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1 Jacobi Fields

What is the motivation for Jacobi Fields? How geodesics vary in a manifold. This depends on the metric, and
in fact, completely determined by the curvature. Let (M, g) be a Riemannian manifold. A Jacobi field J(t) is
a C* vector field on M defined along a geodesic

v:[0,a] = M
that arises in the following way. Consider a smooth map

fi(—ee)x[0,a) = M s.t. (s,t) = f(s,t) = fs(t)

and
f(0,8) =~(t)
We want this map to be a family of geodesics as parametrized by s € (—¢,¢), i.e., for each s
fs:[0,a] = M t— fs(t)
is a geodesic. How to connect with v? We set
fo=~
Then we define

of

J(t) = B

0,t) Vteloa

Hence J is a vector field on ~.

1.1 Jacobi Equation
We want to derive an equation out of the motivation for J. Later we’ll see this is equivalent to the definition.
Lemma 1.1. Denote A := (—¢,¢) x [0,a] C R%. f: A — M is smooth map, and %, % are C* wvector fields

on M. of of
f—f*( vl v ) € C™(A, f*'TM)

Let V be Levi-Civita connection on (M,g). Denote D := f*V as the pullback connection on A. Then note
curvature comes up (curvature has to do with commutators of vector fields). Recall the pullback of a connection

D(f.Y) = (f*V)(£.Y) = f(VY) VY eX(A), LY eC®A, f'TM)
1. Hence one computes (using that Levi-Civita connection implies V' symmetric)

Qﬂ—gg:D.H§>Df4%

ds Ot dt Os
* * 8
=f V%f*(a) —f V%f*(%)

1 (Vom) -2 (Vag) = (I g) =0 1)

2. We differentiate once more to see curvature comes up.

DD 8. .. 8 9.9
D =2 (D)4 Dy g1 (o) = (PR, D) fea)

by definition of Ry«v. Now by previous computations the first term

D 0

2 ha) =25

Hence

D*of DDOf  0f of 0f
W05 dsdtor o o) on @
Notice (1) and (2) are true for any C* map f: A— M.



3. Now we impose our setup, in addition that fs is a geodesic for any s € (—¢,¢), i.e.

Dofs _ DOf 4 _ -
ﬁat_dté)t(s’t)_o Vse(—¢e)

In particular the second term in (2) vanishes. Hence we’re left with two terms

D?of of of . of
25s TR(G 5 )5 =0 (3)
If set s =0, then since we’ve defined
_of
J(t) == B (0,1)
We let
of d

% 0.0= L3t =0
Then (3) writes

D2
I+ ROLIW)N =0 ¥ el (4)
This is the Jacobi Equation.

Definition 1.1 (Jacobi Field). A C° vector field J(t) along a geodesic
v:[0,a] = M

is called a Jacobi Field if it satisfies the Jacobi Equation (4).

Proposition 1.1 (Existence and Uniqueness of Jacobi Field). Let
v:[0,a) = M

be a geodesic s.t.
10)=p A (0)=veT,M
Hence
V(t) = exp,(tv)

is determined by the exponential map.
1. For any u, w € T,M, there exists a unique Jacobi Field J along v s.t.

D
—J

J(0) = u, g

(0) =w

2. If J(t) is a Jacobi Field along ~, then there exists (6)
Frcee <0 M st (s,0)0 fs,0) = £(0)
and

(a) for any s € (—e,€), fs:[0,a] = M is a geodesic.
(b) fo="-
(c) 55(0,6) =T (®).

Example 1.1. In (R"™, go), the geodesics are
v(t) =p+tv p,v € R"
Now our Jacobi Field writes
J(t) = u+tw YV u,weR”

and f writes

f(s,t) =p+ su+t(v+ sw)
for fixed p,v,u,w. f is in fact

f(sv t) = expp+su (t(’l} + SU}))



Proof of Proposition 1.1. 1. To get an ODE out of (4) we need to take {ei,--- ,e,} ONB of T, M. Then we
think of parallel transport. Let e1(t),- -, e,(t) be the parallel transport of ey, --- , e, along (), i.e.

{Pagnne

Hence {e;(t)}1<i<n forms an ONB of T4y M for every t € [0,a]. For any J(t) as C* vector fields along
~(t), we can write

J(t) = Z filt)es(t)

for f; : [0,a] — R. Then J(t) is a Jacobi Field iff (4) is satisfied iff

S Beilt) + fi(RE (1), ey (t) =0

=1

We take inner product with e;(t) for each of these and selects

fit) + Zfi(t)R(’y/(t),ej(t),’y’(t),ej(t)) =0 Vj=1,---,n (5)
Denote

Then we write

Hence we have P2
—f+Af =0
a "

where we apply Existence and Uniqueness of ODE.
2. Set u:=J(0) and w := £.J(0). Let
Ai(—e,e) > M A(s) = exp,,(su)
Let v(s), w(s) be parallel transport along A(s). Define
Fr(cee)x 0l M fls,t) = expys (Ho(s) + su(s) (6)
We need to check
(a) For each s, f, is the unique geodesic that starts at f5(0) = A(s) and with
£2(0) = v(s) + sw(s)

(b) fo(t) = expy () (t(v(0) + 0)) = exp, (tv) = ().
(c) J(t) = %(O, t) is a Jacobi Field by our previous derivation. Check

7(0) = g—ﬁ(0,0) =XN(0)=u
Dov— PO ooy = PO g oy = wio) —
570 = 25-(0,0) = —-=2(0,0) = w(0) = w
where the second line follows from
af B
E(S,O) =v(s) + sw(s)
Dof B
ga(&o) w(s)

Since they have same initial conditions, we conclude by uniqueness.



Remark 1.1 (u = 0). In the special case u =0, J(t) Jacobi field along v(t) with

70)=p A (O0)=v JO)=0 J(O0)=w

Then
As)=p and  f(s,t) = exp,(t(v(s) + sw(s)))
and so
of
J(t) = g(O,t) = (dexp, )t (tw) (7)
For X fized its easier to take derivatives.
Lemma 1.2 ((J,7')(t)). Let
v:[0,a] > M

be geodesic in M, J Jacobi field along . Then (J,v')(t) is linear function in t

(J.4)(8) = (J(0),7(0)) + ¢(J'(0),7'(0))  J'(0) := %J(O) (8)
Proof. Let
f@) = (7.7 @)
fit)y=(J"7)(t)  using Doy =0
') =T A1) = (=R, )Y ,9)y =0 by anti-symmetry of R
Hence f is a linear function in . O

Remark 1.2 (Decomposition of .J into 4/ and ty/(t)). In fact v and ty/(t) are examples of Jacobi Fields along
y(t). Indeed
’ D
@7/(@ + R(’Y/,’)//)’)/ -0 using &7/ —0
and

2 00) = 2 (/) =0

R(Y,ty')y =0

In particular given initial conditions we can explicitly write J using v' and ty'. For any J Jacobi field along v
we have decomposition

7' (t)
17/(0)?

Hence it suffices to consider Jacobi Fields normal w.r.t. v'(t).

J(t) = ({J(0),7(0)) + £(J'(0),7(0))) () where (JE(t),7(1)) = 0

Proposition 1.2 (Killing vector field induced Jacobi Field). Let
v:[0,a) = M
be a geodesic and let X be a Killing Vector field on M. Then

(a) The restriction X (v(s)) of X to v(s) is a Jacobi Field along .

(b) As a consequence of above, if M is connected and there exists p € M s.t.
X(p)=0 and VyX(p)=0 VY eT,M
Then X =0 on M.
Proof. 1. We first show (a). Since X is a Killing Vector Field, its flow

po:UCM—=M qotq=plqg) Vite(-¢e)
is a 1-parameter subgroup of isometries on (M, g) with ¢y = Id. The flow ¢; relates to X via

©1(q) is the trajectory of X passing through ¢ at ¢ =0 for any ¢ € U



or in other words using X as integral curve

X((t,1() = gt 1(5)) = 20(3(5)
7(5) = $(0,71(5)

Since image of the geodesic v by a family of isometries remains a geodesic,

Pi(s) =pe(v(s))  Vie(—ge)
are a 1-parameter family of geodesics on (M, g). Thus restriction of X to v is a variational field

X6 = 5| o
of v by geodesics. Hence X ((s)) is Jacobi Field along ~.
2. We prove (b). From (a) we know
J(s) := X (v(s)) Vs €[0,al

defines a Jacobi Field along . We first conduct a simple computation using Definition of pullback section

D * * *
D 1) ="V 4 (X)) = 7'V 4 (" X(5)
=V, s X =VyX

5

Notice assumptions imply
X(p) =0 = X(7(0)) = J(0) =0

and

D
VyX(p)=0 VY €T, oM = choosing Y =~'(0) VX = gJ(O) =0

Hence by Existence and Uniqueness Theorem,
J(s) =X((s)) =0

is the unique Jacobi Field along . But now since M is connected, for any other point ¢ € M, there
exists smooth curve connecting p to q. Covering the curve by geodesic segments and applying previous
argument, one obtain

X(g)=0 VgeM

1.2 Jacobi Fields on Constant Sectional Curvature Manifolds

Let (M, g) be Riemannian manifold with constant sectional curvature K. Let
v:[0,a] = M

be a normalized geodesic, i.e., |y/(t)| = 1. Take a Jacobi field of the special case type where « = 0 1.1 along ~y
with D
—J
dt
which is to say J along v is normal w.r.t. 7. Indeed, by Lemma ()

(1,9)(t) = (J(0),7'(0)) + t(w,+'(0)) =0 Vt€[0,q]

J(0)=0 (0) =w s.t. {(w,7'(0)) =0

Let V be C* vector field along . Then using an equivalent condition for constant sectional curvature and
Riemannian Curvature

(R(Y', I, V) = R(Y, J,7/, V) = K ((/,7){J, V) = (', 1) (¥, V)
=(KJ,V)  using (v,7")=1and (y,J) =0

Hence
R(Y,J =KJ

and our Jacobi Equation (4) writes
D2
= KJ=
72 J+KJ=0 (9)



Solving Jacobi Field for constant sectional curvature with Initial 2.J(0). Let w(t) be parallel transport of w

along ~(t) with w(0) = w so

We look for solutions of the form

J(t) = fOwt)  f:[0,

al] > R

Then equation (9) writes, given nontrivial initial condition £ .J(0) = w

D2
J(0)=0
D
—J(0) =
770 =w
This is equivalent to system of equations on f
d2
pr5) t)+Kf(t)=
f(0) =
f1(0) =
Now this has unique solution. So the Jacobi field
J = fw
that we find this way is the unique solution of
D2

Solutions to system of equations in f and J are given by

sin(vVKt) K>0

VK
£(t) = ¢ K=0
sinh(v/—Kt)
K () K >0
J(t) = tw(t) K=0
smh(\_/;(Kt)w(t) K <0

Solving Jacobi Field for constant sectional curvature with Initial J(0). Similarly, if write

for u(t) the parallel transport of u along ~, it takes initial conditions

D2
= KJ=
I J+KJ=0
J(0)=u
D
aJ(O) =0
Then this corresponds to
d2
pro) )+ Kf(t) =
f(0) =
1(0) =

(10)



Solutions write

cos(VKt)
—vr - K>0

TR
ft) = \1ﬁ K=0
cosh(v/—Kt)
cos(vVK
h —
% KD y(t) K <0

O

In general, it’s a combination between these two solutions. What we did here is the orthogonal part in Remark

1.2.

Example 1.2 (Sphere). Take S? round sphere of radius 1. Take p = (0,0,1) to be north pole.
v € T,S%. The exponential map sends circles of radius p centered at origin to circles

{(z,y,2) € R? | 2® +y? = sin?(p), z = cos(p)}
Then let (p,0) be polar coordinates on T,S* = R?. By Gauss Lemma
eXp;(de + dy? + dz?) = dp* + sin® pdb?
More generally, given K > 0, consider sphere of radius \/%

: 1
Sz(\/?) ={(z,y,2) €R? 2% + 97 + 2% = 2}

with constant sectional curvature K. Let p = (0,0, \/%) and the exponential map

1 1 i
exp,, : TPSQ(\/—?) — Sz(\/—?) {circles of radius p} — {(v,y,2) € R® | 2?4+¢* = ——"~

Let (p,0) be the polar coordinates on R? = TpSz(\/%), then

in(vKp) ’
exp® (da? + dy? + d22) = dp? + | 22V 2P ) g2
p,( Yy ) =dp =

In general, we want to define some polar coordinates on M. Let

Consider

(11)

F:(0,0) x S"' = Bs(p) = {normal ball centered at p with radius § > 0} ¢ M (p;v) = exp,(pv)

We compute the differential. Then we can describe what the differential map does.

n— 9 n—
dF(p0) : T(p,0)((0,6) X S h = R% &T,S" " — TrpvyM

(@F (o) (L) = (dexpy) puy(v)

P
(dF(p0))(w) = (dexpp)(pw)(pw) where w € T,S" ! = {w e R" | (w,v) =0}

(
Recall special case u = 0 yields (7). Hence in fact (dF,))(w) is the Jacobi Field,

(dF(p0))(w) = (dexp,)(pv) (pw) = fr(p)w(pv)

In particular, we’ve used Gauss Lemma which says exponential map is isometry

((dexp,)(v), (dexpy)(v) = {v,0) = 1
(dexp,)(v), (dexp,)(pw)) = (v, pw) = 0

Let (M, g) be our manifold with metric g.

sin? n—1
2 2 sn1 a" + #@_gfi‘“ K >0

F*g = (exp,)*g = dp* + fx(0)goan = dp? + P ea K=0
dp2 + sinh (:/K—Kp)gS"—l K <0

can



1.3 Taylor Expansion of g;; in Local Coordinates

In normal coordinates (as embedded in the definition of tensors)

09:j
9ij(p) = ij, axi (p)=0

We want to look at its Taylor Expansion.

Proposition 1.3 (Taylor Expansion of |J(¢)|? in Riemannian curvature). Let (M, g) be Riemannian Manifold.
peM
v:[0,a] > M

be geodesic with

Let J(t) be Jacobi Field along y(t) with

Hence implies
V() = exp,(tv)  J(t) = (dexpy)w (tw)
Then

1 1
|J(t)|2 = <w7w>t2 - gR(U,U),”U,w)fL - E(VUR)(vaava w)t5

+ (425<R(U,w)v,R(v,w)v> - ;()(VUVHR)(U’w’U’wO 6 1 o(t%)

Proof. Let f(t) = (J(t),J(t)). Need to compute f*)(0) for 0 < k < 6.
f#)=2(J'(t), J(t))
F1(8) = 20 (X), J (1)) +2(J' (1), (1))
F) =207 (1), J(1)) + 6(JP) (), T (1))
FO@) =207 @), (1) +8(P (1), J'(8)) + 6(J P (2), T2 (1))
FO) = 2(JO(), J () + 10D (8), T (1)) + 20(7 (1), 7@ (1))
FO) = 2(9 ), J(1)) + 12(JO (1), J' () + 30(T W (2), TP () + 20(T P (2), J®) (1))

D
7 (B0 I = Ve (RO, T))
/ / D D /
= (Vy B)(V, I + R(y" ) +R(%d*J)7 + ROV )
=(VyR)(®,J )Y + R(¥, %J) using that v is geodesic

where the second line follows from
Vw(R(X,Y,Z,T))
Vw ((R(X,Y)Z,T))
(Vw(R(X,Y)Z),T))

VwR)(X,Y, Z,T)

( )( +R(VwX,Y, Z,T)+---+ R(X,Y,Z,VwT) VT
(VwR)(X,Y,Z,T) +

(

)

VwX,Y,Z,T)+ -+ R(X,Y, Z,VwT)

R(
R(
Vw(R(X,Y)Z,T)) — R(X,Y,Z,VwT) by definition

(VwR)(X,Y)Z,T) + (R(VwX,Y)Z,T) + (R(X,VwY)Z,T) + (R(X,Y)Vw Z,T)

Thus
J"=-R(H,J)Y = J"(0)=—-R(v,0)v=0
JO®) = —R'(y,J)y — R, J )Y = J®0)=—R(v,w)
JO = —R"(y,J)y = 2R (¥, J' )y — R(,J")y = JD(0) = —2(V,R) (v, w)v

JO) = —R"(y, J)y = 3R"(v, J' ) — 3R (Y, J")y — R(y,J")y = J®(0) = =3(V,V,R)(v,w)v + R(v, R(v, w)w)w

10



So

f(0)=0
f(0)=0
f1(0) = 2(w, w)
F@0) =0
f(4)(0) = 8(—R(v, w)v,w)
FON0) = 10(=2(V,R) (v, w)v, w)
F9(0) = 12(=3V,V,R(v, w)v + R(v, R(v,w)v)v, w) + 20(R(v, w)v, R(v, w)v)

= —36(V,V,R(v,w)v,w) + 32(R(v, w)v, R(v, w)v)

Then
f®) = %2<w,w>t2 - %8<R(U7 w)v, w)t? — %20<(VvR)(U,w)v,w)t5
1

+ Gl (—=36(V,V,R(v, w)v, w) + 32(R(v, w)v, R(v,w)v)) t® 4 o(t%)

Corollary 1.1 (Taylor Expansion of |J(¢)|? in Sectional Curvature). Take v, w orthonormal, i.e.
] =fwl =1 (v,w) =0

Let
o = Span(v, w)

Then fort >0

T2 = £ — %K(U)t‘* +o(th)

ol=
[N

1
=14~z 4+ o(z?)

|J(t)| =t (1 - éK(a)tz + 0(t2)) =t— %K(a)t?’ +o(t®)  wusing (1+ ) 5

Taylor Expansion for g;;. Now write

J(t) = (dexpy)ru(tw)
One has

f() = (J(),J(#) = ((dexpy)r(tw), (dexp, )i (tw))

By polarizing for u, w € T,M

t2((dexp,)eo (w), (dexp,)eo (w))

((dexp, o (), (dexp, o) = {u,0) — 3 R, w,v,0)6% — (Vo R) (0,1, v, )6°

+ <425<R(v,w)v, R(v,u)v) (VUVDR)(v,w,v,u)) t 4+ o(th)

1
20
Now for |v| small. One can deduce via Taylor Expansion around 0
1 1
<(dexpp)ﬂ(u)7 (depr)v(’lU)> = <U, U}> - gR(U, w,v, u) - E(VUR) (U7 w, v, u)

2 (R(v,w)v, R(v,u)v)

.= (VoVuR)(w,w,0,) + offo]")

1
20

Let {e1, - ,en} as ONB basis for T,,M. Consider normal ball Bs(p) C M and point ¢ € Bs(p). Then ¢ is

viewed as endpoint of geodesic starting from p with velocity as linear combination of e;. In particular

q= expp(z xrer) € Bs(p) Z xper € Tp,M, and xy, are the normal coordinates associated to {e1,--- ey}

k k
Then

0
6CCZ‘ q

= (depr)Zk Trek (61)

11



So
0

gij(-Th"' ,Cﬁn) = %
1

0

’ aixj > = <(depr)Zk Tk (ei)’ (dexpp)zk Tk€r (ej)>

q

Now apply with v =", are, € T, M for |xj| small, and with u = e;, w = e;. Using the formula

1 1
9i(%) = 0ij — 3 > Rl e, €0, ¢5)apas — 8 > Reimjstetmas

k2 £,m,k
2 1
+ E Z Riékajrsm-réxer'rs - % Z Réjri,mkxéxTxmxk + O(|$|4)
0.k, r,s,m L,r,m,k
We finally obtain
1 1
gij(x) = 035 — gRika(p)kaz - éRikjf,m(p)xkxéxm

2 1
+ RRiklm(p)Rjrsm(p)ikxfxr-Ts - ?ORikjl,rs(p)xka‘Trws + 0(|(E|5)

Taylor Expansion for det(g;;). Note
det g;; = exp(Tr(log(gi;)))
One has

g(@) =T+ g®(2) + ¢®(2) + ¢ (z) + o(|2|*)
1 1
log g(z) = ¢@ (z) + ¢®) (z) + g () — 5(9(2))2 +o(lz]*)  using log(1+1) =t — 52?2 +o(t?)
Here

1 1 1
77(9(2))2 = 779(2)922) = 7% Z RkiZmerijkxéxrxs

2 2 il
k,l,r,s,m
1
= _E § RikéijrsmiEkméxrxs
k,l,r,s,m

Now take the trace, i.e., contracting (gives Ricci curvature)

1

1 1
Trlog g(z) = -3 > Rypapay — G > Rempstmay — % > RertmRersmTrwor,
kol

£,m,k k,l,r,s,m,c

1
-5 > Repmke,zmy + of|z]°)

L,rom,k
Now lifting to exponential

2
ey:1+y+?+o(|y\2)

One has

1 1
det g(x) =1- ngémkxé - gRém,kxél‘mxk - RepomBersmTrTotrTs — %Rér,mkmfx?“mmxé - ERkéRmrxkxémmxr + 0(|-17|4)

90
O

Proposition 1.4 (Guassian Curvature in Polar Coordinates). Let M be Riemannian manifold of dimension 2
(identified as surface). Let Bs(p) be normal ball around p € M and consider the parametrized surface

f(p,0) = exp,(pv(0)) VO<p<d —Tt<f<m
for v(0) circle of radius 1 in TyM as parametrized by the central angle 6.

1. (p,0) are coordinates in an open subset U C M formed by the open ball minus the ray

U = B;(p) \ {exp,(—pv(0)) | 0 < p < §}

These coordinates are polar coordinates at p.

