q) = 0 for all u € H}(Q). We may take u = ¢,
then ||¢;, ]|, = 0. But ¢;, has to be nonzero otherwise ¢;, by definition cannot be eigenfunction. Thus
there are no zero eigenvalues. So for any u € Hj(Q)

1
(u, ¢5)p = (u, afj(ﬁj)m(m

Hence ¢; are weak solutions to —A¢; = a%_(bj. Define \; = 071J — 00 as j — oo. By Elliptic Regularity,
¢; € C=().
O

Example 4.3. o For —dd—; on [0, 1] with Dirichlet Boundary Conditions. Fourier Sine Series {/2sin(2mn)},>1
are complete. Eigenvalues are (2mn)2.

e For —A on L? ;(R?) = {f € L*(R?) | f = f(r) r = |z|}. Bessel Series s.t. Jo(0) =1 and J;(0) =0
1
Tr) L)+ () = 0

are complete. Denote a, as nth zeros of Jo(r). Eigenvalues are o?.
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5 Wave Equation
Example 5.1 (Transport Equation). For one-dimensional transport equation with ¢ > 0
Ou +cOyu=0

one has solution for F € C*(R)
u(z,t) = F(x — ct)

A generalization to R™ is, for c € R”
Ou+c-Vu=0

where
u(z,t) = F(x — ct)

Definition 5.1 (Wave Equation).
(02 — A )u:=0u=0
where

O:= 0?7 — A,

5.1 Wave Equation in n =1

Example 5.2. Forn =1,
Ou = (0} — 20?)u = (0 — ) (0 + cOp)u =0

Do a change of variables (x,t) — (§,n) s.t.

=x+ct =x—ct
3 n

Thus
0 060 mo 0 0
ot otoc oton o onm
0 _00 om0 _0 0
Oxr 0z 0d¢& Oxdn 0f  On
g 2* 2(2,&)2
at) ~“\oe oy
N> o 0.,
(%) =+
Hence 5 9 P 9
2 29229 _Y9ve_ 29  9Yyv_ 2
at c 8Z c (85 an) c (af + a,r]) c 85877
And

Ou=0 <= 0¢(0pu) =0

Note Oyu is independent of & so

Then do the same again
ue.n) = [ o(€)ag' + F©
Hence any solution of the wave equation is of the form
u(z,t) = F(x + ct) + G(z — ct)
Definition 5.2 (IVP). For ¢ > 0 fized number (speed of propagation)

u(z,0) = f(z) (40)

Ou=0 zeRteR
uy(z,0) = g()

with prescribed initial conditions.
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Solve IVP for d’Alembert’s Solution. We know that
u(z,t) = F(x + ct) + G(z — ct)

Then using u(z,0) = f(z) we have
F(z) + G(z) = f(z)

Also using u¢(z,0) = g(z) and since we have
u(z,t) = cF'(x + ct) — cG'(x — ct)

we obtain
g(x) = ug(z,0) = cF'(z) — G’ (x)

Assume we may differentiate

Fl(z) = G'(z) = ¢9(x)
So we have
F(e) =5 (/@) + Lo(a)
) =3 o)+ —g(x
ey = Sy~ L
6'ta) = (1) - Zoto))
upon integration we have
PO = 210 + o [ olo)is+C
~ 2 2 J, ST
Gl = 350 5 [ s(s)as+C
W= T e ), ST R
Thus we may write down solution to wave equation and verify the initial conditions
1 xz+ct 1 1 r—ct
u(x,t):if(z+ct)+%/o g(s)derC'lJrgf(x—ct)—%/O g(s)ds + Cs
U(Z‘,O) = f(l‘) +C1+Cy = f(.l?) — C1+Cy=0
1 1 x+ct
u(z,t) = §f(a: +ct) + if(z —ct) + % /zict g(s)ds
O
Theorem 5.1. Let f € C*(R) and g € C'(R), then
1 1 1 x+ct
w(z,t) = —f(zx+ct)+ = f(z —ct) + —/ g(s)ds (41)
2 2 2 ).,

solves the Initial Value Problem (40) for 1 dimension wave equation.

5.1.1 Properties of Wave Equation
Definition 5.3 (Domain of Dependence/Domain of Influence). Take any (zq, to) € R x R.

o One has 2 characteristic lines connecting (xo,to) with (zo — cto,0) and (xo + cto,0)
r — o = c(t — o) x —xo = —c(t — o) 0<t<t

The three points form the backward characteristic cone C~ (xg,tg) emanating from (xo,to). This means to
determine the value u(xo,tg), one only need information for initial condition on [xg — cto, xo + cto] C R.
C~(xo,t0) is the domain of dependence for the point (zg,to).

e If one alternatively choose (xo,to) and look at the future T > to. The CF(zo,t0) denotes forward tri-
angle connecting the three points (xg,to) with the 2 points that intersects the line t = T using the same
characteristic lines

x —x9 = c(t —tp) x—x9 = —c(t —tp) to <t<T

Here C (xo,t0) is the domain of influence for (xo,to).
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The fact that the size of domain of influence grows at finite speed is Huygen’s Principle.

Remark 5.1. Domain of Dependence, Domain of Influence and Huygen’s Principle holds as well for variable

coefficient PDEs for example
0fu = *(x)03u

for &2 > c*(z) > >0
Theorem 5.2 (Conservation of Energy).
2
Ut = C Uy
Uty = Uyl

2
Uy

?) = (0 (uruz) — (Opur)uz)
=2 <8x(utux) 5&(22))
2

2
O (1; + Czu;) = CQam(utum)

a(

This take the form

O€+0,TJ =0
2 2
where £ = %t + 02%’ is the conserved energy density and J := —c?usuy 15 current. Upon integrating w.r.t.
spatial domain, we obtain
2 2 2 2 2 2
8t L A wug|” =0 = u—t(x,t)—i—czh(ac,t)dx: u—t(:c,O)—i—czu—m(:c,O)dm Vt>0
2 2 00 2 2 2 R 2 2

This is conservation Law. If moreover we give initial data u(z,0) = f(x) and ui(x,0) = g(x) we integrate in

spatial dimension so
° uf <1, 2, 9
/ —Jrc—dx—/ —g°(z)+ =(f)*dx

—0o0 2 —0oo
This is conservation of Energy
5.1.2 Geometric Interpretation of Wave Equation
Consider C_(xg,tp) the domain of dependence for (zg,ty). Rewrite
Ut — Cligy = 0 < O, (—c uz) O(—uy) =0

Recall Green’s Theorem for (P, Q) vector fields over € that

// (?93—?9];) dxdy:/EdeI+Qdy

Thus apply Green’s Theorem we obtain

O—// (—cuy) — 0y (—uy) dadt
C_ (Io,to

—/ —up dx — Puy di
9C_(z0,t0)

Let I denote the line segment pointing from (z¢ — cto, 0) to (xo + cto,0), IT pointing from (xg + cto, 0) to (xo,to)
and finally ITTI pointing from (xg, %) to (2o — ctp,0). Then we write down contour integral explicitly

zo+cto
/—utdx — Puydt = —/ ug(z,0) dx
I xo—cto

) & 1 , [T 1 dt
—ugdx — cu,dt = —ug(z,tg — —(x — xz9))dx — ¢ Ug(x,tg — —(x — xo)) —dx
11 p Cc Cc dzr

o+tcto zo+cto

Notice j—; = f% and

Ug(x,tg — %(z —xg)) = % (u(z,to - %(z - xo))> + %ut(z,to - %(x —xp))

cug(z,tg — %(m —x0)) = c% (u(m,to — %(x - xo))> + ug(x, to — %(x — 1))
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SO

—ug(x,tg — —(x — xg)) + cug(z,to — %(x —xp)) = o (u(z,to - E(:C — 1:0))>
/ —updr — Auydt = C/ﬂ”o i (u(m to — 1(96 — xo))> dx
11 zo+ct 5‘:v ’ c
= c(u(o, to) — u(xo + cto,0))
For the third one
/ —updx — Pugdt = —c (u(xo — cto, 0) — u(zg, o))
11

SO summing up gives
ug(z,0) dz + ¢ (u(zo, to) — u(xg + cto,0)) + —c (u(zo — cto,0) — u(xo, to))

xo+ct
-
xo—ct
1 1
u(x,0)dx + iu(xo + cto,0) + §u($0 — cto, 0)

1 zo+cto
u($07t0) = 270/
Io—cto
1 1 1 [roteto
= §f<.');‘o + Cto) + §f($o — Cﬁo) + %/3; g(s)ds

If we're given initial data u(z,0) = f(x) and w(z,0) = g(z).

o—cto

5.2 Wave Equation in n =3

Definition 5.4 (IVP). For ¢ >0
Ou = (07 — 2A)u=0 reR3teR
u(z,0) = f(x) (42)
u(x,0) = g(x)

with prescribed initial conditions.
Recall for f € S(R™) Definition 3.2, the Fourier Transform

. 1
f(6) = (FNE) = s

/ ) e WEf(y)dy

! / eEf(€) dE = f(—x)

and the Fourier Inversion

Note F : S(R") — S(R™) is unitary operator in L?, i.e.
9 .
1132 = ||/]

2
L2
and that S is dense in L?. Hence F extends to a unitary operator on all of L?(R™) as in Proposition 3.2.

Lemma 5.1. One has convolution properties. For (f x g)(z) = [ f(z —y)g(y) dy

o (F+9)©) = F(©)ie)

o (f*9)(z) = (f9)"(x)
e Denote f = F and g =G so (F *G) = (FG)V
Derive formula for IVP (42) using Fourier Transform. Do Fourier Transform in space. Assume f, g € S(R?)

97a(E, 1) — A F(Agu)(§,t) =0

Note F(0%w) = (i€)*w(§), so
(07 + JE)ae, t) = 0
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Now for each fixed £ € R", we have that

sin(c|¢|t)

u(€,t) = cos(cléft) f(€) + T

9(&)

Now inverting Fourier Transform

ute,t) = 7 (con(eleln f(©)) + 7 (5K g

How to proceed?

Lemma 5.2.