12



Proof. Tt suffices to prove that
f:(0,8) x (—m,7) € Bs(0) CR* - U C Bs(p) ¢ M defines a smooth diffeomorphism
i.e., a bijection smooth map with smooth inverse.
(a) f as composition of smooth maps is indeed smooth in (p, 6) on B;(0).
(b) f is injective since exp,, is injective on Bs(0) C R?2, which follows that
expp(plv(ﬁl)) = expp(pgv(ﬂg)) = p1v(01) = pav(0) = p1 =p2, 61 =0 mod 27

Since both 601, 3 € (—m, 7) one has 6; = 5.

(c) f is surjective follows from the definition of the geodesic ball Bs(p). By definition exp,, : Bs(0) —
B;(p) is a diffeomorphism, hence for any

q € U = Bs(p) \ {exp,(—pv(0)) | 0 < p < &}

There exists w € B;s(0) s.t.
exp,(w) = ¢

By injectivity of exp, and excluding all possible points where pv(0) ranging from 0 < p < § can map
to, there must exists § # 0 mod 27 and 0 < p < J s.t.

exp,(pv(0)) = ¢q

But 6 has representative at (—m, 7).

(d) To show f is immersion, we need ker df(, gy = {0} for any (p,0) € (0,9) x (—m,7) where
df(pje) : T(pﬁ) ((O, 5) X (—7‘(’,7‘(’)) = R2 — Tf(pﬂ)U = R2

But using Chain rule

0

aTJ'j (08) d(exp, o(pv(0)))(p.0) = (dexD,) o ) (v(0))

% = d(expy, o(p(0)))(p.0) = (dexpy) (o) (02 (0))
(p,0)

Yet v(6) and pv'(0) are orthogonal, hence they span R?. Under (dexp,,)u(g) as isomorphism between

vector spaces
of
90 1(p.0)

Thus the differential df(, ¢) is injective, and hence f is immersion.

of
96

} indeed form a basis for T, ¢)U
(p,9)

(e) By Inverse Function Theorem, and using f is bijection, f~! inverse is defined everywhere on U and
is smooth.

O

2. The coefficients g;; of the Riemannian metric in polar coordinates are given by

of

of
— Y2 ez =1 — 192
g12 =0, g11 |8p| [v(0)] ) 922 |69|

Proof. (a) Notice by setting p = 0, the initial radial velocity of our geodesic is one

of of
5]y~ PPN =0(6) = 17| =l =1

But a geodesic has constant speed. Hence in radial direction

off  of

; =@ =1 Voe(—mm
RS IR (-, m)

(p,9)

911:<
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(b) Using Gauss Lemma

of of B ,
ap‘w) " 00 (p79)> = ((dexp,) pu(e) (v(0)), (dexp,) pu(o) (PV'(0)))

= (v(0), pv'(6)) =0

Using that radial and angular velocity are orthogonal.
(¢) By definition

912:<

of of _of

go2 = (55 vy ) = *|2
091 (0) 091 (p0) 00
O
3. Along the geodesic f(p,0), we have
G22) 0 = —K (p)p + R(p for some R where lim M =0 13
PP o0 p

and K (p) the sectional curvature of M at p.

Proof. For 8 = 0, we make the observation that

VIE=1 G| 1= e )i (00 O)
=|J(p)| : for Jacobi Field with J(0) = 0 and J'(0) = v/(0)
Then directly apply (12), for the plane spanned by v(0) and v'(0)
o = Span{v(0), v'(0)}
one obtain

T(p) = p— §K(0)p" + o)

But dim M = 2, the only 2-dim subspace of T, M is itself, so K (o) = K(p) is indeed the sectional curvature
of M at p. Thus

(V922)pp = =K (p)p + 0(p)

O
4. In dimension 2, the sectional curvature coincides with the Gaussian Curvature.
lim 7( V922)pp =—K(p)
=0 \/g22
Proof.
(V922)pp _ _ —K(p)p+o(p)
V922 p— 2t K(o)p®+o(p?)
v/ 1
lim (92200 = —K(p) + lim i o) = —K(p)
p=0 /g2 p=0p— K (0)p3 + o(p?)
where for both limits, we compute using L’Hopital’s rule. O

Corollary 1.2 (Sectional Curvature for dim = 2). Let M be Riemannian manifold of dimension 2. Let p € M
and let V. C T, M be a neighborhood of the origin where exp,, is a diffeomorphism. Let S-(0) C V be circle
centered at the origin. Let L, denote the length of the curve expp(Sr) in M. Then the sectional curvature at
p € M is given by

3 2mr — L,

K(p):}ii%; r3

14



Proof. Let Bs(p) be normal ball around p € M s.t. r < ¢ and in the tangent space, Bs(0) C V. One parametrize
the surface exp,(B5(0)) = Bs(p) using

f(p,0) =expy(pv(0)) 0<p<d,  —m<f<m
Notice f(r,0) therefore parametrizes the curve exp,(S;). In particular

0

%f(ra 0)| = 922(T7 0)

Hence the length L, is computed via
s
Lr = / \/922(7',9) d9
-
and since we’re working with polar coordinates so the metric is radially symmetric, one obtain

L, = 2w/ gaa(1)

Now directly using (12)

32mr— L, _ 32mr— 2m/ga2(r) K (r—sK(p)r*+ o(r®))

T r3 T r3 r3
3
o(r
— K(p) + 627
32nr — L,

1.4 Conjugate Points

We study relationship between singularities of the exponential map and Jacobi Fields. Conjugate points give
degeneracy of the geodesics.

Definition 1.2 (Conjugate Point). Given geodesic.
v:1[0,a] = M
Let tg € (0,a]. The point y(to) is conjugate to ¥(0) along ~y if there exists Jacobi Field J along 7 s.t.
1. J # 0 nontrivial.
2. J(0) =0 = J(to).

We call the multiplicity of the conjugate point y(to) as the mazimum number of such linearly independent Jacobi
fields, i.e.

Multiplicity (v (o)) := dim{J(¢t) | Jacobi field along v(t) s.t. J(0) =0= J(tg)} > 1
Remark 1.3. Notice the multiplicity never exceeds n — 1. Recall that if
V(t) = exp,(tv)

Then J(0) = 0 implies
J(t) = (dexp,) s (tw)

and (8)
(J.4')(t) = (J(0),7'(0)) +¢(J(0),~(0))
Applying to t = to yields
0= 0+ to(J'(0),7(0))

D
= (J'(0),7/(0)) =0 s0 ﬁJ(O) is perpendicular to v'(0)

So

J(t) € {J(t) | Jacobi Fields along ~(t), J(0) =0 and (%J(O),'y’(O)) =0} =R"!

15



since originally one has 2n initial conditions to determine J(t), and J(0) = 0 kills n while (w,v) = 0 kills 1,
we’re left with n — 1. In fact, if e, - , e, are ONB of T,M

Let J;(t) be Jacobi Fields with
Ji(0)=0
and let Jp1i(t) be Jacobi Field s.t.
In+i(0) = ey, —Juti(0) =0 ie{l,---,n}

So look at the space

D

{J(t) | Jacobi Fields J(0) =0 = <%

J(0),7(0))} = Span{Ja(t), -+ , J(t)} = Multiplicity(y(tg)) <n —1

Remark 1.4. If (M,g) has constant sectional curvature K. Then
{J(t) | Jacobi Fields J(0) = 0} = Span{ty'(t), fxea, fres, -+, frxen} = R"

where ,
o= (0) .-
)"
Definition 1.3 (Conjugate Locus). Given p € M, the set of first conjugate points to the point p, for all the
geodesics that start at p, is the conjugate locus of p which we denote C(p).

<, en are ONB of T,M and e; are parallel transported along (t)

Example 1.3. If (M, g) has constant negative sectional curvature K < 0. Then

fr(p) #0  Vp#0
This means C(p) = &.

Proposition 1.5. Let M be a Riemannian manifold with non-positive sectional curvature. Then for anyp € M,
the conjugate locus C(p) = @ is empty.

Proof. Fix any p € M. Given a geodesic
v:[0,a] = M

s.t. 7(0) = p. Assume there exists nontrivial Jacobi Field J s.t.

J(0)=J(a) =0
1. We first show that iD
—(=J,J) >0
dt<dt )z
One calculate using that the covariant derivative % corresponds to Levi-Civita Connection (hence com-

patible with the metric g), and the Jacobi Equation (4).

d D D? D _D
D _D
= —(ROY, IO T) + (T, —J)

dt dt

Notice the first term is essentially sectional curvature in the plane spanned by v’ and J with flipped sign

—(R(Y,J(t)y',J) >0

due to our assumption on non-positive sectional curvature. The second term is always non-negative due
to inner product structure.

2. But then D D
yields
D
<£J, J)y=0



3. Using compatible with the metric g again

d D
—(J, Y =2(—J,J)=0
S0y =220, 0)
Thus
|J2=(J,J)t)=0 Vtec]0,q]
We’ve reached a contradiction that J is assumed to be non-trivial. O

On the other hand, for positive sectional curvature, there could be conjugate points.

Example 1.4. If (M, g) has constant positive sectional curvature K > 0. For example

1 1
Sn(ﬁ) = sphere of radius —

VK

Recall

J(t) = Sm(\/\g%@) J(0) = 0= J(\/%

and in the sphere

SO

Clp) ={-r}
One can in fact relate conjugate points with singularities of the exponential map.
Proposition 1.6 (Conjugate Points and singularities of the exponential map). Let
v:[0,a] = M
be geodesic with v(0) = p and v/ (0) = v, hence
7(t) = exp,(tv)
Then the point ¢ = v(tg) for tg € (0,a] is conjugate point to p = ~v(0) along v iff
to7'(0) = tov
is a critical point of exp,,, i.e., (dexp, ), is not surjective (has non-trivial kernel). Moreover
Multiplicity of q as a conjugate point of p = dimker((dexp,)t,v)

Proof. Any Jacobi Field J(t) along v(¢) s.t. J(0) = 0 is of the form

J(t) = (dexpy)en(tw)  wi= %J(O)

Suppose ty # 0, then ¢ is conjugate to p iff J(to) = 0 iff
(deXPp)tov(tow) =0
But ty > 0, so this vanishes iff
(d expp)tov(w) =0 < we€ ker((dexpp)tov)
Hence due to non-trivial kernel, tgv is a critical point for exp, via definition. O

Proposition 1.7. Let
v:[0,a] = M

be geodesic. Let Vi € TyoyM and Vo € TyqyM. If y(a) is not conjugate to ¥(0) along v, there exists a unique
Jacobi Field J along 7y s.t.
J0)=Vi, J(a) =V

17



Proposition 1.8. Let M be Riemannian manifold with constant negative sectional curvature b < 0. Let
v:[0,0] = M
s.t. 7(0) = p be normalized geodesics, and let v € T M s.t.
(,9(0)=0, =1
Then the Jacobi Field J along v as determined by
J(0)=0 J)=v

is given by

sinh(ty/—b)

= —————w(t 14
sinh(¢+/—b) ®) (14)
where w(t) is the parallel transport along v of the vector
(27 _ ~
w(0) = o] Uug = (dexpp)e,yl,(o)(v) € TyoyM = Ty 0y (T 0y M)
Proof. 1. Since M has constant negative curvature, using Proposition 1.5 we know ~(¢) is not conjugate

point to v(0) along ~.

2. Using b is constant sectional curvature, our Jacobi Equation writes as in (9). Given initial data
Uo

J1(0) =0 Ji(0) = w(0) = o]

According to solution (10) with b < 0, one has

sinh(y/—bt
() = SO,
v =b
as the unique solution. But notice J; is not the solution J we seek for.
3. Since J;(0) = 0, using (7) one may write J; as

Ji(t) = (d €XDP~(0) )tw’(O) (tw(0))

In particular one may evaluate at ¢ = £ and obtain

J1(€) = (depr)w(o)(ﬁw(O)) = (depr)w(o) (¢ =0

Taol’

But making use of
wo = (dexp,)h o) (v) = (dexp,)ey(0)(uo) = v

so via linearity
v
J1(l) =4—
1(£) ol

4. Finally, notice both J;(£) and J(£) are expected to be in the direction of v € T’y M. We define scaling

Tty s= 20l = SEOLM bl

so that

JO)=0 JW)=v
Indeed due to two boundary conditions, via Existence and Uniqueness of ODE solution

J=J

5. It suffices to argue one has the correct scaling that matches (14). Using

1= o] = 90 = | 2RO 0l gy SRR o

Hence
_ sinh(v/—bt) |ug| _ sinh(tv—b)
=07 7= G

18



Proposition 1.9 (Jacobi Fields and Conjugate Points on Locally Symmetric Spaces). Let M be locally sym-
metric space. Let

~v:[0,00) = M be a geodesic in M and let ~(0) = p, 7(0)=wv

Define
K, :T,M —T,M K,(x) := R(v,z)v Vreel,M

7

Then

1. K, is self-adjoint.
Proof. For any x, y € T,M, using Symmetry of Riemannian Curvature Tensor

<Kv(m)7y> :(R(v,x)v,y) = R('U,{E,’l@y) = R(v,y, 'va)
= (R(v,y)v,x> - <Kv(y)7z> = <I7Kv(y)>

where the last equality follows by symmetric of metric. O
2. Choose an ONB {e1,--- ,en} of T,M that diagonalizes K,,, i.e.
K,(e;) = N\ie; Vi=1---,n
We extend e; to Vector fields along v via Parallel Transport. Then (note \; does not depend on t)
K )(ei(t)) = Niei(t) vt

Proof. Notice v/(t) is the parallel transport of 4/(0) = v along 7. Since M is locally symmetric space,
given e;(t) parallel transport of e; along v

K (ei(t) = R(Y'(t),ei(t)y'(t) is also parallel transport along
Thus for any e;(t) where j # ¢, we take covariant derivative using V is Levi-Civita Connection

d

7 Evo(eit)) e;(t) = (d K, t)(ez(t))aej(t»"'<Kv’(t)(€i(t))>%ej(t)>
0
(K

since both are parallel vector fields
+(0)(€:(0)), €5(0)) = (Ku(ei),e5) = Aifese5) =0 Vi

t

(K (ei(t)), e5(t)) =

Then due to choice of ONB basis
K,y/(t)(ei(t)) = C@Z(t) Vit

To determine constant

d D D
Sy ea(t), ealt)) = {3 Koo (ea(t)), 4(0)) + (Ko (ea(8), ealt)) = 0
(K@ (ei(t), eit)) = (Ko(ei), e) = Ai
C =X\
Thus
K. (ei(t)) = Aiei(t) Vit
O
3. Let
)= Z x;(t)e;(t) vVt be Jacobi Field along
Then the Jacobi Equation is equivalent to the system of ODEs
2
— i=1.--- 1
2% zi(t) + Nz =0 ) IR (15)
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Proof. Recall (4) writes

2
g%ﬂﬂ+RWW%J@MNﬂ=0 YVt e [0,00)

So plugging in, using product rule and using Linearity of Riemannian Curvature Tensor in C'*° (M)

d2
ﬁxi(t) + )\il‘i(t) =0 Vit

Using the fact that {e;(t), - ,e,(¢)} are ONB frames parallel w.r.t. .

4. The conjugate points of p along v are given by

wk
%JE

Proof. Solving system of ODEs for (15) with

) VkeZ, k>1, Vie{l,---,nyN{\ is a positive eigenvalue of K, }

We wish to look for ¢ s.t.
f(tk) = (Oa T 70)

(a) In the case A; > 0, the general solution
l‘l(t) = Al sin(\/ )\zt) 1'2(0) = Ai\/ )‘z

To set x;(ty) = 0, and to keep A; # 0 we obtain

k
sin(y/Nitr) = 0 Vk:>tk:\/; VEkEZ k>0

Notice we omit k = 0 for the simple reason that it coincides with the origin of ~.

(b) In the case \; = 0, the general solution
r(t)=Cit  2,(0)=C;

Setting x;(t;) = 0 but keeping C; # 0 yields ¢t = 0, which we omit.

(¢) In the case A\; < 0, the general solution
zi(t) = Disinh(v/=A\it)  24(0) = Din/—X;
Setting x;(tx) = 0 but keeping D; # 0 yields
sinh(v/=Xitg) =0  Vk = £, =0
which we omit

Hence
7k

Ai

)

Y(tr) = (

are precisely the conjugate points of (0) = p along ~.
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2 Isometric Immersions

We want to measure the way a manifold is immersed in another. Let (M,g) and (M,g) be two Riemannian

manifolds and V, V their respective Levi-Civita connections.

Definition 2.1 (Isometric Immersion). o
f:(M,g) — (M,g)

s an isometric immersion if

1. f is an immersion, i.e., for any p € M,

dfy : TyM — Ty M is injective

2. f is an isometry, i.e.

If such f exists, then

Example 2.1. The map

x:R*? 5 R? x(6, ) == %(cos(@),sin(@),cos(cp),sin(go)) v (0, p) € R?

is an immersion of R? into the unit sphere S3(1) C R*, whose image x(R?) is a torus T? with sectional curvature

0 in the induced metric.

Proof. 1. We first show x defines an immersion.
1
Xg = % = ﬁ(_ sin(0), cos(6), 0, 0)
ox 1
X, = — = —(0,0, —sin(y), cos
v~ 9y \/5( (¢p), cos(¢p))

Due to linear independence of x¢ and x,,, clearly dxg,, = (xg,X,) is injective for any (6, ¢) € R%. Hence

x defines an immersion.

2. We compute

(cos?(0) + sin®() + cos®(p) +sin?(p)) = 1

DN | =

[x(0,¢)|* =

hence x defines an immersion into the unit sphere S3(1) € R%. Notice indeed x(R?) = S'(1) x S'(L) =

V2

T? is the two dimensional torus as a set.
3. We compute the induced metric on (x(R?),x*gg) where (R*, go) is the Euclidean space.
4

4
« 8Xi 8Xi
x*gp = E dx? = E (739 d9+7a@d<p)2
i=1

i=1

V2

= (—L sin(6)df)? + (L cos(6)dh)? + (—L sin(p)dp)? + (L cos(p)dp)?

V2 V2 V2 V2

= df? + dy? = Euclidean metric on R?

Hence x is in fact an isometric immersion.

4. Since we're in (x(R?),x*go) a Riemannian surface of dimension 2, the sectional curvature

R
K — 1212 -
911922 — 912

But due to the fact that induced metric is flat, Ri212 = 0 hence sectional curvature is 0

K=0
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We want to understand how f(M) can be understood as part of M. Both its structure coming from g and from
g, i.e., tangent part, coincides due to isometry. What plays an important role is the normal part, i.e. the second
fundamental form.

Definition 2.2 (T,M™). For any p € M, one want to decompose T M.
TypyM = T,M & (T,M)™

where we identify
T,M = df,(T,M)

Here L is orthogonal complement defined through gy ,y. More precisely
(T;DZM)l ={ve Tf(p)M |9(f(p)(v,w) =0 YVwe dfp(TpM)}
For any v € Ty M
v=o" 4ot e T,M & (T,M)*
Definition 2.3 (Normal Bundle). The normal bundle of an isometric immersion of f is
N(f) = | | (T,M)*
peM

The vector bundle
N(f) = M

s of rank m — n. One pullback and decompose

F*TM = TM & N(f)

Similarly
C®(M, f*TM) = C*(M,TM) ® C>(M,N(f))
=X(M)eX(M)*+
V= UT + UJ'
where
X(M)* := C=(M,N(f))
Recall

Definition 2.4 (Pullback and Pushforward). For
f:M—M C*> map
define the pushforward
fo i X(M) = C=(M, f*TM) X = [u(X)(p) =dfp(X(p)) VYpeM

and pullback o o
[P XM) = C(M, f*'TM) Y = fY(p):=Y(f(p)) VpeM

Definition 2.5 (f-related). X € X(M) is f-related to X € X(M) if
f*X = f*Y

In other words, for any p € M o
dfy(X(p)) = X(f(p)) VpeM

In fact this can be viewed as definition for X.
We use such to define the second fundamental form.

Lemma 2.1. Suppose o
[ (M, g) = (M,7)

s an isometric immersion. Then
df,(VxY(p)) = (V<Y (f(p))* X, Y €X(M), X, Y e X(V) YV V. C M open neighborhood of f(p)
where X is f-related to X and Y f-related to Y
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But what is the normal part? It is not contained in this information.

Definition 2.6 (Bilinear Form). We want to define the bilinear

B:X(M) x X(M) = X(M)* (X, Y) = B(X,Y)(p) = (VY (f(0))" (16)

In particular

=VxY(f() - (VxY(f(p)"
= VxY(f(p)) - VxY(p)
Remark 2.1 (Bilinear Form). Equivalently, if define
D = f*V

as the pullback connection on f*TM. Then one has equivalent definition for B(X,Y)

B(X.Y)(p) = (Dx £.Y)"(p)
= Dxf.Y(p) ~ (Dxf.Y)"(0) VX, Y € X(M)

This justifies why B is well-defined. In particular, this also shows B is C*°(M)-linear in X.

Proposition 2.1 (Symmetric Bilinear Form).

B(X,Y)=B(Y,X) VX,YexM)

Proof.
B(X,Y) = B(Y,X) = (Dx f.Y)* — (Dy f.X)*
= (Dxf.Y — Dy f.X)*
= (fu([X,Y]) T =0
Since [X,Y] € X(M), then its orthogonal part is 0. O

Corollary 2.1. B is C*°(M)-linear in both X and Y. In fact B € C°°(M, Sym?*T*M @ N(f)).