FH (AOF(©) = g (A7 F) @
Proof.
FH(AOF©) = g [ e Ca0R(E© at
= (2;); /eil‘f (&) ((2;)3 /e—'iyfF(y) dy) d§
et@—y)-¢
= ot /([ G A0 ra
= a7 | MO -0 F) dy
1 v
= Gn)? (A % F) (x)
O
Thus
= 1 1 (cos(c * f(x -1 7sin(c|§|t) * g(x
uet) = o P sl « £+ oty () gt (43)
But how does (43) help? We know for n = 1 the solution (41) is beautiful. We need to compute
_q (sin(cé]t) 1 emfsin(df\t)
()~ g
(sl Yy ey sinlclelt)
(= () o) o= [/ ) o
O

Let’s derive a theory for tempered distributions.

5.2.1 Tempered Distributions
Definition 5.5. T : S(R™) — R or C is a linear functional if for any ¢, p € S

T(a¢+ By) =aT(¢) + BT(¢Y) VYa,BERor C
Definition 5.6 (Convergence). We say {¢;};j>1 C S converges to ¢ € S if

suﬂg|x°‘8§(¢j—¢)|—>0 as j — 0o Va, f€Ny
reR™

Definition 5.7 (Tempered Distribution). A tempered distribution is a continuous linear functional on S, i.e.
forany ¢; — ¢ in S
T(¢;) = T(o) as j — oo

Denote §'(R™) as the space of tempered distributions.
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Example 5.3. Let f(x) be such that
[f@)<C+]a)Y  VazeR!

known as polynomially bounded functions. Here C' and N are fized. To this function, we can naturally associate
a tempered distribution iy € S'(R™) s.t.

HWL:AfQWWMm v € S(R)

This is clearly linear. One may also eastly check that iy is a tempered distribution. Assume that ¢¥; — ¢ in S,
then for any m € Ny

suple™ (v (@) = (@)l = 0 as j = o

We want to show |ig[1);] —ifb]| = 0.
islis) = il = lisls — 01l < [ 1f@)llvy — vldo
gC/u+mWWAw—M@Mw
= # X N+2 \T) — X X
= [ G+ DY @) vl d

LZ‘ - su ZN+2 i\2) — z
<o ([ rpmede) sl 1D 2luste) — vl 0

By assumption that ¢¥; — 1 in S.

Example 5.4. For any ¢ € S(R™), define
6.[¥] = 9(2)

This is Dirac Delta Distribution at z. This is clearly linear and continuous. Hence 6 € S'(R™).
To study Fourier Transform on Tempered Distributions S’(R™), note the following.

Lemma 5.3 (Duality Relation). For f, g € S(R™), then
[ foda= [ ods
)

iflgl =isldl

Now we extend the Fourier Transform to S’(R™) via the following
Definition 5.8 (Fourier Transform on S'(R™)). If T € S8'(R™), then

T(g):=Tlg) VgeSR
In other words, we look for T € S'(R") s.t.

TW) =Tl vyes
Example 5.5. One compute examples for S'(R™)
o T =14, then

Motivated by such Lemma, if f, g € S(R™

Tl =i(¢) = | o(x)ds

R’Vl
Compute

Now if we write via Fourier inversion

in particular

Then
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o f(x) =€ fora € R" and x € R", let T = iy then T acts as Fourier inversion

o Look at, for T =iy where f = e'*®
T = (F'T)(¢) = T[]
= [T

21/67”(7@QF7HMCﬂdx
= (2m)2¢(—a) = (2m) 25_4(¢)

Hence for T = igiza §
FIT=T=(2n)%5_,
i.e. _
(%)Y = (2m)3 3(x + a)

o ForT =§, € S'(R™) withbe R"”
[Fou) () = [ Fy] = G[)] Vv eS

= ((2;)2 / ) dm)

= yr | ) e = iy

For ,

F(x) - e—zr~b

LR
So b
N e~
0p = 7
Cen)t

o Let H(s) be Heaviside where H =1 for s > 0 and 0 otherwise. Let
f(z) = H(a — [z)

and T =iy. Then

- (2;)3 /H(a— |x|)/e*iy%(y) dy dx
([ )
e/ (Sl )

2

So we obtain

(2m)2 Yy
Thus ~ 1 2sin(az)
7= B | 6) = gy
and
(o~ lal) =7 (5EE) @)



5.2.2 Application to Wave Equation
Definition 5.9 (Convolutions). For |F(z)| < C(1+ |z|)V for ¢ € S(R") and ¢.(y) := ¢(z — y)

(Fx0)(x) = [ F(y)p(z —y)dy = ir[ps]
Then fro T € S8'(R™), define
T+ ¢(x) := T[o.]
Example 5.6. For T =,
(0o * f)(@) = balfa] = f(z = y)l,—q = f(z —a)
Example 5.7 (n =1 compute (43)). Forn=1

R SO oL g (sin(délt)
u(x,t)—ﬁ]‘— (cos(cl[t)) * f(z,t) + \/*‘7: ( cl¢]

f= \/%]_- <;eic|§|t) fla,t) + % 71 (;e—idélt) * f(z,1)
= 75_Ct * f(z,t) + *5+ct * f(x,t)

/5 x+ct—y dy+;/5(x—ct—y)f(y)dy:%(f(:c—kct)—kf(x—ct))

>*g<x,t>f+g

For term g, use (44) so that

H(ct — |a]) = F~! (QSin(Cty)> ()

(2m)2y
1 1 _4 ( sin(cty
got(et — o) = Lt ()
2c (2m)>2 cy
Hence we compute
1 sm(cty))
= F~
9= =7 () (o)
1
:2—CH(ct |z]) * g(x /H ct— |z —y|)g(y)dy
1 x+ct
= — d
2 ) g(s) ds

What about finally for n = 37 Recall (43).

u(z,t) =

1 (cos(c * f(x ! —1 (Sinlelét) *g(x,t) =
F el » £, + e 7 (S ) e = 148

o

(2)

Note formally for f

0 __, (sin(c[€|t)
o’ ( e

Hence it suffices to compute g. The key is to compute g‘.‘_ r € S8'(R?) so that

) — 1 (cos(clé]r)

5 alv] = /| IRCECRRTEECY

Theorem 5.3 (n = 3).

1 _ in(c|é|t Ozl —ct
(2m)? r7e (S £|5||§| ))W): pron (45)

Proof of (45). Compute

51— ] = 8._rld) = / d(y) dS(y)

ly|=R

ot (e mvman) asw
- /RS (/yl_R e~y dS(y)> ¥(n) dn(%l)g
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R%sin(0)dfd¢

To compute the integral inside, go to spherical coordinates with polar angle # and azimuthal angle ¢ so that
dS(y) =

Also for 7 fixed, pick spherical coordinates where 7 is the north pole direction. Hence
-y = |nllyl cos(6)

The the integral writes
2
/ e~ MY dS(y) :/ d(b/ ~ilnllylcos(®) R2 sin(6) d
ly|=R 0
il sin(#) df

:27TR2/ e—z|7;|Rcos(0)
0 iR|n)
T - 1
-9 R2 7( 71\77\Rcos(9))
" /0 96 \° iRl

etRInl _ o—iR[nl|
21

27TR2
iln]
AR
= ——sin(R|n
B (Rlnl)
Hence
Sogentil = [ (A sinCiaD) v do
1 - B sm(R|nD 1
m-alel = [ S e
1 = 1 sin(Rnl|)
—— 7(5 _ =
drRR (2m)z 0|
L L (D)
(2m)z -
Solet R=ct
1 B 1 _F-1 sin(ct| - |)
dret (2m)2 [
1 1 _1 [ sin(ct|€]) (2,1)
dmc?t 117 (om)d clé] ’
O
Thus
1
(Jf,t) =f+ m(skﬂfct *g
1
=f+ 7/ 9(y) dy
47T82t |z—y|=ct ( )
0 1 1
_9 - 4
- ( el L) dy> e L (46)
lz—yl lz—y|
How to make it look a little bit more like the solution at n = 17 Let y = x 4 ctw where |w| = 1. Do a change
of variables
dS(y) = (ct)*dS(w)
o
1 (ct)?
p— /|x e dsw) = 4 f/|w| oo+ ct) dS()
_ L g(x + ctw) dS(w)
471' \w|:1
(o) = - / (@ + etw)dS(w) + 2 L / @ + ctw) dS(w) (47)
’ B 47 lw|=1 ot 47 |w|=1

It is easy to verify both (46) and (47) satisfies the IVP (42)
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5.2.3 Properties of Wave Equation in n =3

e We have finite propagation speed ¢, and sharp arrival and departure of signals. This is known as Strong
Huygen’s Principle.

e Conservation of Energy.

1 1
E(t) = / —u? + ~c2|Vul* dz = £(0)
w2t

if u solves (42).

e Diffraction of Waves.

u < e
Let’s carry out the derivative in (47).
u(z,t) = i/ oz + ctw) dS(w) + 2 (t/ Fa+ etw) dS(w))
AT Jiw)=1 Ot \ 41 Jjy|=1
— % " g(w + ctw) dS(w) + % /w|=1 f(x + ctw) dS(w) + % /wz1 Vof(z + ctw) - cw dS(w)
) ﬁﬁ /””‘y"ct e %@ /Iw—y—ct TS+ ﬁﬁ -/lac—yl—ct Vil ) dS()

- o ( JCORR R R ds<y>> (48)

This is loss of smoothness. In physics, this is focusing effect.

Theorem 5.4 (Domain of Dependence). Let (z9,ty) € R? x [0,00). The backward cone of (zo,to) writes
c(to —t) = |xzg — x|
So according to (48) u(xo,to) depends only on g, f,V f on the Surface of sphere of radius cto
OB(zq,cty) == {x € R?® | |2 — 20| = cto}

Theorem 5.5 (Domain of Influence). Let (z¢,0) € R3 x {0}. What parts of solution does the point influence?
It’s the forward light cone, which is essentially the union of spheres of ascending radius with center xo € R3.
Assume that f, g have support inside B,(0). To see what is influenced, we need to see the union of all spheres
arising from each point in B,(0). Notice u = 0 in the inner region of the spheres as the energy just radiates
out.