2.1 Second Fundamental Form

For any p € M. Consider isometric immersion
f:(M,g) — (M,7)

Definition 2.7 (First Fundamental Form). The 1st fundamental form is the form we have on the tangent space
of the manifold.

(Tva <’v '>g)
where g(-,-) = (-, -)4 defined by
9=1"9
and is an inner product space.
What’s important is the second fundamental form.

Remark 2.2. One has 8 one-one correspondence of second fundamental forms

1. symmetric bilinear forms
H(z,y): T,M xT,M - R

2. quadratic form
Im:7,M —-R

3. Self adjoint operators
S(x) : T,M — T,M
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One define using one from another
Il(z) := H(z, z)
H(z,y) i= 3 (I(x +y) ~ T1(z) ~ TI(y)
(S(x),y)g = H(z,y) = (2,5(y))g  Va,yeT,M
Definition 2.8 (Second Fundamental Form). Let
f:(M,g)— (M,g)

be an isometric immersion. Fiz a vector on the orthogonal by Letting n € (T,M)* = (N(f)),. Then for the
symmetric bilinear form B as in (16), one define

Hy, :T,M xT,M - R s.t. (x,y) = Hy(z,y) := (B(;l:,y),n>§(f(p))
Alternatively the quadratic form
IL, : T,M — R s.t. IL,(z) := Hy(x, x)
and the self-adjoint operator
Sy TpyM — T,M s.t. (Sp(2),y)g = Hy(z,y) (17)
These are called the second fundamental form of f at p along n. One may write in general n € X(M)*.

Proposition 2.2. Let
n —n+k _
foM"g) = (M)

be isometric immersion and given n € X(M)* normal fields w.r.t. N(f), let Sy, be the operator associated to
the second fundamental form of f along n as in (17)

Syt X(M) = X(M) s.t. (Sn(X),Y)5=H,(X,)Y)
Moreover we view S, as a tensor of order 2 given by
H,(X,Y) :=(5,(X),Y) VX, Y eX(M)
Notice S, is self-adjoint is equivalent to the tensor H, being symmetric
Hy(X,Y) = Hy(Y, X)

In fact,
Vv Sy is self-adjoint VVeX(M)

Proof. We differentiate the equation
(9(X),Y) = (X, 5,(Y))

w.r.t. V € X(M) using that V is the Levi-Civita connection
(Vv (9,(X)),Y) + (9, (X), VyY) = (Vv X, 5,Y) + (X, Vv (5,(Y)))
Notice, again by Leibniz rule
Vv (8(X)) = (Vv Sy)(X) + 5y (Vv X)
Hence

(Vv Sp)(X), Y) + (Sy(Vv X),Y) + (53 (X), ViY) = (Vv X, 5,Y) + (X, (VvSy)(Y))) + (X, 5, (VvY))
(VS (X),Y) = (X, (Vv Sy)(Y)))

Using the fact that S, is self-adjoint, applied to vector fields Vi X, Y, and VY, X. O

Lemma 2.2 (Explicit Expression).
Sy(X)=—(Dxn)" VX eX(M), ne (T,M)™* (18)

This is the tangent part of how n changes along X .
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Proof.

<S?7(x)a y) = Hﬂ(x7 y) = (B(z,y),n)
= ((DxY)t,n) = (DxY,n) since 7 is orthogonal already
= X((Y;m) =

Y, Dxn) now we use that D is compatible with the metric
=—({Y,(Dxn)")

= —((Dxn)T,y) using Y € X(M) and 1 € (T, M)* so only tangential part is preserved
O

Corollary 2.2 (Shape Operator). If dim M = dim M + 1 (hence there exists unique 1 s.t. ||n]| = 1), then one

has the shape operator
Sy(X)=—Dxn (19)

Proof.

(Dxn)* = (Dxn,n)n

1
§X((n, mn D is compatible with the metric

=0
O
Example 2.2 (S").
f : (Snagcan) — (RnJrlag)

For anypeS™, p= (21, - ,Zn) S.t. lel xf =1

n(p) = —p s.t. ne XSt inward unit normal (20)
In particular

n+1 ) 6
n(p) = ,;x os),

In fact, for any p € S™

1s the identity.

Proof. We do computation in local coordinates. For any v € T},S™ s.t.

n+1
, 0
v = E a
pt ox; »

using coordinates from the ambient manifold R"*!. What is then the shape operator? For V the Levi-Civita
connection on R"* and D = f*V, we define i € X(R"*1) s.t.

n+1 , a
ﬁ:=—zx’ax_ so  7(p)=nlp) Vpes"
i=1 v

Thus

Sy(p)(v) = —=Dyn= -V, where 7j is f-related to 1 defined in the full ambient space R"™! that restricts to n on S™

_ )
_ _ B j 9
= Vne, _ Ox;j
/ p
— Zaiv 5 x]i
Be; O
’ p
;0 0 R o
_ 7 i Y i g
=> a axi( )833] +Q a7 Voo o
ij i
.0 0 _ 9
— i Jjy 2 h 5y —— | — Tk = — I = R H
Za o2, (z7) oz, where Vaii Eye , d Y P 0 due to 0 on ( . 90)
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Therefore

Hﬂ(x7y) = <B(x,y),7]> = <S7]('r)7y> = (x,y> = gcan(%y) Vaz,ye %(Sn)
B(z,y) = (z,y)n

2.2 Gauss-Codazzi-Ricci Equations
This is about how the curvature splits into tangent and normal parts. Let
f:(M,g) = (M,g)
be an isometric immersion. In particular,
fe 1 X(M) — C°(M, f*TM) X = fo(X)(p) = dfp(X(p)) is an injective map
From now on we identify X with f,X. For any X, Y € X(M) and n € X(M)*+, D := f*V, we look at
DxY = (DxY)T 4+ (DxY)*
=VxY + B(X,Y)
Dxn = (Dxn)" + (Dxn)*
= —5,(X) + (Dxn)*

Definition 2.9. We denote V%1 := (Dxn)t. We interpret V4 as connection on the normal bundle X(M)=,
i.e., N(f) —> M.

This allows us to extend the definition of covariant derivative and connection on the normal bundle.

Definition 2.10 (Covariant Derivative). In particular, given connections V on T M, T*M and V4L on N(f), N(f)*,
we obtain covariant derivative V acting on

(TM)®" ® (T*M)®* @ (N(£)®" @ (N(f)")*™

For example
B(X,Y,n) = (B(X,Y),n)

and in this way
B e C®(M,Sym?*T*M @ N(f)*)

For any X € X(M), define using the compatibility condition

(VxB)(Y,Z,n) := X(B(Y, Z,n)) = B(VxY, Z,n) — B(Y,VxZ,n) — B(Y,Z,Vxn) VY, ZecX(M),neX(M)*
(21)

Definition 2.11 (Curvature). Similarly, for the curvature, we have full curvature
R € Q*(M,End(TM)) curvature of V

and pullback curvature o o -
f*R € Q*(M,End(f*TM)) curvature of f*V = D

and the exact curvature of the submanifold
R € Q*(M,End(TM)) curvature of V
and the curvature of the orthogonal
RY € Q*(M,End(N(f))) curvature of V*+

Remark 2.3. For R(X,Y,-,-) where X, Y € X(M) but with the last two variables free

1. InTM x TM (X(M) x X(M)) this gives Gauss Equation.

2. InTM x N(f) or N(f) x TM (X(M) x X1(M)) this gives Codazzi Equation.

8. In N(f) x N(f) (X+(M) x X+(M)) this gives Ricci Equation.

Now we introduce the equations.

26



Proposition 2.3 (Gauss Equation). Let X, Y, Z, T € X(M). We have Riemannian Curvature of the Ambient
Manifold.

R(X,Y,Z,T)=R(X,Y,Z,T) - (B(X,Z),BY,T)) + (B(X,T),B(Z,Y)) (22)

Proposition 2.4 (Codazzi Equation). Forn € X(M)=+
R(X,Y,Zn) = (VyB)(X,Zn) - (VxB)(Y. Z.n) (23)

where
B(X,Y,n) = (B(X,Y),n)

Proposition 2.5 (Ricci Equation). For 1, € € X(M)*
R(X,Y,m,€) = (RH(X,Y)n, €) + ([Sy, S| X, V) (24)

where R+ € Q2(M,End(N(f))) is the curvature of V*.

Proof of three equations (22), (23), (24). By Definition

R(X,Y,Z,T)=(R(X,Y)Z,T)
R(X,Y,Z,n) = (R(X,Y)Z,n)
And
R(X,Y)Z =DyDxZ —DxDyZ + Dix y|Z
We want to write
DyDxZ =Dy (VxZ+ B(X,Z2))
= Dy(VxZ) + Dy(B(X, Z))
=VyVxZ+B(Y,VxZ)+ Dy(B(X, Z))
DxDyZ =VxVyZ+ B(X,VyZ)+ Dx(B(Y, 2))
D[X’y]Z - V[X’y]Z + B([X, Y], Z)

Now R(X,Y)Z =VyVxZ+ B(Y,VxZ)+ Dy(B(X, Z))
—VxVyZ—-B(X,VyZ)—-Dx(B(Y, Z2))
+V[X,y]Z+B([X,YLZ)
=R(X,Y)Z+ (B(Y,VxZ) - B(X,VyZ)+ B([X,Y],Z))+ Dy(B(X,Z)) — Dx(B(Y, Z))

Let’s prove Gauss Equation (22) first. We contract it with 7', something tangent

(
R(X,Y,Z,T) = R(X,Y, Z,T) + (B(Y,VxZ) — B(X,VyZ) + B([X,Y], Z),T)
+ (Dy(B(X, 2)), > (Dx(B(Y,Z)),T)
)+

= R(X,Y,Z,T) + because B(-,-) € X(M)*+

+Y ((B(X, 2), >) (B(X,Z),DyT) — X ((B(Y, Z),T)) + (B(Y, Z), DxT)

=R(X,Y,Z,T) - (B(X,Z),DyT) + (B(Y, Z), DxT)
= R(X,Y,Z,T) <B( 2),VyT) —(B(X,Z),B(Y,T)) + (B(Y,2),VxT) + (B(Y,Z), B(X,T))
=R(X,Y,Z,T)— (B(X,Z),B(Y,T)) + (B(Y, Z), B(X,T))

Now let’s prove Codazzi (23). We contract it with »
+ (Dy (B(X, Z)),n) = (Dx(B(Y, Z)),m)
=0+ (B(Y,VxZ),n) = (B(X,VyZ),n) + (B(VxY = Vy X, Z),n)

+ (Dy(B(X,Z2)),n) — (Dx(B(Y, Z)),n) because R(X,Y)Z € X(M)

=(B(Y,VxZ),n) +(B(VxY,Z),n) — (Dx(B(Y,Z)),n) we put together all the X derivatives
—(B(X,VyZ),n) — (B(VyX,Z),n) + (Dy(B(X, 2)),n) and the Y derivatives

= (B(Y,VxZ),n) +(B(VxY, Z),n) = (X((B(Y, 2),n)) = (B(Y, Z), Dxn))

—(B(X,VyZ),n) - (B(Vy X, 2), >+(Y(<B( )7 n) — (B(X, Z), Dym))

= (B(Y,VxZ)n) + (B(VxY, Z)n (X<<B< >> (B(Y,2),Vxn))

— (B(X,VyZ),n) — (B(Vy X, 2), (B(X, 2),n)) = (B(X, 2), Vyn))

VJr
Q

—
—(VxB)(Y, Z,n) + (VyB)(X, Z,77 using deﬁmtlon of (21)
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Finally for Ricci Equation (24), by definition
R(X,Y)n=DyDxn— DxDyn+ Dix yn
Recall that Dxn = (Dxn)" + (Dxn)* = —S,(X) + Vxn
(DyDxn)* = (Dy(=5,(X) + Vxn)* = =B(Y,5,(X)) + Vi V1
(DxDyn)* = =B(X,5,(Y)) + Vx Vi
(D[X,Y]U)L = V[LX el

Now we contract with € R(X,Y,1,€) = —(B(Y,8,(X)),€) + (V¥ Vxn.€) + (B(X, Sy(Y)), &) = (Vx Vyn, &) +

= (R (X,Y)n,€) + (B(X, 8,(Y)),&) — (B(Y, 5,(X)).€)

<V[J3(,Y]’r]a §>

Recall that  (Se(X),Y) = He(X,Y) = (B(X,Y), &)
so here  (B(X,5,(Y)), &) = (5¢(X), 5,(Y))
(B(Y, 5,(X)), &) = (Se(Y), 5(X))
= R(X,Y,1,6) = R (X,Y,n,€) + (Se(X), 5 (Y)) — (Se(Y), 8y(X))
= RY(X,Y,1,€) + (S, 0 S¢(X),Y) — (Y, S¢ 0 S, (X)) using S is self-adjoint
= R (X,Y,1,6) + ([Sy, 5] (X), Y)

Remark 2.4 (Gauss). If X, Y are orthonormal, then
K(X,Y) = R(X,Y,X,)

the sectional curvature of Span{X,Y} satisfies

K(X,Y)-K(X,Y)=—(B(X,X),B(Y,Y)) + |B(X,Y)|? (25)

Example 2.3. Consider isometric immersion of the sphere
f (8", gean) = (R™F1, go)
Recall (20) the unit inward normal
n(p) =-pe XS =1

Then
B(X,Y) =(X,Y)n

On our tangent space we pick X, Y orthonormal. Using (25)
0 K(X,Y) = ~((X,X)n, (Y,Y)n) + |B(X,Y)[?

=—(nm + X, V)] =
K(X,Y) =

Hence the sectional curvature of S™ is 1

2.3 Totally Geodesic and Minimality
2.3.1 Totally Geodesic
Definition 2.12 (Totally Geodesic). Let M be dimension n, M be dimension n + 1
f:(M,g) — (M,7)
be an isometric immersion. Let p € M. We say that f is geodesic at p if the second fundamental form is O
S, =0 Ve (T,M)™*

or equivalently
H,=0 Vne(T,M)*

or equivalently

B(p) : T,M x T,M — (T,M)~* is zero map
The immersion f is totally geodesic if it is geodesic at any p € M.
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Proposition 2.6 (Transitivity of Totally geodesic). Let M be a Riemannian manifold and let N C K C M be
submanifolds of M. Suppose N is totally geodesic in K and that K is totally geodesic in M. Then N is totally
geodesic in M.

Proof. Since N and K are Riemannian submanifolds, consider f and g as isometric immersions
NS S M

We're given that f is totally geodesic in K and g is totally geodesic in M, and want to show g o f is totally

geodesic in M.

1. For any p € N, by identifying p 2 f(p) = g o f(p), we observe that the normal splits w.r.t. both K and
M

T,K =T,N ® (T,N)%
T,M =T,K @ (T,K)3;
=T,N @ (T,N)3;

= (L,N)n = (LN)x @ (LK)

Furthermore, for connection V on N, V on K and V on M, one can write bilinear forms

By X(N) x X(N) = X(N)g By (X,Y)(p) = (VEY)(f(P) — dfp(VxY (p))
B :x v

(K) x X(K) = X(K)y,  BR(X,Y)(f(0) = (VY )(g0 f(p) — dgson (V=Y (£(p))
BN X(N) x X(N) = X(N)j;  BN(X,Y)(g° f(p) := (VY )(go f(p) — d(go /)p(VxY(p))

Now using f, g-related vector fields and Chain rule

df,(VxY () = (VY)(f(p)"

dgs ) (V=Y (f(p) = (V=Y)(g0 f(p)”
d@OﬂAVxY@D—dwwﬂWMVXY@»)

(V=) (F(P))

VY (F(9) = dgs() (VY (f())*)

= (V=) (g0 f0)" = dgsn (V=Y (f(2))Y)

= (V=X)(go fp) — (V=Y)(go F(0)* — g (V=Y (£(p)F)

BM(X,Y)(go f(p)) = BY(X, Mf@»+dw | (BR(X,Y)(p)

ol
QL
m&&

?)9
Y)(go f

<

2. Then since f is totally geodesic in K, B (p) = 0, and since g is totally geodesic in M, BM(f(p)) = 0,
one conclude
By (9o f(p)) =0
Hence by definition N is totally geodesic in M.
O

Proposition 2.7. Let Ny C M7 and Ny C My be totally geodesic submanifolds of the Riemannian manifolds
My and My respectively. Then Ny X Ns is a totally geodesic submanifold of the product My x Ms with the
product metric.

Example 2.4 (S? x S?). The sectional curvature of the Riemannian manifold S* x S? equipped with the product
metric, where S? C R? is the unit sphere, is non-negative. Moreover, there exists a totally geodesic, flat torus
T? embedded in S? x S2.

Proof. 1. Recall (S?, gean) is equipped with the round metric
GEun(,0) = dg? + sin*(¢)d6?

Hence the product metric gprod on S? x S? writes

Gprod ((91,01), (h2,02)) := 9§;(¢1> 01) @ 95;(&52, 62)
= d¢? + sin’(¢1)db? + d¢3 + sin® (¢, )db>

Notice that

29



(a) When a 2-plane II is tangent to one common copy of S?, then K(II) = K(S?) = 1 equal to the
sectional curvature of the sphere, which we know to be 1.

(b) When a 2-plane II contains fixed tangent vectors from both factors of S?, say X € TS? x {p} and
Y € {p} x TS?, then X and Y are orthogonal, hence independent to each other due to the product
metric. Thus

R(X,Y,X,Y)=0

and K (IT) = 0.
2. Consider
T2 =S' x S*

define embedding
™

e
T2;)Sz ng (01, 02)*>((5701)?(§’02))

In view of Proposition 2.7, it suffices to prove
St c §?

is totally geodesic. Philosophically this is true because S', the great circle, is preserved by the geodesic
flow on S2. In particular, let (¢, 8) denote coordinates on (S?) and let embedding be

fostes? 9|—>(g,9)
where ) ,
g?ound = d92 = f*gfound

But

B:X(S") x X(S") = X(SY)::  B(X,Y)(p) = (VxY(f(p)*
and observe

Ff)’e = —sin(¢) cos(¢)
TG = cot()

V%% = FZ)@&% + Fgo%
But evaluating at ¢ = 7 yields
742 0
Hence PR
B(%, %) =0

But this is the only chance for B to be non-zero, hence we obtain bilinear form B as a zero map, and f
is thus a totally geodesic in S2.
O

2.3.2 Mean Curvature

A much weaker notion than totally geodesic is minimality.

Definition 2.13 (Minimal). We say f is minimal at p if trace of the second fundamental form is O
Tr(S,) =0 Ve (T,M)*

In general, one can define the mean curvature.

Definition 2.14 (Mean Curvature). The mean curvature of f at p is
1
ho=imis)  vnemant =1 (26)

We define the mean curvature vector as

1 n
H(p) = - ZB(ei,ei) € (T,M)* for e; as orthonormal basis of T, M
i=1
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Example 2.5. Consider sphere

Recall n(p) = —p, and
B(X,Y)=(X,Y)n

Then

3\’*

= o lenenl) = 3 ntw) =n(p) =

Hence the mean curvature vector of the sphere is also pointing inwards, the same as normal.

2.4 Gauss Map and Local Coordinates
Definition 2.15 (Guass Map). In general, if
M™ = (R", go)
s.t. there exists a unit global normal vector N € X(M)*. Then for any p € M
N(p) € (T,M)* c T,R""! = R*H!

and
N(p) e S" due to IN|=1

Then
N:M—S" p+— N(p)

is called the Gauss Map. Its differential writes

ANy : TyM — Ty S™ = T,M  (they’re identified as both orthogonal to RN (p) in R™*")
de(U) = (va)(p) = _SN(p) (v)

In Coordinates. Look at Gauss Map

V C R™ with coordinates (u1,--- , up)
x chartl w‘;
peM N s
so for p = x(uy, -+ ,uy)
ox 0x
ANy, : T,M — T,M xi:an Hxiza—m
here
X(“/l?' o ,Un) = (xl(u17' te 7un); e a'rn-i-l(ul)' o aun))
dx : T,V = T(uyM C Ty R =R
o 0x o _ ox  Om Oty = Oz O
h = = — i
ou; ~ Ou; where ou; Ou; (aui’ " Ou; ; ou; Oxy,

The good thing about Gauss Map is that then we do computation for second fundamental form.

HN = Z hl]duldu]

9D v, Ly, 2
hij — <B(87ul’87uj)7N> = <(Vdiu7_ auj) 7N> - <ch31 8u] N>
&ck o 8%y,
6$k Z 3ul8uj axk > <X7,.7aN>
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Example 2.6 (Surface of Revolution). Let S C R? be the surface of revolution of y = cosh(z). Now, to do
rotation we need sine and cosine.

x(u,v) = (cos(u) cosh(v), sin(u) cosh(v),v)

Then using local coordinates

Xy = % = (—sin(u) cosh(v), cos(u) cosh(v), 0)
Xy = % = (cos(u) sinh(v), sin(u) sinh(v), 1)

This is basis for tangent space. Let’s compute the first fundamental form g = x*go (the induced metric on S).
g = Edu® + 2Fdudv + Gdv®
= (Xy, X )du? + 2(xy, X, Y dudv + (X, X, ) dv?
= cosh?(v)du? + (sinh?(v) + 1)dv? = cosh?(v)(du® + dv?)
Next we compute the second fundamental form. In R3, normal vector is given by the cross product.
N Xu XXy (cos(u) cosh(v), sin(u) cosh(v), — sinh(v) cosh(v))
[u X x| \/cosh2 (v) + sinh?(v) cosh?(v)

_ (cos(u),sin(u), —sinh(v))
cosh(v)

The second fundamental form writes

Hy = edu® + 2fdudv + gdv®
= (Xyu, N)du? + 2(Xyp, N)dudv + (X, N)dv?

Notice
- - cos(u) »  sin(u) - sinh(v) »
_ N) = (— cos h . sh —
e = (Xyu, N) = (— cos(u) cosh(v)i — sin(u) cosh(v)7, cosh(v)Z + cosh(v)J cosh(v) k)
= —cos?(u) — sin®(u) = —1
_ . . > . -+ cos(u) >  sin(u) -  sinh(v) »
f = (Xyy, N) = (—sin(u) sinh(v)i + cos(u) sinh(v)7, cosh(v)z + cosh(v)j cosh(v) ky=0
- - cos(u) »  sin(u) - sinh(v) -
g = (Xyu, N) = {cos(u) cosh(v)i + sin(u) cosh(v)7, cosh(v)Z + cosh(v)J cosh(v) k)
Thus the second fundamental form is
Hy = —du® + dv*
By writing
0 0 0
o 0 o, 0 0 o 0 2
HN(%7 %) =-1= <SN(£), %> = <a6‘u + b%, %> = acosh”(v) here one needs the first fundamental form
1
a=-—75"-—
cosh”(v)
g o, g, 9, , 0 Jg 9, 2
Hn(5050) =0=1(Sn(50), 5) = lag +by-, 5-) = beosh™(v)
b=0
0 1 0
— Syv(—) = —
N<5u) cosh? (v) Ou
1
dN,(xy
(o) cosh?(v)
1
dN, v) = — v
(o) cosh2(v)X
1 1 0 .
= dN, = m (0 1) w.r.t. basis Xy, Xy
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2.5 Principal Curvature
Definition 2.16 (Principle Curvature). For

n+1 _

fo(M™g) = (M ,9)

isometric immersion with n € (T,M)* unique up to +. Let
S, : T,M — T,M
be self adjoint w.r.t. {e;} an orthonormal basis of T,M and
Spei = Aie;

Then we call {\;} the principal curvatures. We call

n

det(S,) = H Ai Gauss-Kronecker Curvature

Tr(S,) = Z Y rescaled mean curvature

Example 2.7. For
f:(M?,g) = (R go)

surface in R3. Choose n € T,M=. The sectional curvature (intrinsic)

Gauss Equation <

K(p) = K(e1,e2) Blei,e1), B(eg, e2)) — |Bler, e)|?

= </\17’7/7 /\2n> —0= )\1)\2
Since

H(el,el) = <B(€1,€1),n> = <Sn(61),61> = <)\161,61> = Al
<B(€1,€2),TL> = <Sn(61),€2> = /\1<€1,€2> = 0

and again since we’re in codimension 1

(B(e1,e1), Blez, e2)) = ((B(e1,e1),mn, (B(ez, e2),n)n) = (Ain, Aan)

2.6 Examples
2.6.1 Hessian

In the following we discuss the Hessian.
Definition 2.17 (Hessian). Let
oM SR
be a differentiable function. Define the Hessian Hess(f) of f at p € M as the linear operator
Hess(f) : T,M — T,M (Hess(f))(Y) := Vygrad(f) VY eT,M
where V is the Riemannian connection of M.
Lemma 2.3 (Laplacian). The Laplacian Af is given by
Af = Tr(Hess(f))
Proof. By definition

Af := div(grad(f))
:= Tr(linear mapping Y (p) — Vygrad(f)(p) for any p € M)
= Tr(Hess(f))
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Lemma 2.4 (Hessian as symmetric bilinear form). For any X, Y € X(M)
(Hess(f)Y, X) = (Y, (Hess(f)X) (29)
Hence Hess(f) is self-adjoint, and determines a symmetric bilinear form on T,M for any p € M wvia
Hess(f)(X,Y) := ((Hess(f))X,Y) VX, YeT,M (30)
Proof.
(Hess(f))Y, X) = (Vygrad(f), X) = Y({grad(f), X)) — (grad(f), Vy X)
=Y(X(f)) - (VyX)(f) using definition of grad(f) and Levi-Civita is compatible with metric
=Y, X](f)+ XY (f) — (VyX)(f) using definition of Lie Bracket
VxY)(f)+ XY (f)) using Levi-Civita is symmetric

= (
= (grad(f), VxY) + X ((grad(f),Y))
= (Vxgrad(f),Y) = (Y, Vxgrad(f)) = (Y, (Hess(f))X)

O

Proposition 2.8. Let ‘a’ be a reqular value of f, i.e., for any p € f~1(a), f is a submersion at p. Let
M"™ C M be the hypersurface in M defined by

M:={peM]|[f(p)=a}=["(a)

1. The mean curvature H of M C M is given by

. grad(f)
nH = —div(———— 31
Uerad(P)] ey
Proof. Take an Orthonormal frame F1, --- , E, and our normal vector
Eyir e grad(f) _
" |grad(f)|

in a neighborhood p of M in M. Recall H as in (26) and S, as in (17)

O

. —n+tl . . _
2. Notice Every Embedded hypersurface M™ C M s locally the inverse image of a reqular value. Moreover,
the mean curvature H of such a hypersurface is given by

1
H = ——div(N)

n

, ‘ ‘ , —n+1
where N is an appropriate local extension of the unit normal vector field on M™ C T
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Proof. (a) Since M — M, there exists a smooth immersion

f:M—M
s.t. f(M) C M is homeomorphism w.r.t. subspace _topology. Or using the alternative definition, for
any g € M, there exists a neighborhood U of ¢ in M and a coordinate chart ¢ = (z1, -+ ,Zp41) On
U s.t.

6(M NU) = 6(M) N {11 = 0}
In other words
MNU={qeU|znt1(q) =0}

It suffices to see 0 is a regular value for f = x,,,,. But for any p € M

— 0
dfp . TPM — R dfp = Tida?n_trl
Then

of

=1
8$n+1

Hence df, is surjective for any p € M NU so 0 is a regular value for f = x,41.

(b) For any g € M, there exists neighborhood U of ¢ in M and a € R s.t.
UNnM = f;'(a)
for some smooth fiy and a as its regular value. Applying (31), the mean curvature H of M NU C M

° grad(fu)
lgrad(fuv )]

However one can extend the formula to neighborhood U in M because fy is submersion on U N M,
hence has non-vanishing gradient. By continuity of fi; one can extend smoothly to open neighborhood
in M. Now one can define a unit normal vector field N as the local extension s.t.

d _
Ny = M YUCM local neighborhood s.t. Ny is well-defined

~ lerad(fu)

nH = —div( )

2.6.2 Singularity of Killing Field
Proposition 2.9. Let X be a Killing vector field on a Riemannian manifold M. Let

N={pe M| X(p) =0}

1. Ifpe N and V C M is a normal neighborhood of p. Let g € NNV. Then the radial segment ~ joining p
to q is contained in N. In particular yN'V C N.

Proof. Let V' be normal neighborhood of p, i.e., exp, is a diffeomorphism from a subset of T;,M to V.
Consider the unique radial geodesic segment 7 : [0,1] — M joining p and ¢ s.t.

¥0)=pe NNV
v(1)=ge NNV

Since X is a Killing vector field, the flow of X preserves the metric of M, in particular geodesics. Let ¢,
denote the flow of X i.e.

0

a@(Q) = X(¢:(q))

Hence ¢; preserves the geodesic, i.e.

We obtain

Thus v(s) € N for any s. O
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2. If p € N, there ezists a neighborhood V.C M of p s.t. VN N is a submanifold of M. In particular every
connected component of N is a submanifold of M.

Proof. (a) If p is isolated, done.

(b)
(c)

Otherwise let V' C M be a normal neighborhood of p s.t. there exists ¢ € V N N. Consider the
radial geodesic v; joining p to ¢1. If VN N = ~1, by (a) we’re done.

Otherwise let g0 € VNN \ {71} and let 2 be the radial geodesic joining p to go. Consider
Q = Span{exp, ' (q1), exp, ' (g2)} C T,M

and let
Ny :=exp,(Q N expgl(V))

Here we denote X; : M — M as the flow of X. Notice X; fixes ¢; and ¢
X)) =a Xi(q2) = q2

In particular, since X; preserves the geodesics, and exp,, Yaq1), exp, 1(go) are tangent to the geodesics
joining p to ¢; and ¢o respectively

(dX¢)p(exp, ' (a1)) = exp, ' (q1)

(dX¢)p(exp, ' (g2)) = exp, *(g2)

Since @ = Span{exp,'(q1),exp, '(g2)} we have (dX;), restricted to Q is the identity. Thus Ny C
V' N N. We proceed by picking another geodesic until the dimension of T),M is exhausted.

O

8. The codimension, as a submanifold of M, of a connected component Ny of N, is even.

Proof. Recall the fact that: If a sphere has a non-vanishing differentiable vector field on it then its
dimension must be odd. Now let E, := (T, Nj,)* and set V C M be a normal neighborhood of p. Let

N = exp,,(Ep Nexp, (V)

For all ¢,

(dX1)p : B, = (T,Np)*t — E,

so X is tangent to Ni-. On the other hand X # 0 is tangent to the geodesic spheres of Ni- with center
p. But by our fact above, the dimension of such geodesic sphere is odd. Hence

is even.

dim Nj- = dim E,,
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3 Global Differential Geometry

We plan on discussing
1. Complete Manifolds
2. Hopf-Rinow Theorem
3. Hadamard Theorem

3.1 Complete Riemannian Manifolds

We always assume M is Hausdorff. Completeness for metric space means all Cauchy Sequence converges. We
want to define geodesically complete, to do so one needs distance on manifolds.

Definition 3.1 (Path-Connected). M is path-connected if for any p, ¢ € M, there exists continuous
c:[0,1] = M s.t. c(0)=p e(l)y=g¢q

Lemma 3.1. If M is a connected topological manifold, then M is path connected.

Lemma 3.2. If M is a connected C* manifold, there exists a C map
c:[0,1] - M s.t. c(0)=p c(l)y=g¢q

Definition 3.2 (Distance). Let (M,g) be a connected Riemannian manifold. For every p, ¢ € M, we define
the distance between p and q as infimum of the length of all curves connecting p and q

dg(p,q) :==1inf{l(c) | ¢:[0,1] = M piecewise smooth s.t. ¢(0)=p c(1) =q}
1. The set is non-empty due to M is connected. Hence dg4(p,q) > 0.
2. We fix the metric g and denote d(p,q).
Proposition 3.1. (M,d) defines a metric space.

Proof. 1. Triangle Inequality. For any p, ¢, m € M.

d(p,q) + d(g,m) = d(p,m)
due to composition of curves.
2. d is symmetric trivially by reversing the curve parametrization.

3. d(p,q) > 0 due to nonempty set. It suffices to check d(p,q) =0 <= p = q. We need to check d(p,q) =0
implies p = q. We prove the contrapositive, i.e., for p # ¢, we want to show d(p,q) > 0. For this we need
to use our manifold M is Hausdorff. There exists an open neighborhood U of p € M s.t. ¢ ¢ U. There
exists r s.t. the normal ball

B.(p)cU

But then d(p, q) > r because all points at distance < r from p are in B, (p), otherwise ¢ € B,.(p).

Example 3.1. 1. OnR", d(x,y) = |z — y|.

2. Line with two origins. Let M = (R x {0,1}) / [(%,0) ~ (x,1) except for x = 0]. Then

d([z,0],[0,1]) = ||
d([O, 0]7 [07 1]) =0
Hence we indeed need Hausdorff condition.
Remark 3.1. 1. If there exists a minimizing geodesic y between p and q, then
t(y) = d(p,q)

2. The topology induced by d is the same as the original topology, i.e., the one with basis

{Br(p)|r>0,pe M}

37



3. Fix pg € M, then

is continuous, In fact
£ (q) = f(p)l = d(po, q) — d(po,p)| < |d(p, q)|
Then f s Lipschitz continuous.

Definition 3.3 (Geodesically Complete). A Riemannian manifold (M, g) is geodesically complete if for any
pEM,
exp,,(v) is defined for all v € T,M

i.e., all geodesics y(t) are defined for all t € R.

3.2 Hopf-Rinow Theorem
Hopf-Rinow says (M, g) is geodesically complete iff (M, d) is complete metric space.
Theorem 3.1 (Hopf-Rinow). The following are (a) — (e) equivalent and all imply (f)

(a) exp,(v) is defined for all v € T,M at a particular point p € M.

(b) Closed and Bounded sets of (M,d) are compact.

(c) (M,d) is a complete metric space.

(d) (M, g) is geodesically complete, i.e., exp,(v) is defined for all v € TyM for any q € M.

(e) There exists a sequence of compact sets {K,}

Kn C Kn—i—l UKn =M

s.t. if ¢n & Ky ¥V n then d(p, gn) — 0.

(f) In the above cases, for any q € M fized there exists minimizing geodesic vy between any p € M and q, i.e.
t(y) = d(p,q)

Example 3.2 (Counter example for (f) does not imply (a)). Take B1(0) open ball in R™. (f) is satisfied. But
expy(v) is not defined for |v| > 1. In particular By(0) is not complete.

Proof of Theorem 8.1 (a) = (f). We want to find the initial velocity v € T, M s.t. |v| = 1 of the geodesic v
where v(0) = p and (1) = ¢. In this case we want

V() = exp,(tv)  (r)=q  forr=d(p,q)
There exists rg s.t. By, (p) is a normal ball at p.
1. Case one. If r < rg, and ¢ € B, (p), then there exists a minimizing geodesic connecting p and g.

2. Case two. If r > ry. The idea is to construct the curve with initial velocity step by step. Consider the
map
f:M—R x> d(q, x)

which is continuous. There exists x¢ € Sy, (p) the sphere of the normal ball s.t.

o= min f(z
TE€Sr (p) ( )
Note zy may not be unique. In particular,
T = exp,(rov) for some unit tangent vector v

Finally we can use the assumption that exp, is defined for all v € T,M. So we define the curve
Y(t) 1= exp,(tv)
and I want to show that vy(r) = ¢. To do so we use the continuity method. We define a set
A={sec0,r][d(y(s),q) =7 —s}
If one can prove A is non-empty, closed and open, then since A is connected, we have A = [0,7]. In

particular we conclude r € A, and finally d(y(r),q) =r—r=0 = ~(r) =q.
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e A is non-empty since s = 0 lies inside

e A is closed due to closed condition.

e We're left to prove A open. We show that if s € A, then there exists 6 > 0 s.t. s+ 6 € A. Since
s € A, one has

d(y(s),q) =71 —s

Consider the normal ball centered at (s), of some radius §, which is between (0,7 — s). Now we
consider 2’ that minimizes the distance between the ball and ¢, i.e.

f(z)

2’ = min
z€Ss(v(s))

Then

r—s=d(v(s),q) = 6 + min{d(q,z) | = € S5(7(s))}
=d+d(q,2)
d(a’,q) =1 — (s +9)

Now by triangle inequality

s+d0>d(p,x’) >d(p,q) —d(g,z')=r—r+(s+6)=s5+§
A(p,a') = 5+
= 2’ =7(s+9)

Thus
dy(s+0),q)=r—(s+0) = s+dc A

Proof of Theorem 3.1 (a) = (b). Let A C M closed and bounded. Then there exists r > 0 s.t.

Ac{z e M|d(z,p) <r}=Br(p) C exp,(B-(0))

where the latter is indeed a compact set. Hence using A closed subset of a compact set and Hausdorff topology,
one knows that A is compact. O

Proof of Theorem 3.1 (b) = (c). Start with a Cauchy Sequence {z,}. Let A = {z,} be closed and bounded.
Then A is compact, and there exists a subsequence z,, — po € M. Hence x,, = py since it’s Cauchy. O

Proof of Theorem 3.1 (¢) = (d). Let ¢ € M, we want to show that exp, is defined on T; M. Suppose
v:(a,s0) > M
is a normalized geodesic. Then we prove that v can be extended to
v:(a,s0+0) > M

How do we prove? Remember we assume Cauchy sequence converges. We take a sequence that converges to sg.
Let s, be an increasing sequence s.t. s,  sg. Then since we have normalized geodesic

d(v(s5n);7(5m)) < |sn — Sml

Since {s,} is Cauchy, v(s,) are Cauchy, and using our assumption, v(s,) — po in M. Then there exists § > 0
and a totally normal neighborhood V of pg s.t.

1. for any p1, p2 € V, there is a minimizing geodesic between p; and po

2. for every g € V,
exp, : Bas(0) C T,M =V

is defined.
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What is remarkable is that the J is uniform in ¢ € V. If v(s,) and v(s,) € V, then v coincides with the
minimizing geodesic between ~(s,) and ¥(s,,). Choose s, s.t. y(s,) € V and

so— 0 < s, < Sg
Then for the exponential map at v(s,), we again center a ball at v(s,) with radius 24, i.e.
eXPo (s, : Bas(0) =V
is defined. Hence 7(t) is defined for ¢ € (s, —26, s, +6). But s,,+20 > sg by our choice. Hence v is extended. O
Proof of Theorem 3.1 (d) = (a). Trivial. O

Proof of Theorem 3.1 (b) = (e). Let K,, = By (p). They satisfy (e). If g, ¢ K, for any n, then d(p,q,) >
n. O

Proof of Theorem 3.1 (¢) = (b). Let A be a closed and bounded set. Then there exists n s.t. A C K, hence
A is compact. O

Corollary 3.1. Any Riemannian metric on a compact manifold gives a complete manifold.
Proof. Property (e) is always verified. O
Example 3.3. 1. S™, T™ are complete.

2. (R™, go) is complete.

3. (B}(0),g0) is not complete.

4. Let
T
¢:R" — B Ty ——
' V1 + e
Then the inverse writes y

¢l :BY R oy

V1= yl?

The diffeomorphism (R™, ¢*qgo) is not complete since the ball is not complete.
5. Any proper open subset of a complete manifold is not complete, i.e., for open embedding
i M—M i(M) € (M,3g) open and proper
Here (M,i*g) is not complete.

Definition 3.4 (Extendible). Let M, M’ be connected. A Riemannian manifold (M, g) is extendible if there
exists an isometric open embedding

i:(M,g) = (M',g") i(M)c M

Remark 3.2. If M is compact then M is complete. If M is complete than M is non-extendible. Both converses
are not true.

1. (R™, go) is complete but not compact

2. The map
exp : C — (C\ {0}, dz? + dy?) z e

gives (C\ {0}, dz? + dy?) extendible. Hence this is incomplete. But then
(C,exp™(dz® + dy?))
is incomplete and inextendible.
Corollary 3.2. Let (M, g) be complete Riemannian manifold. Let N be a closed submanifold. Denote
1N — M as inclusion

Then
(N,i*g) is complete
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Proof. By Theorem 3.1 property (b), we need to show closed and bounded sets of N are compact. Here closed
and bounded sets are w.r.t. the distance dy given by ¢*g. But

dn(p,q) > du(p, q)
so any closed and bounded sets of N are also closed and bounded in M. So they’re compact. O
We have one criterion for complete manifolds.

Proposition 3.2. Let M and M be Riemannian manifolds and let
f:M—-M be a diffeomorphism
Let M be complete, and assume there exists a constant ¢ > 0 s.1.
[v| > c|df,(v)] YVpeM veT,M
Then M 1is complete.

Proof. Let {p,} be a Cauchy sequence in M. By Hopf-Rinow 3.1 (c), it suffices to prove p,, converges. Notice
{f(pn)}n is a sequence in M, and since M is complete, if we're able to show {f(p,)}n, is Cauchy, we have
convergence of f(p,) to some point ¢ € M. Indeed, for any p, € M, there exists totally normal neighborhood
V of p, s.t. for any p,, € V, there exists v a minimizing geodesic joining p,, and p,,, i.e.

y:[0,1] =M  ~0)=p, (1) =pnm

One has
dyr(£(p)s f(pm)) < / 0y (7 ()]
1 1 , _ 1
< [ sta= o

1
=—-d nsy Pm
- M (Prs Prm)

But {p,} is Cauchy sequence in M, hence dns(pn,pm) — 0 so {f(pn)} is a Cauchy sequence. Thus there exists
q € M s.t.

dyr(f(Pn) q) = 0

Now since f is a diffeomorphism, it has a smooth inverse, hence define p := f~!(¢) and by continuity

3.3 Examples

We discuss further examples illustrating Hopf-Rinow.

3.3.1 Rays

Definition 3.5 (Ray). A geodesic 7y : [0,00) = M in a Riemannian manifold M is a ray starting from v(0) if
it minimizes the distance between y(0) and y(s) for any s € (0,00).

Proposition 3.3. Let M be complete and non-compact. Then for any p € M, there exists a ray starting from
pin M.

Proof. L. Since M is geodesically complete, for any p € M, the exponential map exp,,(v) is defined for all
v € T, M. Since M is non-compact, there exists a sequence of points ¢, € M s.t. d(p, ¢n) — .

2. Using (f) in Hopf-Rinow 3.1, for any ¢,, € M one can pick a minimizing geodesic 7,, between p and ¢, s.t.

U(vn) = d(p; qn)

WLOG one may parametrize -, using arc-length, i.e.