In particular, if supp(f, g) = B,(0)

dist(zq, B,(0
tarrivial of signal(:L'O) = M

and
dist (20, B,(0)) + 20

c

tdeparture of signal(To) =
Theorem 5.6 (Conservation of Energy).
wptiyr = upCAu
%&(uf) =2 (V- (u;Vu) — Vuy - Vu)

Vu - Vu)

8t(luf) =2 <V - (OuVu) — 0y 5

2

1 Vul|?
Oy (2ut2 + 02‘ 3 | ) +V- (fc2utVu) =0
Again energy density € := $u? + c? |V;|2 and current J := —c?u,Vu writes

OE+Vy,-TJ=0
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Hence integrating in spatial dimensions gives

1 2
/ O (uf +c? Vel ) dr=c* | V- (uVu)dr =0
R3 2 2 R3

further implies

2 2 2
R3 2 2 R3 2 2 R3 2 2

where u(0,z) = f and uy(0,2) = g denotes initial data.

Theorem 5.7 (Diffraction and Amplitude Decay).

C
sup |u(z, )| < data
z€ER3 t

s uniform in x. This is attenuation. Inn = 3, % is the attenuation rate.

According to expression of solution (48), the term ¢ has the slowest decay in ¢ and is the only term that we
should worry about.

Lemma 5.4. For supp(g) C B,(0), we have estimate

1 Cdata

1
ds < —_— . 4 2 _ v
e [ oS0 < il gt = S
Proof.
/ h = / Linzoyh
A A
Hence

[ H< Wl 1 £ 0b 0 A
Now suppose supp(h) C B,(0) = {z | |z| < p} and A = {y | |z — y| = ct}. We have
- hdSly) < 1Rl e 1Bo(0) N {lz = y| = ct}| < 4mp? [|hl|
r—y|=c

Hence applying to
h=g

we have

1

1
— dS(y) < — o dmp?
L) ol 4o

~ 4wt

Remark 5.2. Why do we not have diffraction inn =17

z+ct
uat) = gi+et) + 5 fa—ct)+ 5o [ als)ds

If fix © and let t get large, then f(x £ ct) are 0 due to compact support. On the other hand

1 x+ct

1
= g(s)ds — */ 9(y) dy
2¢ Jy—ect 2c supp(g)

so u 1s identically constant for t large enough.
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5.3 Wave Equation in n =2
We use Method of Descent to derive solution to n = 2.
Definition 5.10 (IVP). For ¢ >0
Ou=(0f —c(02, +02,))u=0 xzeR*teR

’LL(:L’hl'Q,O) = f(l'lva) (49)
ug(w1,22,0) = g1, 22)

with prescribed initial conditions.

Solution to IVP (49). We view IVP at n = 2 as special case for IVP at n = 3. Take special initial condition
that is translational invariant in x3

v(21,T2,23,0) = f(21,72)
v (21, 2, 73,0) = g(w1, 72)

Where v solves
Ov = (0} — *A)v =0 reR3

Hence we have

0
n:3871:3v =0
9.0 —o
81173 t=0

o 0
T

Denote V := 8%31}. By uniqueness we know V = 0 then

8%530 =0 = v=0uv(z1,22)

This gives us a 2d solution. Now we plug into solution to 3d (46)

U(IL'l, IQat) = U(Il,IQ,xg = Ovt)

0 1 / 1
=2 | == flyiy2) dy | + 7/ 9(y1,y2) dy
ot <47Tc2t (1 —y1)2+ (T2 —y2)2 +y2=c2t2 4dmc?t (1—y1)2 4+ (@2 —y2) 2 +y2=c2t2

We parametrize the sphere about (x1,x2,0). We look at the upper hemi-sphere.

ys = /A2 — (v1 — y1)? — (w2 — y2)?

and the lower hemi-sphere

ys = =/t — (11— 11)% — (22 — 12)?
Thus y3 = y3(y1, y2). Introduce notations and first consider the upper hemi-sphere
2 = (z1,12)
y' = (y1,92)

Y3 = [c212 — ETIE

Notice the Surface element writes

_ dys\o | (dys.,
aS(y) = \/1 + (g 2 (g iy

due to tangent vectors

dys3 dys3
1,0, 0,1, 75—
( 3y1) ( ayQ)
and calculating their cross product. Thus our solution writes via parametrization

/ — =
4m C2t |z —y' |2 ygfc’ztz

1 , dys dys
4mc2t /|a:/—y/|2§c2t2 g(y )\/ (dyl) (dy2) Y
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Notice

d s
s _ Li —Yj j=1,2
dy; /22 — |2/ — y 2
Now look at
d d Tz — /|2 C2t2
1"‘(&2"‘ £)2:1 22| A 27 22 2
an) "y, 2 —yP B ]
dys dys ct
R G i o v T 72
diy dyz At? — |z’ — |

Hence

1 /
— 9(y1,y2) dy
47T02t |m’—y/|2+y§:c2t2

1 / , ct ,
=—5 9y dy
At Jjw—yri<et W) 2" —y'[?
Now do the same for lower hemi-sphere. Hence we add them up and obtain

1 1 9(')
5 / 9(y1,y2) dy = / Yy’
dmet (T1—y1)2+ (w2 —y2)2+y3=c?t? 27C J o —yri<et /22— |2' — /|

Hence we summarize solution at n = 2.

y L2, ot \ 2re o7y |<et 22 — |z — |2 2me o/ —y'|<ct At — |z’ — y'|?