Wm0)=p  w(dPgn)) = qn
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3. Now consider the family of tangent vectors {~y,,(0)} C S, M C T,M where |y, (0)| = 1 and S, M denotes the
unit sphere in 7, M. Since S, M is compact, one may extract a convergnt subsequence v,, (0) = v € S, M.
Again since M is geodesically complete, the geodesic

y:[0,00) = M 4(0)=p, A(0)=w
exists.

4. We claim that v is a ray. To see this, one needs to show 7 minimizes the distance between p and v(s) for
any s € (0,00). Now fix s, there exists k large enough s.t.

d(p, qn,) = d(p,~(s))

hence
U Ynil,) = AP, i (5)) is length minimizing
Push £ — o0, since both
T (0) = v A (s) = (s)

By continuous dependence on initial conditions

d(Vn, (5),7(s)) = 0

Hence 7, ; is length minimizing.

3.3.2 Hyperbolic Plane

Definition 3.6. A Hyperbolic Plane H = {(z,y) € R? | y > 0} is equipped with Riemannian metric

1
gi1 = g22 = — g12 =10
Y

Recall the ‘Minimizing’ characterisation for geodesics.

Proposition 3.4. If a piecewise differentiable curve 7 : [a,b] — M with parameter proportional to arc length
has length less or equal to any other piecewise differentiable curve joining y(a) and v(b), then v is a geodesic
m M.

Lemma 3.3 (Geodesics of H). Geodesics of H are either
1. Upper semi-circles
2. rays x = xqg fory >0
Proof. 1. We claim the segment
v :la,b) = H ~(t) == (0,1) a>0
is the image of a geodesic. Indeed, for any arc c: [a,b] — H s.t.
ct) = (z(t),y(t))  cla) =(0,a)  c(b) =(0,0)
One has

b de b [ da 9 dy., 1
e = [ 15 = [\ G+ G

b b
dy 1 dy
> —|—=dt > — =
_/a |dt yd - Yy )

a
Hence v minimizes arc length for piecewise differentiable curves, and using Proposition 3.4, the image of
~ is a geodesic.
2. The isometries of H are the Mébius Transforms

az+b
cz+d

2=+ 1y ad —bc=1 (32)

and it transforms the Oy axis into upper semi-circles or rays = x( for y > 0. Since isometries preserve
geodesics, these are geodesics. In fact they’re the only geodesics. Indeed, for any p € H, and any direction
in T, H, there passes either a semi-circle with center on the Oz axis or the circle degenerates to a ray
normal to Oz.

O
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Theorem 3.2. The Upper Half Plane H = Ri with the Lobatchevski metric g

1

gi1 = g22 = — g12 =0
Y

is complete

Proof. We want to make use of Hopf-Rinow 3.1 (a). We have to show the geodesic starting at the point
(0,1) € Ri is well-defined for all v € T(O’l)]RQ+ for all time t. Since we require to exist for ¢ > 0 it suffices to
take |v| = 1.

1. If v = (0,1) the geodesic is

since from Proposition 3.4

3. If v = (sin(f), — cos(f)) we make the identification y = 4y in the complex field. Then we claim

)
)

sin(§)iet — cos(

0
t) = —2
() cos(g)ze" + sin(

NI (ND

is the geodesic with origin i = (0,1) and initial velocity v = ¢ = (cos(), sin(8)).
(a) Asin (32) sinz(g) + COSQ(g) = 1 so image of v is indeed a geodesic.

(b) Compute

B sin(g)i - cos(g) B
(0 = cos(4)i + sin(%) =i=01
(¢) Compute
e 1 0. ¢ . 0. 0 sin(§)ie
Y(t) = — (cos(D)iet +sin(2))? cos(i)ze (sm(§)ze — cos(i)) + cos(Dict +sin(2)
'(0) = — ! cos o 1(sin 4 1 — cos 0 sm(g)
O = e ) T
= con(D); i ENETE (cos(g) sin(g) + icos(g)2 - cos(g) sm(g) +isin(g)2>
. 1 _ i
B Z(Cos(g)i + Sin(%))2 - cos(g)2 + 21 sin(g) cos(g) + sin(g)2
1 1

= isin(6) — cos(6) = sin(0) + i cos(6) = sin(f) — i cos(0)

Since all above ~(t) exists for all t > 0, expq 1)(v) is defined for all v € T(p,1)R3 . Hence H = R? is geodesically
complete, thus complete. O

3.3.3 Homogeneous manifold

Definition 3.7. A Riemannian manifold M is homogeneous if for any p, ¢ € M there exists an isometry of M
which takes p to q.

Proposition 3.5. Any homogeneous manifold M is complete.
Proof. By Hopf-Rinow 3.1 it suffices to show H is geodesically complete. Suppose we have a unit speed geodesic
c:la, 1) =M s.t. it is not extendiable to ¢t =1

Now for any p € M, due to local existence of geodesic, there exists another geodesic ¢ starting at p and a > 0
small s.t.
E(CQ) >a> 0
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Let’s denote )
a l—a
0 = min{—, ——
in{ 5 g }>0

Since M is homogenegous, for points p and ¢(1 — §), there exists an isometry of M that takes p to ¢(1 — ¢).
But isometry also preserves geodesics, hence our c¢s should be isometrically mapped to some geodesic of equal
length with starting point ¢(1 — §). But

) > a>20

hence
c:[1-6146)—>M is extended

But this contradicts with our assumption. Thus M is complete. O

3.4 Hadamard

Now going back to isomeric immersion.

Proposition 3.6. Let o
[ (M, g)— (M,7)
be an isometric immersion. Then f is geodesic at p € M, i.e.
B(z,y) =0 Va,yeT,M
iff for any
v:i(—ee) > M geodesic ~v0)=p
one has
1::f0'y:(—5,€)l>Mi>M is a geodesic on M

Proof. Assume f is geodesic at p € M. Suppose 7 is a geodesic in M, we want to prove v = f o~ is geodesic
in M. What is the covariant derivative of v'?

20(0) = (27)(0) + BO/(0).40)

D
= (%7’)(0) =0  since 7 is geodesic in M

(

On the converse, it suffices to show that B(x,z) = 0 for any € T, M. Let

V(t) = exp,(tz)

Then
(7)) =0
Pyw=o
B.x) = (20 - oy =0

Recall (M,g) is Riemannian manifold of dimension 7 with p € M, then there exists ¢ > 0 s.t.
exp, : B(0) c T,M — M

is a C'*° embedding. Now let
M :=@&xp,(W N B(0))

where W is a subspace of T,M of dimension n. Then M is a n-dim submanifold of M which satisfies the two
condition.

Corollary 3.3. If f: (M,g) — (M,g) is totally geodesic, i.e, f is geodesic for any p € M. Then
CXPp = mp‘VﬁTpM

where V is a neighborhood of origin of T,M on which exp,, is defined.
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Now we give a rigidity theorem.

Theorem 3.3 (Cartan-Hadamard Theorem). Let M be a complete Riemannian manifold with K (p,0) <0 for
allpe M and o C T,M 2-planes. Then for any p € M, the exponential map

exp, : T, M — M 18 a covering map
In particular, if M is simply connected, then exp,, is a diffeomorphism, and hence M is diffeomorphic to R".
We’ll prove Theorem 3.3 via two lemmas.

Definition 3.8 (Pole). Let (M,g) be a complete Riemannian manifold. We say p is a pole if the conjugate
locus C(p) = @ 1is empty, i.e.,
exp, : T, M — M

has no critical points, hence exp,, is a local diffeomorphism.

Lemma 3.4. Let (M, g) be a complete Riemannian Manifold with K (p,0) < 0 for anyp € M and 0 C T,M
2-plane. Then for any p € M, p is a pole.

Remark 3.3. Notice Lemma 3.4 does not mean if there exists p € M s.t. K(p,0) <0 for any o C T,M then
it implies p is a pole.

Proof of Lemma 3.4. See Proposition 1.5. Compute (J, J)". O
Before we deliver the second lemma we make a remark.

Remark 3.4. Notice that poles can exist in non-compact manifolds which have positive sectional curvature.
The point p = (0,0,0) of the paraboloid

S={(x,y,2) eR’ | 2 =2® +y°}
is a pole of S. On the other hand, notice the curvature is positive.

Proof. Tt suffices to prove that there is no non-trivial Jacobi Field connecting any point with p = (0,0,0) that
vanishes on both end points. Let’s parametrize S via

(cos(#), rsin(8), r?)
Then one compute the first fundamental form
g = da* + dy? + dz* = d(r cos(0))? + d(rsin(0))* 4 d(r?)?
= (cos(@)dr — rsin(#)df)? + (sin(h)dr + r cos(0)df)* + (2rdr)*
= cos(0)%dr? — 2r cos(0) sin(#)drdf + r* sin(0)?db? + sin®(0)dr? + 2r sin() cos(0)drdd + r? cos?(0)do* + 4r’dr?
= (1 + 4r%)dr? + r2d?
911 = Grr = 1 +4T2

2
922 = Gog =T

1
1 _
g 1+ 4r2
1
22 _
=

Now we compute the Christoffel symbols.

2

1
iy =5 20" (Gik + ki — Gisik)
k=1
1 1 4r
Fl — 8 =
BT 91442 T T 42
11 1
]_—‘%2 = ]_—‘%1 = 2r =

327 =
With the Christoffel symbols we solve for the geodesics. Let (r(t),0(t)) solve

d’r 4 (@)2 —
2 144r20dt’
420 2drdf

4+
az T dt
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Due to the symmetric structure one can assume 6(t) = 6 to be constant. Let’s pause here since the ODE is
difficult to solve. Instead we directly look at the Gauss curvature. Since our manifold is two dimension, one
may use
R
K — 1212 ,
g11922 — 91z

To do so, compute

0 4r 0 4r 0
VaViar ~ Ve Tamror) ~Tvar dor
I N S}
1+4r2 700" 14+4r200
0 10 10 1,10
VeVes =Vaela)="mat 7 Ga) =0
Thus
0 0.0 0
Ri212 = <R(E’ %)5, %>
0 g 0
= (Vg Voo ~VaVao =)
_t 99,
1447200’ 06
_ 4r?
14412
We proceed to compute
4r?
K: 1+4T2 = 4 >O

(14+4r2)r2 (14 4r2)2

This concludes that the curvature is positive. Now for a radial geodesic v(t) = (r(t),0), and essentially since
our manifold is 2 dimensional, the Jacobi equation writes (upon taking arc length parametrization)

J'(t)+ R, J)YJ(t)=0
J"+ K(H(@)J({t) =0

J"(t) + WJ(O =0
T+ ﬁm) By

Since ﬁ > 0 and is decreasing hence the solution do not oscillate, there is no non-trivial solutions J(t)
that vanishes at two points. O

Lemma 3.5. Let (M,g) be a complete Riemannian manifold, and let (N, h) be another Riemannian manifold
s.t. there exists

f:M—N surjective and local diffeomorphism

and assume for any p € M, for any v € T,M, we have

df ()0 = 01, (33)
Then we have f is a covering map.

Remark 3.5 (Path-lifting Property). If we have a path ¢:[0,1] — B

B

Let T : B — B be a continuous surjective map, local homeomorphism with path lifting property s.t.
1. B is locally path connected

2. B s locally simply connected
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Then T is a covering map.

Proof of Lemma 3.5. By the above fact Remark 3.5, we only need to check that f satisfies the path lifting

property. Given
c:10,1] - N

We want to prove

(a) € can be defined. If ¢ is defined in some small interval then one can extend it. In particular if
EZ[O,to]—)M 0<ty<1

s.t.
fotc=c

Then there exists a § > 0 s.t. ¢ is defined on [0, to + 0] and also satisfies

fot=c

(b) If € is now defined in
EZ[O,t0>—>M 0<ty <1

s.t.
fotc=c
Then ¢ can be extended to %
c [O,to] — M
with
fotc=c

In particular f(¢(to)) = c(to).
Proof of (a). Since f is local diffeomorphism, there exists U open neighborhood of ¢(¢) s.t.
flg U= f(U) is a diffeomorphism

Then f(U) is an open neighborhood of ¢(tg) = f(¢(tp)). Then there exists § > 0 s.t. the image of (to — d,t0+0)
through ¢ is contained in U. For t € (tg — 0,to + ¢) define

a(t) = (fly) ™ (e(®))

since f is surjective. O

Proof of (b). In this we need (33). Let {¢,} be a sequence t,,11 > t, s.t. ¢, — to. Then for any m < n.
Compute the distance between ¢(t,) and ¢(t,,,) because we want to show {¢(¢,)} is Cauchy.

_ _ _ tn |l de
daett) eltn)) < ey, ) = [ G0 e
tom (1)
(33) [in tn
< [ Ge) a1 Guen)|
tm dt c(t) t | A e(t)

a (0)

de
dt < Cltn, — tim] where C := I[réeﬁd%

c(t)
Now {¢(t,)} is Cauchy. Since M is complete, by Hopf-Rinow 3.1, ¢(t,,) converges, so there exists r € M s.t.
c(ty) = r

We define
r:=7¢(to)

It suffices to check f(¢(tp)) = ¢(tp). But using continuity of f

f(©e(to)) = fr) = f( lim ¢(tn)) = lim (f o€)(tn) = lim ¢(tn) = c(to)

n—00 n—00 n— oo
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Corollary 3.4 (Corollary of Lemma 3.5). Let (M, g) be a complete Riemannian manifold. Suppose p € M is
a pole. Then
exp, : T, M — M

is a covering map. In particular, if M is simply connected, then exp, is a diffeomorphism, and hence M is
diffeomorphic to R™.

Proof. Since p is a pole, exp,, : T, M — M is a local diffeomorphism. Since M is complete Riemannian Manifold,
by Hopf-Rinow 3.1
exp, : T, M — M is surjective

We define
gi=exp,g
to be a Riemannian metric on T, M. Then the exponential map

exp, : (T,M,g) — (M, g) is a local isometry

In particular
ldexp, )], = 1ol

so (33) is satisfied. Now we only need to check (T,M, §) is complete to apply Lemma 3.5. By Hopf-Rinow 3.1,
we show that exp map of (T,M, §) is defined everywhere.

VoveTy(T,M)=T,M v(t) = exp,(tv) VteR is a geodesic in M

and
F(t) == tv VteR is a geodesic in T, M

One define
expg : To(TyM) = T,M  expy(tv) :=F(t) =tv = exp, : To(T,M) =T,M — T,M is the identity

In particular exp, is defined everywhere at the point 0. By Hopf-Rinow 3.1 we know (7,M, §) is complete.
Hence by Lemma 3.5, exp,, is a covering map. O]

Proof of Theorem 3.3. Let (M, g) be complete Riemannian manifold with K (p,o) < 0. By Lemma 3.4 for any
p € M, pis a pole. By Corollary 3.4 we know

exp, : T, M — M

is a covering map. O
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4 Space of Constant Curvature

4.1 Theorem of Cartan on Determination of the Metric by Curvature

If two Riemannian manifolds have the same Riemannian curvature, then they have the same metric. How do we
compare two Riemannian manifolds of the same dimension? Let p € M and p € M with the same dimension.
In particular they both have tangent space T, M = TI;M = R". Then one can cook up a map i between the
tangent spaces

i:TyM — Tf,]\;[ linear isometry, i.e., sends an ONB to an ONB

There exists r > 0 s.t.
exp, : B.(0) CT,M — B.(p) C M
exp; : B, (0) C T;M — B,.(p) C M
are diffeomorphisms. Now we define
f:B.(p)C M — B.(p) c M f(q) :=eXp;oio (exp,) ' (q) f is a diffeomorphism (34)
Now for any ¢ € B, (p), there exists a unique initial velocity v € T,M s.t. ¢ can be reached via
q=exp,(fv)  £:=d(p,q)

Now let
Pyg:T,M — T,M be the parallel transport along the geodesic () := exp,(tv)

Similarly let
Pﬁ,f(q) cTyM — Tf(q)M be the parallel transport along the geodesic 7(t) := exp;(t0)
Now for any ¢ € B,.(p), define
¢q: TyM = TpyM  ¢g:= Py sy 0io(Ppg)”"  is alinear isometry (35)
Theorem 4.1 (Cartan). With the above notations, if for all ¢ € B,(p), and for all
z, Yy, v, u€TyM
one has, for (35), that Riemannian curvature agrees

R(z,y,v,u) = R(94(2), $¢(y), 64(v), dq(u))

Then f as in (34)
[+ Br(p) = By (p)

s an isometry and
dfp =1

Remark 4.1. This is why Riemannian curvature is so important.

Proof of Cartan 4.1. We already know that f is a diffecomorphism. We really need to show that for all ¢ € B,.(p)
and for every w € T, M, the norm is preserved

() 5y = Il
Observe that
dfp = d(eXpz 0io (expp)_l) = dexXpjoio d(expp)_1
=idy yyoio (idra) ' =i

Remark that even the identity is known, it doesn’t mean f is an isometry. We need to show norms are the
same. We do it through Jacobi fields. Those will allow us to use the hypothesis. We may assume p # ¢ and
w # 0. There exists unit vector v € T, M s.t.

q = exp,(fv) ¢=d(p,q) >0

There exists a unique wg € Ty, (T, M) = T, M such that

(dexp,)ew(wo) = %
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This exists since if fv < r one can find the preimage due to dexp, is a linear isomorphism. Now let
v:[0,4] = M be the geodesic s.t. ~(0)=p v(0) =¢q

Look at the Jacobi Field
J(t) := (dexpy, )t (two)

Then
J(0)=0
J(0) = (dexp,)ea(fwp) = E(dexp,)e (wo) = 5 = w
Now we write in coordinates. Let {e1,--- ,e,} be an orthonormal basis of T, M. We let
en=v=7(0)
Let {e1(¢),-- ,en(t)} be the parallel transport along the geodesic . Then Jacobi Field has local coordinates

t) = Zyi(t)ei(t) y; € C°°([0,4]; M)

Now here the Jacobi Equation is (upon contraction)

n

+ ZR(eTM €j,€En, el)y_] =0

j=1

d2yi

J"()+R(,J)Y =0
)+ R, J)y = 2

Now let
5:00,0) = M Fi=fory be geodesic so that 4(0) = f(p)=p F() = f(q)
Let {é1,--- ,&,} be ONB of T;M, and {&,(t),--- ,&,(t)} be their parallel transport along 5. Hence
€i(t) = dq(ei(t))

Now we define

J(8) = 64 (J (1)) = D wil)e(t
i=1

But this is not in principle a Jacobi Field. Here we use our assumption that two Riemannian curvatures are
the same. Hence

n
dtz § enaéjaénvéi)yj
n

d2yz‘
= 2 +ZR(en,ej,en,ei)yj

=0

Hence J(t) is Jacobi field with J(0) = 0. What about its length?

el v
Y(t)

Now J(t) is a Jacobi Field along 5(t) with
J'(0) = _wi(0)éi(0)

= Zi(yz{(o)ei) = i(wo)

J(t) = (dexpy)ti(w) (ti(wo))
J(€) = (dexpy)ei(v) © % 0 (fwo)

= (dexpg)ei(v) 010 ((dexp,)ew)” L(w) using definition of wy
(expj 01 0 exp, exp, (£v) (W)
(f)g(w)  using g = exp, (fv)
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Thus
ldfa ()l = [[T@)| = 1)1 =

O

Corollary 4.1. Let (M,g) and (M, §) be two Riemannian manifolds of dimension n, with the same constant
sectional curvature, in particular

R(:Ev Y, u, 'U) = Ko(g(l', u)g(yv U) - g(l'v U)g(ya 'LL))
Letpe M and p € M. Let {e1,--- ,en} be ONB of T,M and {é1,--- ,é,} ONB of TﬁM. Then there exists U
open neighborhood of p in M and U open neighborhood of p in M and an isometry
frU=U  fo)=p  dfple) =&

Proof. Choose ~
7 TpM — Tf(p)M i(ej) = éj

and
f=exp,oio (e)Epﬁ)_1

4.2 Conformal Deformation of the Curvature

Let (M, g) be a Riemannian manifold. Look at

Definition 4.1 (Conformal Deformation).
g=¢"yg
for some f € C°°(M) smooth function on the manifold M. This is known as a conformal change(deformation,).

We denote V as Levi-Civita connection of g and V as Levi-Civita connection of §. Using the expression for
J(VxY,Z) we get

VxY =VxY + X(f)Y + Y(f)X — g(X,Y)grad(f) where g(grad(f),Y) :=df (Y)

Proposition 4.1. Let g be a Riemannian metric on a manifold M and let g := e?f g where f € C°(M). Let V
and V denote respectively the Levi-Civita connections on (M, g) and (M,g). Then for any X, Y € X(M) one
has

VxY =VxY + X()Y + Y(f)X — g(X,Y)grad(f) where g(grad(f),Y) :=df(Y)

Proof. Let’s prove using local coordinates. Denote

Z F” 6%@

where
f‘fj = ii g'Lk‘j +gka gl] k)
k=1
n
_ ;; G ) + (i) — ()
— % Z: e g™ (2 ( Y f]g K+ e ginj + 26 aafz i + € grji — 2% c’?ai; 9ij — e2f9”'7k>

M:

of of ¢
(8 gir + B, - Gkj — 8xkgij> +T;

of | ;01
4 [ f Zk:
Ly 0 g0, 0 g, Z ”a
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Now

¢
0T a.’L‘] Z ”89&@

y 0 0 g o0
817 8wj + Z (5 T 5 Z i 8xk> Oxy

v, L ﬁi ﬁi_ A.n 9 9
B Vagi 8xj * 6:6]' ox; * ox; an 9i Zzg

af 9 N of 0 (
n 8:L‘j (r“)gcj Ox; Oz; [“)gcj dx;’ Oz,

=V.o

Hence this is true for coordinate basis. In general let

in local charts. We compute

- - 0
VXY:VZiaiaZ(ijaixj)
J
ob; 0 0
72&1‘ ;(axlax] bvar 8333))
ob; 0
:Zai Z(axiaijrijaczi

of 0 of 0 0 0
g oy Y om o, 9 ey By U >>)

i J
N, 9 of 0,990 ., 0 9
- ;az ; (vaii Uk Oz, ) +bige 8scj 8% +b; Ox; Ox; b]g(aaci’ 89@ )grad(f)))

P ) P
= V50 (ija Z Z . +Za1 f Z ]m gzaia—m,ij@)grad(f)
J i j

= VyY +Y ()X + X(f)Y - g(X, Y)grad(f)

Remark 4.2. If f is a constant, then g = kg is constant times g. In this case
VxY =VxY
R(X,Y)Z =R(X,Y)Z
R(X,Y,Z,W)=k!R(X,Y,Z,W)
Ric = Ric
S=k28
But what happens in general?