O

Suppose f, g are supported in B,(0) C R%. Suppose we're at (19, x20) far away from B,(0), then initially the
supports of f, g do not overlap
{lzr =1 ? + |22 — yo|* < 7}

But for ¢ large enough, we have contribution from f, g. Wait longer, we overlap more. But for ¢ even larger,
eventually the ball of ¢t radius centered at (z10, 20) completely covers B,(0). We can in fact show the uniform
estimate

C
sup |u(x, )] < data

z€R? \/7E

5.4 Inhomogeneous Wave Equation
Consider inhomogeneous Wave Equation in n = 1.

Definition 5.11 (Inhomogeneous IVP). For ¢ > 0 fized number (speed of propagation)

Ou = w(z,t) reRteR
u(z,0) = f(x) (51)
ui(x,0) = g(x)

with prescribed initial conditions.

We think of writing solution
u(z,t) = ug(z,t) + ui(z,t)
where ug solves
Oug =0 reRteR
u0(9370) = f(CC)
ugt(x,0) = g(x)

purely initial value problem and wu; solves

RtelR

Ouy = w(x,t x €
=0 (52)
0

uq (z,0)
ult(x7 0)

purely forced problem.
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5.4.1 Solving Purely Forced IVP

To solve (52) we use Duhamel’s Principle.

for A independent of ¢. Then write

where

Recall for A = A

u(z, t) = /t eAU=)y(s) ds

(z—3)2

I(t—s)
—w(y, s) dyd
//47”785(1/8)1/5

Now the Analogous Duhamel’s Principle for Wave Equation is, taking u = uy in (52)
Lemma 5.5. Define
u(z,t) = /t U(zx,t,s)ds
0
s.t. for each s >0
0,.U(x,t,s) =0

Uz, t,s)],_, =0
U (x,t, )

|t:s = 'LU(SC’ S)

Then u solves purely forced problem (52).
Proof. Using assumptions on U(z,t, s) we have
t

t
Opu(z,t) = U(sc,t,s)|szt+/ Ui(x,t,s)ds :/ Ui(z,t,s)ds
0 0

t
8t2u(:z,t) = 0 U(x,t,s)|,_, —|—/ Uy (x,t,s)ds
0

¢

w(z, s) +/ AU (z,t,8) ds
0

=w(z,s) + Agu(z,t)

Hence

(02 — A A)u(x,t) = w(x,t)

Now we wish to construct U.

n =1 U construction. Write

1 z+c(t—s)
U(SC,t,S) = 276/ ( ) ’LU(y,S) dy
r—c(t—s
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Indeed
Uz, t,s),_, =0 Vs>0

and

U (z,t,8) = = (w(z + c(t — 5),8) + w(z —c(t — ), 9))

NN -

02U (x,t,8) = —w (v +c(t — 5),8) — gwl(x —c(t—s),s)

where w; denotes partial derivative w.r.t. first coordinate.

210( (x4 c(t—s),8) —w(x —c(t —s),8))

1
02U (x,t,8) = % (wi(z+c(t—s),8) —wi(z—c(t —s),s))
c
= 0%U(a,t,s) = 202U (x,t, s)

0. U(z,t,s) =

Then verify
2%2 (cw(z +c(t —s),8) — (—c)w(x — c(t — 5),5)) _

=w(x,s)

1 t z+c(t—s)
u(z,t) = —/ ds/ w(y, s) dy
2c 0 z—c(t—s)

Ut(‘r t S)‘t s

Now apply Duhamel

n =3 U construction. Write

1
Uats) = =5 /| L

So

t 1
u(l‘,t)Z/o 47T02(t—s)/|; y|_c(t S)w(y,s)dS(y) ds

Y, s)
dS(y) ds
/ 47'('0 /|;: yl=c(t—s) ‘SL’— |

w(y,t — 224
C
47TC |lz—yl<ct |$—y‘

dy
Here t — L;y\ is the retarded time.

5.4.2 Properties of Inhomogeneous Wave Equation
Consider wave equation with inhomogeneous media
Otu =V - ((z)Vu) — q(z)u

assuming ¢z > c(z) > ¢; > 0 and ¢(z) > 0. Also assume that u € C? solution. Then we conclude that

e signals propagate with speed < cs.