Definition 4.2 (Kulkarni-Nomizu Product). For S, T symmetric 2-tensors on M, (S oT) gives a 4-tensor on
M. We define their Kulkarni-Nomizu Product as

(SoT)X,)Y,Z,W)=8(X,Z2)T(Y, W)+ SY,WT(X,Z)-S(X,WT(Y,Z) - SY,2)T(X,W)
Proposition 4.2.

(SoTHX,)Y,Z,W)=—(SoT)Y,X,Z W) anti-symmetric in first two components
—(SoT)(X,Y,W,Z) anti-symmetric in second two components
=(SoT)(Z,W,X,Y) symmetric w.r.t. the two sets of components
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4.2.1 Riemannian Curvature Deformation
Let R denote curvature tensor of g and R denote curvature tensor of §.
Theorem 4.2. If (M,g) has constant sectional curvature k, the Riemannian Curvature writes

1
R=-
5K9°9

Under conformal deformation, we have

1
R= e (R~ (Hess(f)) o g+ (df @ df) o g — Sldf*g 0 9)
where Hess(f) = 327", f.ujdwidzj, fi; is covariant derivative w.r.t. g. And

df* =g fif
0,J

Example 4.1 (Hyperbolic Space: Upper Half Space Model).
Definition 4.3 (Upper Half Hyperbolic Space). We take

Hn = {(yh >yn) eRn | Yn >O}

and metric ) )
. dyi+---dy
§i= 15— =My
Yn

where go = dy3 + - - - dy? is the Buclidean metric. Here

1
2 —

= y72 = f: _log(yn)

We compute

dyn
df = d(—log(yn)) = — "
2
n Yn
1
df|* = —

Then we apply the formula (37)
2

o 1 dy 11
R=— R—dy2090+"090—googo>
y%( yr " Y2 2y;

1 1 1

= _i(ﬁg()) © (ﬁgo)
1.

= ——Qgo
29 g

Hence (H",G) has constant sectional curvature —1 using (36).
Example 4.2 (Hyperbolic Space: Unit Disk Model).
Definition 4.4 (Unit Disk Hyperbolic Space). We take

D" :={(u1, - ,up) ER" | |u| <1}

and metric

. 4
9= ey e+ ) = g,
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where

g():du%+"'+dui

4
2f _
C T a—lapy
2
f_
€ = T =5y
(1 —|aP)

f=1log2 ~log(1 - [a]*)

We compute

72’[1,1' QUZ
fi= 1T T 1o jap
Zﬁ;l QUZd’Uq
df = Sa=L 0
F= = e

du;w;du;du;
df @ df =y TS
Fod =2 0 ey
alaf?
dffp = —L__
9" = T ey

fir = 26ij(1 — |’l_j|2) + 4uiuj . 2(5@' 4uiuj
v (1 —a]?)? Cl-Jar (1 a)?
ess(f) = - ; =
1 — a]? (1 —[a]?)?
So we apply (37)
. du? 45 uwiujdugdug dusu;duidu; 1 4)a)?
R=¢* R—(2Z — A g0+ () " =55) 090 — 5 —=533390 © 90
1 — |al? (1 —af?)? ; (1 —[a]?)? 2 (1 —|af?)?
du? 2|
_ 22f -9 Zz % _
‘ ( R CI I ER g°)
1 o ~
= =2 e (1= 1A +1a) 9o 0 99
2 of

IERCETRE

L of 2f : 2 L oy
= —5(6 go) o (€*/ go) using m = 5e

1.
= ——=(go

29 g

Thus (D™, g) has constant sectional curvature —1.
One look at a non-hyperbolic example.
Example 4.3. Given any positive constant K > 0, define a Riemannian metric gg on R™ by

4305, duf
JKk = N2
(1+ Klz[?)

Then

1. (R™, gk) has constant sectional curvature K.

Proof. Let f € C*(M) s.t.
42?:1 dx? of
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where gy denotes the flat metric. Hence

We compute

Now we apply (37) so that

n 2 2 n . . .
Ra — o2 (R B (72]( S de? AK Zm.:l zxdede;

fi =

df =

df ® df =
|df* =

fij =

Hess(f) = —

n
go = Z da?
i=1

2f _ 4
(1+ Klz[?)?
ef = 72
1+ K|z]?

f =log2 —log(l + K|z|?)

2K x;
14 Klxf?
S 2K xd;
1+ Klz2
i1 4Kz xydaid
(1+ Klz[?)?
4K?|x|?
(1+ Klz[?)?
—2K0,(1+ Klaf?) + 4K a; _ 2Kdy
(1+ K|z|?)2 1+ K|x|?
2K Y1 | da? 4K wizjdade;

i i,j=1
1+ Klz|? (1+ K|x|?)?

4K2I1‘l’j
(1+ Klz[?)?

ZZj:l 4K2(Eil'jdl'idl'j

3

1+ K|of? QrERpE e AT RLp)
2K Y da? 2K2|z|?
= 2 2 °90— | ‘2 290 ° 9o
1+ K|z| (1+ Klz[?)
(@ Kt KR KD e o
1 4
= K— %
2" (T Kap)2 009
1
- §K(€2f90) o (e* go)
1
= §K9K °gK
Thus constant sectional curvature equals K > 0 from (36).
2. (R™, gk) is not complete.
Proof. Consider the radial path
~(t) == tv where v € R" and |v] =1 Vt>0

Fix any R > 0, we compute the length

£y

R
o) = [ VoG OO
0
R
:/ VK, (0, 0) dt
0
o \ (1+Kt?)?
R
:/——i—ﬁ
o 1+ Kt?
2
= — arctan(VKR)

VK
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Now
2 7 T

VE2 VR

so we conclude the radial path has finite length. Thus consider the sequence

Jim ﬁ(vl[o R) =

Ty = NU

we observe

m 2
dK('rnvxm):/ mdt

2
\/—? arctan(vEKm) — \/}?

as n, m — oo hence z,, is a Cauchy sequence. However this sequence diverges in (R™, go), and in particular,
since length of the radial path is finite, the sequence z,, does not converge to a point in (R", gx). O

arctan(VEKn) —

4.2.2 Ricci Curvature Deformation

Let Ric be Ricci Curvature of g and Ric be Ricci of §. Then

(n — DRic(X,Y) = gF*R(X, 0 Yi):e*Qfg’“R(X,i,Y, 0

"oxk Oz oz}, 6704) (38)

In general if S is a symmetric 2-tensor

0 o
M(Sog)(X, 7oV 3y = 5, Y)g" g0k, 0¢) + g™ S (0, 00)g(X,Y) — g**S(X,04)g(Y, 9¢) — " S(Y, 0r) (X, O,

=nS(X,Y)+Tr(9)g(X,Y) - S(X,Y) - S(X,Y)
=n-2)SX,Y)+Tr(9g(X,Y) since g*g(Y,0,) = Y*
Therefore writing
R=e(R+Uog)  where U =df ® df — Hess(f) — %|df|29
Then
(n — 1)Ric = e~ 2/ g*e?/ (R(X,04,Y,0p) + (U 0 9)(X, 0k, Y, 8y))
=(n—1DRic(X,Y)+ (n —2)U(X,Y) + Tr(U)g(X, Y)
. n
= (n~ DRiCc(X,Y) + (n — 2)(df © df — Hess(f) — 5]dfg) (X, ¥) + (i — AF — 2|af P)g(X, V)
notice 1
n
—§(n—2)—|—1—§ =-n+2=2-n
Thus we havee formula

- - A
Ric = Ric + % (df ® df — Hess(f) — |df|2g) - ni_flg (39)

4.2.3 Scalar Curvature Deformation

We write

- - A
nS = ngRicu =e 2f ke (Rlcu + 7(df ® df — Hess(f) — |df|2g)k4 - —fl g;d)

_ —2f n- 2 _ _ 2y n
) (nS+n_1(ldf| Af — nldfP) Afn_1>
= e 2nS — (n—2)|df|* — 2Af since —n+2—n=—-2n+2

Now we have formula

S =e2f (S 2 - 2Af> (40)
n n

56



Notice this is Elliptic Problem if we want to give conditions on S. We further define for n > 3

g:un—2g
n—
1 =
ogu 7 f
2
S
2 du
T n—-2u
4 |dul?
df|? =
] (n—2)2 wu
2 U4
fﬂ_n—?u
fii = 2 (u;ij_u;iu;j>
W —2\ u2
2 Agu  |dul?
Agf_n—2< u u?

Hence

iy . _ 2 2
S:u_"—?(S—n 2 4 jdu* 2 2 (Agu_|du| ))

n n—22 u nn—-2\ u u?

_ 4 4 Agu
= (S‘nmm u>

we derived the Yamabe Equation

n+2 ~ 4
2S5 _9 A u=0 41
u u+ D) qU (41)
We denote scal = n(n — 1)S = ¢g**¢9*R; ;1. Then
n+2 1 ~ 1
= 1— Wt —— Aju=0
U n(nil)sca n(nfl)scau+n(nf2) gl
4(n—1 ~  n
%Agu — scalu + scalu =% =0 (42)

Proposition 4.3 (Yamabe Conjecture). Let (M, g) be a compact Riemannian manifold of dimension n > 3.
Then there exists a metric g that is conformal to g, i.e.,

g=¢€yg for some f € C*°(M)
and it has constant scalar curvature. In particular

4(n—1)

5 Agufscalu+C’u%2 =0 forC e R
n—

Remark 4.3. In n = 2, the uniformization theorem says that any compact manifold (M, g) is conformal to one
that is constant sectional curvature.

Proof of Yamabe Conjecture 4.3. Consider the Einstein-Hilbert Action.

/ Rgydvol,
M

and the normalized Einstein-Hilbert Action

o f u Bgdvoly
A n—22

vol(M, g) =
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so that
ENg)=E(g) VAER

The critical points of Einstein-Hilbert Action are Einstein manifolds, i.e.
Ric(g) = Ag
We define the Yamabe Invariant
Y (M, g) :=inf{€(g) | g conformal to g} = inf{E(uﬁg) |ue C®(M), u>0}
Theorem 4.3 (Aubin). For n = dim M
Y (M, g) <Y(S", gean)

One needs three theorems.

Theorem 4.4 (1976 Yamabe-Trudinger-Aubin). If Y(M,g) < Y(S™, gean) for n = dim M, then the Yamabe
Conjecture 4.3 holds.

Theorem 4.5 (Aubin). If (M,g) is of dimension > 6 and not locally conformally flat. Then Y (M,g) <
Y(Snvgcan) fOT n=dmM.

Theorem 4.6 (1984 Schoen). If (M, g) has dimension 3,4,5 or (M, g) is locally conformally flat, thenY (M, g) <
Y (S™, gean) unless (M, g) is conformal to (S™, gean)-

Combining above, the Yamabe Conjecture is proved. O

4.3 Geodesics of Hyperbolic Space
Recall

Definition 4.5 (Unit Disc Model). (D™, h)

4570 du?
D" = R™ 1 hi= ==
fue R |u] <1} ST
Definition 4.6 (Upper Half Space Model). (H",g)
n n im1 y?
H*:={y e R" |y, > 0} gizylz

One needs the following lemma to show (D™, h) is complete.

Lemma 4.1. Let (M,g) be a Riemannian manifold and let o : M — M be an isometry. Denote

M :={xeM|o(x)=uxa} as the set of fized points of o
Suppose M? is non-empty and is a submanifold of M. Then M€ is a totally geodesic submanifold of M.
Proof. Since M? # @, there exists p € M?. Due to local existence, for given v € T, M7, there exists € > 0 s.t.

v:[0,e) > M7 4(0)=p (0)=v

is geodesic in M. Since o(z) = z, and using that o is an isometry

oov(0)=0o(p)=p  (007)(0)=doyov(0) =dop(v) =v
and thus by uniqueness of geodeiscs, o fixes geodesics. Hence

coy=vy = yCM°

Thus « is a geodesic in M. Hence any geodesic in M starting in p € M7, v € T,M? remains a geodesic in
M?. This is equivalent to say M7 is a totally geodesic submanifold of M. O

Proposition 4.4. (D™ h) is complete.
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Proof. By Hopf-Rinow 3.1, it suffices to show that exp, is defined on the whole tangent space of T, D™. Note
h(0) =4 duf
i=1

Now we simplify it further by rotating. Given initial velocity at 0. For any v € Ty D™ unit length, there exists
A€ O(n) s.t.

0,---,0) and A:D" — D" for A € O(n) is an isometry

It suffices to show that the geodesic v with v(0) = 0 and v/(0) = (3,0, -- - ,0) is defined for all times. This is to
say

0

7(0) = % Ouy |,
Consider
c:D" — D" (U1, yup) = (U, —u2, —ug, -+, —Up) o = diag(-1,1,1,--- ,1) € O(n) an isometry of D"
Now the fixed points of o are

(D™)° = {(u1,0,---,0) € D" | u; € [-1,1]}
Since (D™)7 is a totally geodesic submanifold. We need to prove that the geodesic lives forever. Denote

B:(-1,1) - D" t— (t,0,---,0)

This is a curve § with the same image as a geodesic.

To reparametrize it in arc length

to , to 2 to 1 1 to
tg) = t)| dt = ——dt = —— + —— | dt =log(l+1t)—log(l—t
stto) = [ ola= [ 2= [T (e 1 ) de= e+ 0 - togt1 - o)

1++19
=1
og(1— to)
es(to) — L+t
11—t
es(to) _ 1
to= es(to) +1
es® 41 s(t) s
t= m = tanh(T) = tanh(§)
Now )
’YR—>Dn S'_}(tvov70):(ta’nh(%)50730) ’Y(O):O 7/(0):(530750)
Hence the Disc Model is complete. O

Remark 4.4. In general,

Q QY

NI
o o

n n a
expg : ToD" — D Zaia—w — {tanh(|c_i|

Now we want to find geodesics on H" where v(0) = p and +/(0) = v. We need reduction to 2-dim. For
7= (£t) € R x R we want to define

bap(&,t) = (AE+Db,1) AeO(n—-1), beR"! is an isometry

We may assume p = (0,---,0,y) and ¥ = (0,---,0,a,b). Now

(=I5 0
7= 0 1
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The fixed points are
22 da? + dy?
b) y2

(Hn)[r:{(ov"'»Oaavb)eHn}g( )

But for the H? the isometries are given by
PSL(2,R) U oPSL(2, R)
where

PSL(2,R) = {(‘C‘ Z) € My(R) | ad — be = 1}/{+ (é (1))}

and
o:H? — H? (x,y) — (—z,y)

4.4 Space Forms

Definition 4.7 (Space Form). A Space form is a connected complete Riemannian Manifold with constant
sectional curvature.

Theorem 4.7. Let (M™,g) be a Space Form of Dimension n. Let (]\:/[7@) be its universal cover, i.e., (M, §) is
simply connected, complete with constant sectional curvature. Then (M, g) is isometric either to (up to rescaling
Koy = &K,

1. (H",g) with K = —1
2. (R", go) with K =0
3. (S™, gean) with K = 1.

Proof. 1. Case K = —1,0. Let

_H K=-1
A”'_{R” K=0

Given two exponential maps
exp; :TﬁM — M
exp, ‘ToA — A,

Let any p € M, and any point p € A,,, define any linear isometry
i: TsM — ToA

The same setup as Cartan’s Theorem. Since K < 0, by Hadamard Theorem 3.3, exp; and exp, are
diffeomorphisms. Since K is constant sectional curvature, by Cartan’s Theorem 4.1

J =exp,oio exp;1
is an isometry.
2. Case K = 1. Again take any p € M, p € S” linear isometry. One has similar diagram
exp, T,S" — "
i T,S™ — TyM
exp; :T,;]\Zf - M
Then we define
fp = (expy) 0i o (exp,) ™! : 8"\ {—p} - M
Since K is constant, f is a local isometry. Let’s take another p’ € S™ \ {#p}. Then define

i = dfp/ : Tp/Sn — Tf(p/)M
which is another linear isometry. Denote p’ := f(p’). Let’s define another f’ s.t.
fh=(expy)oio (exp, )~ S"\{-p'} — M

This is another local isometry. Notice

o) =) =r
dfy = dfl, =i

One has lemma.
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Lemma 4.2. If given two Riemannian Manifolds (M, g), (N,h) where M connected, and f1, fo
f17 f2 : (Mag) - (th)
smooth maps, and local isometires. Also assume there exists p € M s.t.

f1(p) = f2(p)
(dfl)p = (dfz)p : TpM — TqN

Then fl = f2.

Proof. Take the set
A:={qe M| fi(q) = f2(q), (df1)q = (df2)q} C M

Notice

(a) A # & because p € A.
(b) A is closed by definition.

Now for any g € A, there exists r > 0 s.t.
(a) the exponential map

exp, :B.(0) C TyM — B.(q) C M is a diffeomorphism

(b) f1, fo maps isometrically B,.(q) to B,.(q) where

Now

expg o(dfi)q = f1oexp,
expg o(df2)q = fa o exp,
(df1)q = (df2)q =1
So we have diagram that commutes
f1 =exp;oio (equ)_1 =fo on B.(q)
Thus B,(q) C A and so A is open. O
Via Lemma 4.2 3
f=1:8"\{-p—p} > M
How do we put the points back? Define

_[f@) zes\{-p)
o= {10 s

Then clearly h is a local isometry. Now h is surjective, h(S™) is closed, nonempty, and also open by

completeness of M. Thus h(S™) = M. Hence h is an isometry using Lemma 3.5.
O

Now by the Theorem, (M", g) complete with constant sectional curvature either 0, £1. Then (M, g) is isometric
to (M/T,G) where M is either H", R™ or S™, and T' is a subgroup of discrete isometries acting in a fully
discontinuous way. ¢ is the only metric s.t.

(M,§) — (M/T,§) is a local isometry

Recall that
Isom(H",g) = O(n,1)

since one can realize (H", g) as a submanifold of (R™!, —dz2 + dz? + - - - dx2). And

Isom(R™, go) 2 O(n) xR* x> Az +b
Isom(S"™, gean) = O(n + 1)
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Proposition 4.5. M"™ complete Riemannian manifold with K = +1, n = 2m. Then M" is isometric to S™ or
RP™ =S"/{+£1}.

Proof. M =2 M/T'=8"/T for T C O(n+ 1) = O(2m + 1) discrete subgroup. Let v € T' be its eigenvalue
{em® et .. om0k ek 1100 1,1, —1} 2k +7r+s=2m
and that dety = (—1)*.
1. If r > 0 then there exists © € S™ s.t. v(z) = = so upon free group action, v = id. Then M = S".
2. If r = 0, 72 has eigenvalues
{6—21‘91,621'917“. ,e—2i9k762i0k,17 1,--- 71}

Thus by first case, ¥2 = id so eigenvalues {—1,---,—1} and v = —id. Thus M = S"\ {£1}.

Remark 4.5. If n is odd, there are some more possibilities, For example S3 \ Zq lens space has K = 1.

Example 4.4 (Lens Space). We identify R* with C? via

(21,22, 23,24) — (21 + 122, T3 + iT4)

Let
S3 .= {(21,22) € C? | |2:1|2 + |zz\2 =1}

and consider

2mi 2mwir

h:S%— g3 h(z1,22) == (e ¢ z1,€ ¢ z3) V (21,22) € 83

where ¢ and r are relatively prime integers for ¢ > 2. Then
G= {Id7 h’a h27 e 7h£1*1}

is a group of isometries of the sphere S° with the usual metric, which operates in a totally discontinuous manner.
The manifold (S3/G) is called a lens space.

Proof. 1. Our first claim is that G forms a cyclic-g group. Indeed, since h%(z1,22) = (€*™z,€2™"2;) =
2mwirk

(21, 22), the order of h divides ¢q. Because ged(g,r) = 1, the smallest k for which e«
Thus, h has order ¢, and G = Z/qZ.

=1lisk =gq.

2. Next we see each element of G is an isometry on S2. The standard metric on S® C C2 is induced by the
Hermitian inner product on C2. For h* € G

k 2mwik 2mirk
h*(z1, 22) = (e T z1,e 9 2.
. . . 2mik . .
The map h* is a unitary transformation because |e s« | = 1. Unitary transformations preserve the

Hermitian inner product and hence the metric on S3.

3. Finally we verify that the group G acts properly discontinuously on S®. To show the action is properly
discontinuous:

(a) To see freeness, suppose h* fixes a point (21,22). Then:

2mik 2mwirk
e 1 z1=2z and e 9 z9 = z9.

If 21 # 0, then e =1 = k=0 mod q. Similarly, if z5 # 0, k =0 mod g. Since ged(q,r) =1,
the only solution is & = 0, so the action is free.

(b) For a finite group, proper discontinuity follows automatically since every point p € S3 has a neigh-
borhood U such that h¥(U) N U = () for all A* # Id.

O
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4.5 Conformal Maps

Definition 4.8. Let V, W be finite dimensional vector spaces equipped with an inner product. We say that a
linear map L : V — W is a linear conformal map if

1. L is a linear isomorphism

2. and the angles are preserved, i.e.

(L(v), Lw2))w (o1, v2)v o
LonwiLe)lw ~ Jolvioly  © 0w vz € VA0

(
i.e., cos(angle between L(v1) and L(vg)) = cos(angle between v1 and vs).
Lemma 4.3. Let L:V — W be a linear isomorphism. Then the followings are equivalent
1. L is a conformal map.
2. There exists A € Ry s.t. |L(v)|w = Alv|y for anyv e V.
8. There exists Ay s.t. (L(v), L(w))w = X(v,w)y for any v, w € V.

Definition 4.9 (Conformal Map). Let (M, g), (N, h) be two Riemannian manifolds. A C* function f : M — N
map is conformal w.r.t. g and h if for any p € M

dfy - TyM = Ty N
s a linear conformal map.

Remark 4.6. By Lemma 4.3, f is a conformal map iff
f s a local diffeomorphism
fh=x2g
Here
A: M — (0,00)
C* function is called the conformal factor.

Remark 4.7. A local Isometry is a conformal map with A = 1. In particular,

ffh=yg = f*h=X2g f— unless n = 1

{local isometry = conformal map = local diffeomorphism

Example 4.5. 1. Dilations.
f:R" > R" T Ax A>0

Then
frg0 = fr(dat +---daj) = N(daf + - + da}) = Ngo

and for any x € R™
dfy : R" - R"

is represented by Aly. f is an orientation-preserving conformal map of R™.

2. Inversion.
fiR"\{zo} = R" \{zo}  [f(2) — o] [z —m0[=1

where in particular
1 T — T

f(z) =20 =

|z = ol [ — o

Here |§:§3| gives the direction of ¥ — xy and ﬁ gives the length. Rewriting gives

- Tr — X
flw) =20+ |z — @ol?
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Now for any v € T,(R™\ {0}) = T,R™ =2 R"

v|z — 20)? — (7 — 20)2(v, 2 — 70)

(dfz)(v) = PR
B 1 ’U—2<U’x_x0>x—m
o — a2 < |z — 202 ( 0)> (43)

Taking the square

1 4{v,x — xq) 4(v,x — x0)?
|df(v)[? = [z — a0t <”|2 - _70@@ — o) + _70|T’ — @ol?

1

_ 2
n |z — zo|* vl

Hence f is a conformal map with

. 1
790 = mgo

From the formula of inversion (43),

(a) if (v,x — x9) =0 then

1
dfz(v) = EEENEk
(b) If v e R(x — xg) in the span, say v = &(x — xo) then
_ 1 2(§(x — x0), — @) (T —20) | _ T—xo 1
00 = = (e =) o oP = mP T T mpe”

So df, : R™ — R" is represented by

1
| — ao|?

o O O
o o= O
— o O O

Hence f is an orientation reversing conformal map.

Theorem 4.8 (Liouville). Let f : U C R™ — R™ be a conformal map with respect to go, n > 3. Let U be
connected. Then f is the reflection to U of F where F is a composition of isometries, dilation and inversion,
at most one of each.

4.5.1 Examples in Lower Dimensions

n=1

Let
fi(ab) = (R da?) x> f(x)

It is a diffeomorphism, hence f’(z) # 0. Then
g0 = f*(de?) = (f'(@))*da®

is a conformal map with conformal factor f’(x). In particular, a local diffeomorphism is always a conformal
map in dimension 1.

Let
frUCR? SR (2,9) = f(z,y) = (u(z,y),v(z,y))

Now the differential
df(x’y) : Rz — RQ

ou Ou
Ve = <82(x, y) Go(.y)

is represented by metric

If f is conformal, then necessarily det(df(,,)) # 0. We have two cases
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a

(a) If det(df(5,,)) > 0 we have model (b

—b L . .
a ) Then f is orientation preserving.

_ [Ux Uy
daf, = (% Uy)

If we satisfy the Cauchy-Riemann Equations

Uy = Uy

Vg = —Uy

Then det(df(,,,)) > 0. This means if we construct w(z) = w(x + iy) = u(z,y) + iv(x,y), then

2w—O here 2 1 2—1—22
7 A 9z 2\oz oy

This corresponds to f being holomorphic. It doesn’t have to be composition of isometries, dilations
or inversions.

(b) If det(df(s,)) < 0 we have model (Z ba). Then f is orientation reversing. We want
Uy = —y
Uy = Uy

This corresponds to
of 0 b 0 170 .0
= = where — === —i=—
0z 0z 2\ 0x dy
hence f is anti-holomorphic.
However the group generated by isometries, dilations and inversions in R? is given by

PSL(2,C) U oPSL(2,C)

where

PSL(Q,C):{(Z Z) € Ms(C) | ad —be = 1} /{+ ((1) (1))} szzis

and
o(z):=-2

In complex coordinates,

(a) Isometries of R? are
Rx O(2) =R x SO(2) |_|R x O(2) {2z 2 4+ 20} U{z > €2 + 35}
(b) Dilations are of the form z — Az for A >0

(¢) Inversion w.r.t. zyp € C are of the form

Z— 20
220t 5 =20+ ———
|z — zo] Z—Zo

Theorem 4.9. The isometries of H™ are restrictions to H™ C R™ of the conformal transformations of R™ that

take H™ into itself for n > 2.

4.6 Riemannian Submersion and Horizontal Lift

Definition 4.10. We recall some definitions.

1. A differentiable mapping
—n+k

f:M - M"
is a submersion if f is surjective, and for all p € M the differential

has rank n.
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2. In this case, for allp € M, the fiber
f_l(p) =1I
is a submanifold of M and a tangent vector of M tangent to some F,, p € M is called a vertical vector of

the submersion.

3. If in addition, M and M have Riemannian metrics, the submersion f is Riemannian if for all p € M,
the differential o
dfp : TyM — Ty M

preserves lengths of vectors orthogonal to Fy,.

Definition 4.11 (Horizontal Lift). Let
f:M—M
be a Riemannian submersion.
1. A vector T € TzM is horizontal if it is orthogonal to the fiber. The tangent space hence admits a decom-
position o o o
ToM = (TM)" © (TyM)®

where (TzM)" denotes the subspace of horizontal vectors and (TzM)® denotes the subspace of vertical
vectors.

2. If X € X(M), the horizontal lift X of X is the horizontal field defined by
dfp(X(p)) = X(f(p)) VpeM
Proposition 4.6. 1. The horizontal lift X is differentiable.

Proof. (a) Since f is a submersion, by the Rank Theorem, for any p € M, there exist neighborhoods
UC Mofpand V C M of f(p) such that f|yy : U — V is locally given by projection 7 : R*** — R",
ie.,

7T(.’E1, cees Ty Tpdly - - - 7.’L'n+k) = (.’171, (R 7(En)-
In these coordinates, the vertical subspace (T M)? corresponds to ker dmr, and the horizontal subspace
(T;M)" is the orthogonal complement.

(b) Let X € X(M) be a smooth vector field. Locally on V', X can be written as

X =

%

- 0
-1 ) 0z;

where a; € C°°(V). The horizontal lift X in U C M is then

=S (a0 )

o0x;
i=1 v

since the horizontal vectors in U are spanned by 8%1, ceey %. Because a; o f are smooth on U and
)

the basis vectors 77— are smooth, X is smooth on U.
(¢) The horizontal distribution is globally defined and smooth because:

o The vertical distribution ker df is a smooth subbundle of TM.

e The horizontal distribution (7M)", being its orthogonal complement with respect to the Rie-
mannian metric, is also a smooth subbundle.

Thus, the horizontal lift X is globally smooth, as its local coordinate representations agree on overlaps
due to the smoothness of the metric and df. Since X is smooth in local coordinates and the horizontal
distribution is globally smooth, X is differentiable everywhere on M.

O

2. Let V and V be the Riemannian connections of M and M respectively. Then

1
ViV =VxV +3[X.Y]" VX, Y eX(M)

where Z* is the vertical component of Z.



Proof. (a) Let X, Y, Z € X(M) and let T € X(M) be a vertical field. Then for any p € M

isometry

(X®),T@) =" (dfs(X D)), dfs(T(P))) "2 (X (f(7)),0) = 0
since T is vertical (dfz(T) = 0). Similarly, (Y,T) = (Z,T) = 0.

(b) Also since f is a Riemannian submersion and using horizontal lift

X(Y,Z) =X (df(Y),df (2))) = X ({Y.Z) o f)
=df(X) (Y, 2)) = X{Y, Z)
(c) For any T € X(M) vertical field, using horizontal lifts are f-related
df[X,T] = [df (X),df (T)] = [X,0] = 0
Also using definition of f-related

[X7Y] = [de,df?] :df[X7 ]

(d) For any T € X(M) vertical field, since X and Y are both horizontal

T<Y, ?) = <VTY, ?) + <Y7 VT?> =0
(e) Thus concluding from above
([X.Y],2) = (df[X,Y],df Z) = ([X,Y], Z)
<[Ya T]v?> =0

2VxY,Z) = XY, 2) +Y(X,Z) - Z(X,Y) +([X,Y], Z) + ([, X],Y) + ([Z,Y], X)
=X, Z)+Y(X,Z2) - Z(X,Y) +([X,Y],2) +([Z, X].Y) +([Z,Y], X)
=2(VxY,2)

2VLY,T) = X(V,T) + V(X T) - T(X. V) + (X, V), T) + (T, X), Y} + (.7, %)

(g) Thus

3. Observe that [X,Y]"(p) depends only on X (p) and Y (p).

Proof. Since [X,Y]" is the vertical component, it suffices to consider how it inner products with T' € X(M).
From (b) we deduce

XV = (V¥ T) - (Vx¥.7)
= <[777]7T> + <77 7T> - <VXY7T>
= ([X.V].7) + L (¥, X1, T) — (V¥ T)
= (X, 7),7)+ (V. X, 7)

Using that VxY is the horizontal lift, hence lies in the horizontal field. Yet th RHS is now only dependent
on X (p) and Y(p). O

Proposition 4.7 (Curvature of Riemannian Submersion). Let f : M — M be a Riemannian Submersion. Let

X, Y, Z, We X(M) and X,Y,Z,W be there horizontal lifts. Let R and R be the curvature tensors on M and
M respectively.

67



On the other hand for any 7' € X(M) vertical

= (Ve ZW) = (X.VP, [2,W) - 57, 2), [, 7]")
= (Vixn1ZW) - (X, ¥T",[Z,7)
= (Vix 12, W) — 5 {[X, V)", [Z,77]")

= (VU2 W) - (X, 27, [V, W) - (VxVy 2, 17)
+ {28 K P) + (Vi 2,W) — 3 (X VP, [Z.7))
= (ROX,Y)Z,W) — (X200 7.1 + (V.2 [, W) - (2,07, (X, 7))
O

2. For o the plane generated by the orthonormal vectors X, Y € X(M) and & the plane generated by X, Y,
we have 5
K(o) = K@)+ |[X,Y]"]* > K(7) (44)

Proof. Since X and Y are orthonormal and using f is isometry, X and Y are orthonormal
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Example 4.6 (Curvature of the Complex Projective Space). Define a Riemannian metric on C"T1\ {0} in
the following way: If Z € C"1\ {0} and V, W € T(C"*1\ {0})

_ Real(V, W)
VWiz==77

The metric (-,-) restricted to S*»*1 C C"*1\ {0} coincides with the metric induced from R?"*2. Notice for all

0<6<2r
ei@ . 82n+1 N S2n+1

is an isometry, hence it is possible to define a Riemannian metric on P"(C) s.t. the submersion f is Riemannian.
Show that in this metric, the sectional curvature of P™(C) is given by

K(o) =1+ 3cos?*(p)
where o is generated by the orthonormal pair X, Y
cos(p) = (X,iY)
and X, Y are the horizontal lifts of X and Y. In particular,
1< K(o)<4
Proof. Let Z be the position vector describing S?"*+1. Since

d .
—|  z=iz
ao|,_,
We know iZ € Tz(S*"*1) and is vertical. Now let V be the Riemannian connection of R?"*2 =2 C"*+! and let
X, Y € X(P*(C)). Choose
a:(—e¢e) — §¥H

s.t. -
a(0)=2Z  d0)=X
Then
) d
(VxiZ)z = —| iZoa(t)
i P

= S e = i) = iX

= t:Oza =ia'(0) =1
Thus

Notice, since iZ spans the vertical subspace at Z, the vertical component [X,Y]? must be proportional to iZ.
Assume

(X, Y]" =ciZ
Then
(X,Y),iZ) = c|iZ|* = 2cos(p)
¢ =2cos(p)
Thus

I[X,Y]|* = (2cos(p)iZ, 2 cos(p)iZ) = 4cos?(p)
Also notice the sphere S*"! has constant sectional curvature 1. Now using (44)
— 3= =
K(o) = K(@) + 7|[X,Y]"]"
=1+ 3cos?(p)
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5 Variations of Energy

5.1 Minimizing Arc Length
Let (M, g) be a Riemannian manifold, p, ¢ € M. Denote
Q4 :={c:1]0,1] = M | piecewise C*°, ¢(0) = p and ¢(1) = ¢}

Definition 5.1 (Arc-length Functional). We define the Arc-length Functional

1
L0, =R ¢ L() ::/ /(1) dt
0

1. Observe that we have lower bound
d(p,q) = inf L(c)

c€EQy 4

2. We want to find 6 € Q,, , with
L(6) < L(e)

for any c € €, 4.

3. However ¢ is not unique, because up to reparametrization

doq¢

for
¢:[0,1] — [0,1]

has the same length.

Observe by Cauchy-Schwarz

L(c)? = (/01 c’(t)|dt>2 < /01 1dt/01 |/ (t)*dt = /01 |/ (t)|* dt

Notice = iff |¢/(¢)| = constant.

Definition 5.2 (Energy Functional).
1
E:Q,,—R ¢~ E):= / |/ (t)|2dt
0

1. Now suppose we have a minimizer § s.t.
L(%) < L(c) Vee,,
Then there exists only one reparametrization ¢ s.t. 6 = § o ¢ has constant velocity |c§’ (t)| = constant.

2. Then for any c € Q, , . _
E(e) > L(c)? > L(6)? = L()? = E()

Now 4 is unique and a minimizer of the energy functional.
Now given c € €, , we want to compute the differential of the energy functional.
dE; : Ty g — R
We need to discuss variations.
Definition 5.3 (Variation (formal)). Let
fi(—e,e) > Qg s fs
be a curve in the space of curves Q, ; s.t. fo =c. f is called a proper variation of c.

1. Then we define
d

ds s=0

This is vector field along ¢, called the variation field of f. Notice V(0) = V(1) = 0.

V(t): fs(t) € TeQyp 4
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2. Now we define the first variation of energy as

aB.(v) = &

AR

s=0

3. If ¢ is a critical point of dE,, i.e.
dE.(V) =0 vV eT.,,
Then we define the second variation of energy as

2
d*E.(V,V) = @

5| B

s=0

In fact we give a precise definition

Definition 5.4 (Variation). Let ¢: [0,a] = M, a > 0 be piecewise C* curve. A variation of ¢ is a continuous
map
f:(*&‘?E)X[O,a]*}M (S,t)Hf(S,t)
s.1.
1. f(0,t) = c(t).
2. There exists 0 =ty <t1 < -+ <ty <tpy1 =a s.l.
f|(—€78)><[tn,tn+1]
is smooth.
We also define the following
1. We say that f is proper if
f(s,0) = ¢(0) and f(s,a) =c(a) Vs e (—e,¢)
2. Given a curve
fs:10,a] = M s fs(t) == f(s,1)
We denote
gt : (—e,e) > M s+ gi(s) == f(s,t)

as the transverse curve.

3. We define

as a variation field. f proper implies V(0) = V(a) = 0.
Conversely we have
Proposition 5.1 (Construction of Variation). Let
c:[0,al > M
be piecewise C* curve, and V (t) £ 0 be piecewise C> wvector field along c. Then there exists variation
fi(—ee)x[0,a) = M
of ¢ s.t.

V(t) = 57(0,1)
Proof. By compactness of [0, a], there exists § > 0 s.t.

€XDe(t) (v)
is defined for |v| < §, v € Ty(»y M, for any t € [0,a]. Now we want to consider
5

N Vit
tgl[gf;]I ()]

Define
f:(—e,e)x[0,a] = M (s,t) — expc(t)(sV(t))
This is well-defined because |sv(t)| < ¢ for |s| < €. Here
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07 t) = expc(t) (0) = C(t)

f(
2. 9L(0,t) = V(1)

Remark 5.1. IfV(0) = V(a) =0, then we can choose f s.t. f(s,0) = exp(p)(0) = ¢(0) is proper.
We have the following application of variation.

Proposition 5.2. Let M be a complete Riemannian manifold, and let N C M be a closed submanifold of M.
Let po € M, po ¢ N and let d(po, N) be distance from py to N. Then there ezists a point gy € N s.t.

d(po, o) = d(po, N)
and that a minimizing geodesic which joins po to qo is orthogonal to N at qq.

Proof. 1. Since N is closed and pg ¢ N, the distance

d(po, N) := qigjfvd(po,q) >0

Let {g,} C N be a minimizing sequence such that d(pg,¢,) — d(po, N). For sufficiently large n, all ¢,
lie within the closed geodesic ball B(pg,d(po, N) + 1). By the Hopf-Rinow theorem, this ball is compact
in the complete manifold M. Hence, {¢,} has a convergent subsequence ¢,, — ¢o. Since N is closed,
qo € N. Continuity of the distance function gives

d(po, qo) = klggo d(po, gn,,) = d(po, N).

Thus, qo realizes the minimum distance. Furthermore since M is complete, thee exists a minimizing
geodesic which joins pg and qq.

2. Let v : [0,1] — M be a minimizing geodesic from py to go s.t. ¥(0) = pg, (1) = go with unit-speed
parametrization. Suppose for contradiction that 4/(1) is not orthogonal to T,,N. Then there exists
v € T,y N with (7/(1),v) # 0. Consider a smooth curve a : (—¢,¢) — N with a(0) = ¢o and «/(0) = v.
Consider the variation
v:(—€e€) x[0,1] = M (s,t) = s(t)

where

(a) 70(t) = ~(t)

(b) 7s(0) = po fixed point, so L~,(0) = 0.
(c) vs(1) = a(s), so fvs(1) = o/(s).

Notice the arc-length writes

Y 0vs
L =
[7s] /O o || (1)t
SO
d 1 d 6’75 675 %
_/1 1 <2875 87$>
o Haavs ds ot Ot
t
' 1 D679 6"}/9
7/0 Haa% <& s’ Ot )dt Gauss Lemma
t
d 1 1 D , ) N
ds =0 7= /0 I @I <%V(t),'y (£))dt Vi) = ds s=0 7s(t) denotes variational field
1y b
— / $<V(t)a’y/(t)> —(V (1), ﬁ'w(t))dt product rule, and unit speed parametrizaiton
0
'd
- / %<V(t)’ 7' (8)dt using v is geodesic
0
= (V(1),7/(1)) = (V(0),7/(0)
= (@/(0),7'(1)) = (v,7/(1))
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The first variation of arc length for the variation ~,(t) yields

1
Ll = / (Bt = (+/(1), ).

ds s=0

If (/(1),v) # 0, this derivative is non-zero, implying shorter paths from py to «(s) for small |s|. This
contradicts the minimality of ¢o. Hence, /(1) must be orthogonal to T,,N.