e If data f, g have compact support. Then for all ¢ > 0, u(z,t) has compact support.
Theorem 5.8 (Conservation of Energy). Write

ug = V- ((x)Vu) — q(x)u

Uglhgr = UtV - (cz(x)Vu) —q(z)uu
1,

3:&(51%) =V - (wc*(x)Vu) — Vg - ¢ (z)Vu — q(x)@t(%zﬁ)
=V - (u?(z)Vu) — %5,5 (Vu . CQ(Z)VU) — q(z)@t(%tﬁ)
0= 0 <1ut + %c (x)|Vu|2> + V- (~uc*(2)Vu(z)) + q(x)at(%uz)
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Hence conservation of energy writes
HE(ug,u) + V- T(ug,u) =0
where
E(ug,u) = ; u? + %c (z)|Vul? + %q(x)u2
T (ug,u) = —uc®(x)Vu
For such equation we have domain of dependence competing with each other
e two line with slope £ crossing (o, to).
e two line with slope :I:i crossing (zo, to).
For any s < t fixed, consider
o ¥, = {(z,s) € R""! | x lies within lines with slope =+ i} ={(z,s) e R""! | |z — zg| < ca(tyg — 5)}
o and ¥y = {(z,t) € R"™! | z lies within lines with slope + £} = {(z,t) € R"™ | |z — x| < ea(to — 1)}
e and Xy = {(x,0) € R"™! | |2 — 20| < eatp}

Hence for
Q(t,s) ={lz — 0| < calto—m) [ s <n <t}

whose boundary we write
8Q(t, S) == Et U Es,t U Zs

where
For={lr — x| =calto—1n) | s <n <t}

We use Gauss Theorem
(V,0)-(J,€)=0
0—/ (V,0) - (J, &) dadt

_ //aws)g £) - (na,ne) dS
/ (7,€)- (0, 1)dS+/ (J,€)- (0,—1)dS

/ j 5 nmvnt)

Fst

/Ed:r: 5d:c+/ (T, €) - (ng,ny)dS
DN P Fs ¢

Notice the localized energy

/ E(0su(x, s),u(x,s)) dx
|z—z0|<ca(to—s)

E(Opu(x,t), u(x,t)) dx+// (T, €) - (ng,ny)dS
|z—x0|<ca(to—t) Fg ¢
Et // j 5 nmant)

//Fs’t(j, E) - (ng,nt)dS >0 (53)

we claim that

If so we have our energy inequality
EX)>E(X) >0 (54)
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Proof for (53). On F,,; we have plane
co(t —1) — |z — 20| =0 Vs<t<t
Thus normal vectors to the plane write
(£
|z—z0] (+1)

Ng,Ng) =
(w t) m

Tr—Iq
(\zfa:[ﬂ ) 62)

Ng,N7) =
(nem) = = A=

We choose our normal vectors as

Therefore

j.frfivo
T, &) (ng,ny dS:// w+c€d5x~
//F< ) (s m5) A tatds,

r — X

We would like to show
J

. +c€E>0
|z — 20|

Notice

Tr — X9

+ 2626 = —2¢*(z)u Vu - T T
|x — x|
—2¢2 () |ug| [ V| + c2 (uf + A (z)|Vul® + qu2)
—2¢(z)co|ug||Vu| + c2 (uf + & (x)|Vul* + qu2)
= ¢5 (—2|ue|c(2)|Vu| + uf + A (z)|Vul® + qu?)

> co (—uf — A (2)|Vul® +u? + A (2)|Vul* + quz)
> coqu® > 0

27 - + e (uf + A (2)|Vul* + qu?)

|z — o]

AVARLY,

Hence we’re done. 0

Remark 5.3 (Consequences of the Energy Inequality). Fiz some (xg,tg) € R™ x R. Let u(x,t), ui(x,t) be 0
on Yo = {(z,0) € R"™ | |zg — 2| < catg}. Then from (54)

OSE(ES)SE(Z()):O VOSSSto

Hence E(X5) =0 for all 0 < s < tg. Recall definition for localized energy
1
E(X) = 5/ u? + |Vul*c?(z) + qu? dx
3¢

This implies that u; =0, Vu=0 and u =0 on all ¥, for 0 < s < tg. Hence u(xg,tg) = 0.

51



6 Schrodinger Equation

Let ¢(x,t) where x denotes position and ¢ as time. v is called wave function.

%R xRl - C

forn =1, 2, 3. Let
W (x, t)]? := O (z, t)(x, t)

Then |(x,t)|? dx is some probability measure. Let  C R™ we have physical meaning

/ |¢(2,t)|* de = P ( quantum particle in Q at time t)
Q

We prescribe ¢(z,t = 0) = ¥o(z) and [, [¢o(2)|* dz = 1. The data tg(z) evolves as ¢ increases according to

Schrédinger Equation
) h?
thoph = (—%A + V(z))y(x)

where h is Planck’s constant over 27. m is mass of the particle. V(x) the potential. For example Hydrogen has

—e?

Coulomb potential. Now rewrite

0y = (A +V(z))y
We further study the case of free Schréodinger Equation with V' (z) = 0.

6.1 Free Schrodinger Equation

We study the Free Schrodinger Equation governing a free particular.

{ Oy = —Ay
P(x,0) = o) € S(R™)

Solve using Fourier.

fey= L e e f(z) da
76 = g [ s

) = — T f(x) de = f(—
7€) = g [ €< S@)dz = fi-)

So for [€]2 = £ - € we have
[
¥(€,0) =ho(§) € S(R™)
S0

b(e,t) = eI g (€)
Plat) = / FTEP(E 1) de

$Gt) = gy [ oS e
VazeR"

where

This is Schrodinger Kernel.

To rewrite, we claim

(55)

teR

bla,t) = F (10 o(2)) = (F71 e 450 (2, )
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Recall that if f € L}, (R") then we define

loc
T[¢] := / fodx
and its Fourier Transform is

ﬂdzﬂ@=/ﬁwx Ve SR

Lemma 6.1. For

Ganlz) = el-o+Dlel
with a, b € R, we have
N 1 1 =2
gavb(z) = mge I(a—1ib)
provided either
ea>0,beR
ea=0,bcRandb#0
If so, for a = 0 and b = —t we have
907_15(3;) — efit\:qz
N 1 _le?
= 4it
90,715(5) (l2t)% €
1 —z’\&\zt) _ R =ily)?
F (e WD = Grnze
1 _—le—yl?
vlovt) = o [T o) dy = (SO0
(47Tlt) 2 Jrn

Lemma 6.2. Ift > 0 and x € R™ with ¥y € S(R™), the above expression for (xz,t) satisfies
(10, + A)p =0
This leave the question in which sense does this object attain the initial condition.

Lemma 6.3.

1 8) = o ()ll72 = 0

Proof.
9, t) — o ()l|72 = / (2, t) — Yo(z)? do
R
=AW@@—%@P%
_ / =16 _ 120 (€)2dE — 0 ast— 0
R
Using DCT.

There’s huge difference between Schrodinger i)y = —At and Heat Equation u; = Auw.
e heat u: R? x R} — R and Schrédinger ¢ : R® x R — C.
Example 6.1. Consider ity = —,,,. Write v = U + iV for U, V R-valued. Then

(U +iVy) = —(Uge + Vi)
Ut = *er

Then

(Ut)t = _(sz)t
= 7( f

V)mm
Utt = _UJ/.L.L‘L
Vvtt = _me:a:

This is in fact wave equation. But it supports infinite propagation speed.
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6.2 Properties of Solutions

Theorem 6.1. The Schrédinger evolution is unitary in L2.

[6C, )72 = w3 VieR
Proof.

w0l = [ 1wtePde = [ i 0P de
=/fwﬁ%@ﬁﬁz/m&W@=ww;

O
Proof. Alternatively we can do in pure physical space.
iy = (A + V()
Wp = (A + V)
—iph = (“A+ V)i
(V) + ) = =AY + Agp
=V (Vi —9Vy)
QP+ V- (VY = V) =0
& | wi=o
O
On the other hand, look at
Theorem 6.2 (Dispersive Decay).
1

[P (@, 1) = [(Si * ) (2, )] < B 1%0ll 21 (rny

Dispersion is waves of different wave length travel at different speed. It is why the wave packets pull apart.
The solution is decaying but the area underneath stays the same. This is dispersive decay.
Definition 6.1. Let

° fA [¢(x,t)|? do resembles the probability that the particle position is in the set A at time t.

o [\ |1ﬁ(§,t)|2 d& resemble the probability that the particle momentum is in the set M at time t.

e Mean position of a particle at time t
0 = [ alule o do

o Mean momentum

Et)= [ € t)de

Rn
e Variance in position
(XP)0) = [ faPlote o do
This is uncertainty in position.
o Variance in momentum
(2P0 = | WP P de
This is uncertainty in momemtum. (Bul usually we substract the mean).

Theorem 6.3 (Uncertainty Relation). Suppose [g., |o|?dx = 1 and v satisfies the free Schrédinger Equation

(55) with data 1. Then
n

(XPOEP® = (3)?
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Lemma 6.4 (Weighted Sobolev). Let f be such that zf(x) € L*(R"), i.e., has it finite variance. Let Vf €

L?(R™). Then
2 2 2 2 2 2
[ < 2 ([lopac) ([ wrpa)

- V|fP=a-V(ff)=af -Vf+af Vf

[oip = [a7-vr+ [ar-v7
o (1P = [z-91sp

= 1P <2 o123 f 1902

Proof.

But IBP on LHS we have

Using Holder we have

O
Proof of (6.3). Using Plancherel we have Vf sz )
1= [ 1wl = [ 10t t) ds
<2(/ |w|2dx) (/ |vw2dx)
= <|X\ Y2 ()(E*)2 (1)
O
Now think of
0 = —Ay
with
le|?
’(/}({E,O) = fL(x) = e 2L2
We have solution
Yl t) = / TR AGES
(2n)=
But the RHS is complex Gaussian. Then take inverse transform
1 - ‘(z‘22‘t)
a:,t =~ ¢ 2L2 1+ 37
vlet) (1+24)3

Introduce
|2

PY(x,0) = fre (x) = 0% 22

This is Wave Packet, with wave length I?I This is giving it a push (kick) with . We want to study how it

evolves.

Lemma 6.5. Let ¢)(x,t) be any solution of
10y = —Ay
For any & € R"™ define } .
(a,t) = Ge, (V) (2, 1) = h(x — 20t t)e 0@ =50t)
Then ~ R
i0pp = —Ay
with initial data

P(2,0) = 0 "1h(z,0)

Lemma 6.6.
|z—2¢gt|2

1 T 2r2(1+24) igo(z—Eot)
U(z,t) = 5 e 2P0 gifo(z—Eo
(L+72)%

Very very concentrated things will spread out much faster. Things propagate outwards, decay and then spread.
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