O
5.2 Formulas for First and Second Variations
Definition 5.5 (Energy function of Variation). Let f be a variation of c. Then the energy function of f is
E:(—se)—R s— E(s /|—st\dt E(fs)
which coincides with the energy functional of fs. We can see this as the map
E : {piecewise smooth curves c:[0,a] - M} — R c— E(c / |/ (t)|%dt
with differential
d
AE(V)= | B((s) = F'0)
S s=0
where 5(s) is a curve in the space of curves with $(0) = ¢, §'(0) =V
5.2.1 First Variation
Proposition 5.3 (Formula for First Variation of Energy).
k
1 d @ D dc de, . dc de de
-2 - _ Z 2 N 2 —y B o _ i 4
3 |, B0 = [ 00 G0 00, G0 - G0N+ V@) e - VO, o) @)
Proof. Compute
5f of i af 8f
Bl = | e g = Z/ ot ot
So
d tivr 9f Of i+ DOf Of it DOf of
— -, =)t | =2 — = ==\t = — == —=\dt
ds </t <8t’8t> > /t <d86t 8t> /t <dt85’6t>
tivr 1 q Of Of of Dof
—2 [ (G -2 ) a
4 dt'0s’ ot s’ dt Ot
af of |+ /tm of Dof
=2 (L 2L —2 L=
<85’3t>t_+ ¢ <6s’dtat>
k t
aof of [ of Dof
iy — - - - 2
E'(s) §<8s’8t o+ /<85 dt8t>dt
Now we evaluate at s = 0. In particular
of /
ol = (t)
of
s — t
0s|,_, V()
So
1 a a D de
SE0) = Y (V). 5)) - VO ) - [ v, 2
i=0 0
Rearranging yields (45). O
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In fact critical points of

E:Q,, - R
are critical points.
Proposition 5.4. Let

c:[0,a] > M
be piecewise C*°. Then for any proper variation of c,

d
ds
Proof. 1. <= . For any proper variation of ¢,

E0)=0 < ¢ is a geodesic

If ¢ is a geodesic, then c is small so that

de, ., dc,  _
T = )

and %% = 0. By first variation formula (45)
E'(0)=0
2. = . We consider the following
(a) Let
D dc
V(t)=9t)——
(1) = glt) =
be C'*° smooth curve with
t—t;
o) = sin(™EZ)y e ti]
tiv1 —1;

In particular g vanishes at each t;. Hence
V(0)=V(a)=V(t;) =0
Then V is the variational field of a proper variation of ¢. By our assumption
E'(0)=0

By our first variation formula (45)

1 @ D dc @ D de
=_F'(0)=— t), ——)dt = — t)|— — 2dt
0= 520 == [ w5 = [ 05 %
ROt Dide
2
=— Z 24t >
> [ st a0

t Dy
0:/ a0 2Ly v
t;

dt dt
D dc
0=g(t)|——|* Vi€t
OIDSCP Ve ftis]
D dc
= te(tit;
adi Vite (titiy1)
In particular, ¢ must be a piecewise geodesic. So in particular, for any V s.t. V(0) = V(a) = 0 we
have
k
1 dc dc
SEN0)=) (V(t),—(t;)— —(t ) =0
0= 20, 6~ G0

(b) We choose V/(t) such that o o
V(0)=V(a)=0
and V(t;) = 9(t;7) — %(t}). It has an associated proper variation satisfying

1 k de de
_ _ ZZ(4T) 22 (4T 2
0= 580 = LI - Gl
de, . dc, .
%(Q)—E(ti)

Hence c is smooth. Because c¢ is smooth and %% = 0 we know c is a geodesic.
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5.2.2 Second Variation

Proposition 5.5 (Formula for Second Variation of Energy).

1 d2 D 8f / D af / D D
3 | Pl = %g(o,am (@) = (3 5-(0,0),7/(0)) + (V(@), V(@) = (V(0), ZV(0)
a D2
+Z ) - Dvien) - / (V(), 25V (0) + RO, V)t (46)

Proof. Recall from the proof of first variation, we have

t=t.

1., . ~0f of| " v0f Dof
PO =350 5| - [

Os’ dt Ot

We take a derivative.

=ty t=ti

k k
Loy - 32 O S0 02
ds Os’ N " ds 8t N
= t=t; =0 t=t
[fDar Doy, _[@ oo,
o 'dsds’dt ot o O0s’dsdt ot
Notice
DDO DD 0f of of
dsdt Ot  dtds Ot ot’ s’ ot
_DDoj  p0f 0f, 0]
= Giaios G5 Gavss lemma
So
k =t g t=ti
Ly - S~ DT 01 05 Doj
2E (5) = Z<d$ s’ 8t> . + Z<8s dt 8s> .
= :ti 1=0 t:ti
@ DOf DOof df DDOIf aof of.of
~ ) Gsasarar /@’@aa“’“at 55 ot

Assume that f(0,¢) = v(t) is a geodesic. Then

Dof D,
%E(O t) = pri (t)=0
of
% 0.0 = vin
of
0.0 =)

Then

t=t; 1y t=t;

4t
t=t;

k
S50 =3 (2% 0.0,/

=0

k
+ Y (V(t
t=t} i=0

_/ <£%(o 0. 77 (t))dt—/oa(V() dt2V()+R(7’,VW'>dt

7 amooth <digf (0.0).4(a)) — <d2%<o 0),4'(0)) + (V(a), 2V (a)) — (V(0), L (0)

k a
SY W V) - DV - [V, D+ re vy

— T dt dt dt?
O
Proposition 5.6. If f is proper variation of a geodesic, then
1 ¢ (. D D
—E"(0) = —V(t), =V(t)— R(,V,v,V) | dt 47
550 = [ (v, 5ve - reve ) (47)
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Proof. In particular, if f is proper, then for any s

7(5,0) =(0)
#(s.a) = ()
V(0)=V(a)=0
D? D?
51(0,0) = 25 £(0,0) =0
Then
a 2 k
37/0) == [ (V0. T3V 0 + ROV YAV ). V) - ZVED)

Now applying Integration by Parts,

<DVDV d<<()D

oo = (Vo gven) - v, geve)

k

e b tita a 2
Z;/t <l?iy’lz;>dt:§/ti i<<v(’f)vz‘/(t>>> —/0 <V(t),%V(t)>dt

k
D
= ;(V(ti)’ %V(ti»

O

Corollary 5.1. Now let V' be a piecewise C*™° vector field along v(t). V(0) =V (a) =0. v, w € T,Q, 4. If v(?)
is a geodesic, then it is a critical point of
E:Q,,—+R

S0

1 d?

1
5@E(o) = iHess(E)(W)(%w)

@ny [*( Dv Dw , ,
Z e Y dt

We look at one example.

Proposition 5.7. Let M™ be an orientable Riemannian manifold with positive curvature and even dimension.
Let ~y be a closed geodesic in M, i.e., v is an immersion of the circle S* in M that is geodesic at all of its points.
Then v is homotopic to a closed curve whose length is strictly less than that of ~y.

Proof. Let 7 : [0, L] = M be a closed geodesic parameterized by arc length, where L = Length(v).

1. The normal bundle N(v) consists of vectors orthogonal to 4/(¢) along +. Since dim M = n is even, then
using 7y is 1-dim, we know N(v) has odd n — 1 dimension. Now consider the parallel transport along

Py TyoyM* — Ty M~

which is an element of SO(n — 1). In odd dimensions, every orientation-preserving orthogonal transfor-
mation P, has at least 1 eigenvalue 1. Indeed, this is because the characteristic polynomial of P, has real
coefficients, so in odd dimensions, there exists at least one real eigenvalue. Since P, preserves orientation
hence has determinant 1, the real eigenvalue must be 1. Now we pick v € T’ o) M © as eigenvector of P,
with eigenvalue 1. We parallel transport v along ~ to define

V(t) = P’Yl[oyt] (U)
By our construction, V (¢) is parallel so
V,Y/(t)V(t) = 0 V t

and using closedness of v, V(L) = V(0) = v. Also using the normal bundle, V(¢) is orthogonal to 7/(t)
for all ¢.
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2. Define a variation of v by:
fi(—e,e)x[0,L] = M (5,8) = f(s,1) = f5(t) := exp ) (sV (1))
for € > 0 is small. We compute

f(Sv 0) = f(sa L) = €XP(0) (S’U)

d
V(0) = s L fs(0) = d(exp,y(o))o(fu) =v=V(L)
Daf . DIf B
%%(030) = %%(O,L) =0

The energy functional is
L
B = [P

By above computations, the second variation at s = 0 thus shares the same formula as the proper variation
case (47)

L
W@=A(WMW—@Mﬂ%WMm

where R is the Riemann curvature tensor. Since V' is parallel (V. V = 0), this simplifies to
L
E"(0) = — / (R(V.A)Y, V) dt.
0
3. By positive curvature, (R(V,~')y',V) > 0 for all t. Hence

L
E%@=—A<muywnwﬁ<u
—_———
>0

Since E"(0) < 0, there exists s > 0 such that E(f(s,-)) < E(y). For small s, the length Length(f(s,"))
satisfies

Length(f(s,")) < V2E(f(s,-)) < v/2E(7) = Length().
Thus, f(s,-) is a closed curve homotopic to v with strictly shorter length.

We have another example.
Proposition 5.8. Let N1, Ny be two closed disjoint submanifolds of a compact Riemannian manifold,

1. The distance between N1 and Ns is attained by a geodesic v perpendicular to both Ny and Ns.

Proof. The proof adapts the argument in Proposition 5.2 to both submanifolds N7 and Ns.

(a) Since M is compact and Ny, Ny are closed, the distance
d(N1, N2) = inf{d(p,q) | p € N1,q € N2}

is attained by some py € Ny and qg € Na. Let v : [0,1] — M be a minimizing geodesic from pg to
qo, parameterized by arc length.

(b) Suppose +/(0) is not orthogonal to T},, N1. Then there exists v € T, N1 with (7/(0),v) # 0. Construct
a variation v, (t) where v5(0) moves along a curve a(s) C Ny with o/(0) = v, while v5(1) = go. The
first variation of length is

d

E L[’Ys} = <U7’7/(0)> 7& 0.

s=0

This implies shorter paths exist for small |s|, contradicting the minimality of . Hence, v'(0) L T}, V1.

(c) Similarly, suppose /(1) is not orthogonal to Ty, No. Take w € Ty Ny with (7/(1),w) # 0. Define a
variation vs(t) where (1) moves along a curve 3(s) C N2 with 8(0) = w, while v,(0) = po. The

first variation
s| — ) /1 07
ds . oLh] <w'y()>7é

again contradicting minimality. Thus, 7/(1) L T, Na.
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Therefore, the minimizing geodesic v is perpendicular to both N; and N, at its endpoints pg and gg. [

2. For any orthogonal variation h(t,s) of v, with h(0,s) € N1 and h({,s) € Na, we have the expression for
formula of the second variation

S (0) = L(V.V) + V(). 85, V(0) = (V(0), Sk (V)

where V is the variational vector and ng;) is the linear map associated to the second fundamental form of
N; in the direction of v/, 1 =1,2.

Proof. Let v :[0,¢] — M be a minimizing geodesic between N7 and Ny, parameterized by arc length. Let
h(t,s) be a smooth variation of v such that

e h(t,0) =~(t) for all ¢,

e 1(0,s) € N1 and h({,s) € Ny for all s.

Let V(t) = %L:o be the variational vector field, which is orthogonal to ~'.

(a) The energy functional is E(s fo <8? , g’; > dt. Using formula (46), its second derivative at s = 0 is
L5(0) = /Z Ev.2yvy _riy vy ) ae+ (Bvv [
2 Jo \lat at T a "/l

Dy dt

Indeed, using orthogonality of V' with +/, first few terms vanish. After integrating fo < Vo
¢

by parts, we obtain
D__D D D?
— V,
/<dtvdtv> <dtvv>0 /o<dt2 V>

For a geodesic v, %V = R(y/,V )7/, so substituting back yields the result.

(b) At t =0 and t = ¢, the variational vector field V' is tangent to N7 and Ns, respectively. The second
fundamental forms S and S@ encode the normal curvature of Ny and N» via

o Att=0: (2V(0),V(0)) = <s<%(0 V(0 ),V(0)>.
o Att =0 (BV(0),V(0) = (S5, V0, V().
(¢c) Substituting the boundary terms into E”(0)

%E”(O) — L(V,V) + <V(£) S§2EZ)V(€)> <V(O) Sglgo)V(0)>,

where I,(V,V) fo (ViV, Vi V) = (R(Y, V)Y, V)) dt.
O

Proposition 5.9. Let M be a complete simply connected Riemannian manifold, with curvature K < 0. Let
v i (—00,00) = M
be a normalized geodesic and let p € M be a point which does not belong to . Let

d(s) :==d(p,~(s))

1. Consider the minimizing geodesic
os:[0,d(s)] = M

joining p to y(s), that is,
05(0) =p,  os(d(s)) =(s)
Consider the variation

h(t,s) = o4(t)
Then

(a) 3E'(s) = 3('(5),04(d(s)))-
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Proof. We assume <%§L7 %?)(t, s) is integrable w.r.t. ¢ and integrates to H(t, s), then formally

d(s)
B = [ (G Gt = H((dle),9) ~ HO.)
E'(s) = Hy(d(s), s)d'(s) + Hs(d(s),s) — Hs(0, s)

_ (9 Oh : ) D oh oh
— <a7§>(d(s),s)d (5)+2/0 <£E’E>dt

d(s)
— (o). e +2 [T G

A=) D oh Oh
N / -7 7"
— ) 2 [ (GG G

) D oh Oh A=) D oh Oh

0 s Ot Ot 0 dt 0s’ Ot
_ [ 42 2o Don,,
Jo  dt'0s’ ot ds’ dt ot
— <%7 %}(d(s)) — (%, %)(O) using o, is minimizing geodesic
= (7/(s), 04(d(s)))

Here I suspect the original answer is wrong and should lead to

(b) LE"(s) > 0.

Proof. From the first variation, it suffices to differentiate

Differentiating again: p
L (5), L) = (7 (5), o)),

since 7’(s) = 0. The term 207 (d(s)) is computed via the Jacobi field J(t) = %%(t, s) along 0. By
the second variation formula

SE(8) = 10,0) + (3 (s), 7T (d(s)),

where I(J,J) is the index form. Since K < 0 and o, is minimizing, I(J,J) > 0 unless J is parallel.
But J is not parallel thus
E"(s) > 0.

2. Then conclude
(a) from Step 1 (a) that sg is a critical point of d iff (v'(s0),0%(d(s0))) =0
Proof. Indeed, (y'(s0),0%(d(s0))) = 0 iff E’(s9) = 0. But also note
E(s) = d(s) = d(p,~(s))
as energy of the minimizing geodesic o5. Thus differentiation and substitution yields the result. [
(b) from Step 1 (b) that d has a unique critical point, which is a minimum.

Proof. E"(s) > 0, and since E(s) = d(s), it follows that d”(s) > 0. This implies d(s) is strictly
convex. On a complete simply connected manifold with K < 0, the distance function s — d(p,~(s))
is proper (coercive) because ~(s) escapes to infinity as |s| — oo. This is done by Hadamard’s
Theorem 3.3. A strictly convex, coercive function on R has exactly one critical point, which is a
global minimum. Hence, d(s) attains a unique minimum at its critical point sg. O

79



3. From step 2, it follows that

Theorem 5.1. IfM is complete, simply connected and has curvature K < 0, then a point off the geodesic
v of M can be connected by a unique geodesic perpendicular to .

Show by examples that the condition on the curvature and the condition of the simple connectivity are
essential.

Proof. (a) If K <0 is dropped, let M be a sphere, let p be north pole and ~ be its equator, then there
are infinitely many perpendicular lines of minimal length.

(b) If simple connectedness is dropped, let M be an infinite cylinder and p be any point. Let v be a
straight line passing through the antipodal point of p. Then there are two lines reaching minimal
length.

O

5.3 Bonnet-Myers Theorem
Now we look at some clever applications.

Theorem 5.2 (Bonnet-Myer). Suppose we have some complete Riemannian manifold (M™,g). Suppose that
there exists r > 0 s.t. either of the following is satisfied

1. Myer. For anyp € M and v € T,M unit, the Ricci

Then M 1is compact, and

diam(M, g) :== sup d(p,q) < 7r
p,qeM

Proof. Tt suffices to prove for Myer.

1. By contradiction, suppose that diam(M,g) > 7r. Then there exists two points p, ¢ € M s.t.
d(p,q) =:€>7r

Since the manifold is complete, there exists also a normalized geodesic that connects these two points p, ¢.
Then our y
v:0.=>M  A0)=p )=gq

We want to apply the second variation formula so we want to find a variation that gives us a contradiction.

2. We construct a variation by imposing a vector field along this curve. We define it by using the O.N. frame
of the tangent space. Let {eq,--- ,e,} be ONB of T,M where e,, :=~+'(0). Then parallel transport them.
Let e;(t) be the parallel transport of e; along v. We define our variational field (the one that saturates
the sphere)

Tt

Vi(t) :== sin(Y)ei(t) i=1,--,n—-1
Vi(0) = Vi(¢) =0

Thus we have a proper variation associated to the Variational Field, i.e., V; are the variational field of f;
of ~.

3. Now let E;(s) be the energy of f;(s,t), the proper variation associated to V;. Let’s compute

¢
; 1
E;i(s) := /0 \8f1 (s,1)]* > zé(fi)Q Cauchy Schwarz
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Now that « is geodesic and V' proper, we know E/(0) = 0 and E(0) > 0 this is indeed a minimum. By
the second variation formula (47)

1 *( D%,
5E{’(O) = 7/0 << v: Vi) + R(Y, Vi, 7, VZ)) dt  no boundary terms because all are piecewise smooth

at? ’

£y 2
t t
= /0 (22 SiHQ(%) - SiDQ(Z)R(en,ei7en,ei)> dt Vi=1,---,n—-1
1 n—1

1 Crn2 o ot Lo .
n—lZ§El{/(0):/o (8251n2(€)—sm2(K)Rlcp(en,en)> dt

=1

t
) siHQ(%)dt <0 since r < £

Now this contradicts E(0) = 0.

Since M is totally bounded and complete, M is compact. O
Remark 5.2. e Bonnet’s assumption implies Myer’s assumption. Indeed
= n—1
Ricy(v,v) = ] ;R(ei,v,ei,v) = ; K(p, Span(e;,v)) {e1,--- ,en—1,v} O.N.B. of T,M

o The inequalities are sharp. S™ satisfies

1 1
Ricp(v,v) = = K(p,o) =

) “9
T2 7“2

Theorem 5.3 (Cheng-Shiohama). In fact

diam = 7r

. 1
Ricp (v, v) > =
diam = 7r

implies that
(M™,g) = (S", gean)

o [t is necessary that K,Ric are bounded away from 0! For example
S={(x,y,2) eR’ | 2 =a® +y*}

is complete but
4
K=——-——"-->0 inf K(p) =0
(1422 +y?)? -0 pes (v)
and S is indeed not compact!

Corollary 5.2. If (M",g) is a complete Riemannian manifold with Ric,(v,v) > -5. Then the first fundamental
group 71 (M) is finite.

Proof. Let (]\;[j) be the universal cover. Then RNiCP > T% By Myer’s Theorem 5.2, M is compact, so for any
p € M, 771(p) is a discrete set in a compact manifold, so that its finite. |1 (M)| = #7~1(p) < cc. O

Example 5.1. Introduce a complete Riemannian metric on R?. Prove that

lim < inf K(:z:,y)) <0

r—00 \ x24+y2>7r2
where (z,y) € R? and K (x,y) is the Gaussian curvature of the given metric at (x,y).

Proof. Assume for contradiction that

lim( inf K(m,y))>0

r—00 zzJ,»yzZrz
Then, there exists € > 0 and R > 0 such that

K(.’E,y) > e for all :r2 + y2 > R2
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Consider the closed subset M = {(x,y) € R? | 22 +y? > R?} with the induced metric. Since (R?, g) is complete,
M is also a complete Riemannian manifold. By construction, K > ¢ > 0 on M. Now the Bonnet-Myers
Theorem 5.2 states that a complete connected Riemannian manifold with Ricci curvature bounded below by
some strictly positive constant is compact and has finite diameter. In dimension 2, the Ricci curvature coincides
with the Gaussian curvature. Thus, M must be compact. However, M is homeomorphic to R?\ Br(0), which is
non-compact as it contains unbounded sequences (e.g., (n,0) for n > R). We reach a contradiction. Therefore,

lim ( inf K(a:,y)) <0

r—o0 \ z2+4+y2>r2

5.4 Synge-Weinstein Theorem

Theorem 5.4 (Weinstein). Let (M™,g) be a compact oriented Riemannian manifold with positive sectional
curvature. Suppose

f:(M,g) = (M,g)

is an isometry s.t. f preserves(reverses) the orientation if n = dim M is even (odd). Then f has a fixed point,
i.e., there exists p € M s.t. f(p) =p.

Proof. Suppose that f has no fixed points. Consider
h:M—R g~ dg f(q))

continuous function on M. Since M is compact, there exists p € M s.t.

h(p) = ;Telij\f}h@)

ie.,
¢:=d(p, f(p)) = ?éi}v}d(q’ f(g)) >0

Since M is compact, M is complete, as usual we take the normalizing geodesic between them, i.e., there exists
~ normalized geodesic s.t.

¥0)=p () = f(p)

Now consider the two velocity vectors 4/(0) and 4/ (¢). We need two claims that gives a contradiction.

1. Claim 1. For f as in our assumption
dfp : TyM — Ty M

sends ~/(0) — +/(£).
Proof. Indeed, let p’ := v(t'). We look at the distances between p’ and f(p’).

a@p’, f(p) < d(@’, f(p)) +d(f(p), f))
=d(p, f(p)) +d(p,p) using f is an isometry
<O—t 4t = (= d(p,f)

But on the other hand, d(p, f(p)) is the minimum. Thus we have

a(p’, f(p) = d(p, f(p)) = A, f(p)) +d(f(p), f(P") = LV ) +LC(f ©Nljo,e)

Hence v and f o~y are normalized geodesics. Thus

V' (0) = (f 0)'(0) = dfp,(7'(0))

2. Claim 2. There exists a parallel vector field V() along ~(¢) s.t. |V (¢)| =1 and (V(¢),~/(t)) = 0.

Proof. Let P :T,M — Ty, M be the parallel transport along v (P is orientation preserving).

P
.M e Ty ()M
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P(+'(0)) =+'(¢) since v'(t) is parallel to v(¢). Define
A:w=P lodf,: T,M — T,M

Then A € O(n) and det(A) = (—1)". In particular —1 if n odd and 1 if n even. Note

P
=P 'y (¢))  use Claim 1
Y

'(0) so 7/(0) is an eigenvector with eigenvalue 1
Let W be the orthogonal complement of Rv/(0) in T, M, i.e.
T,M =Ry (0) & W

Consider
B:i=Aly W ->W=R"! BeOmn-1)  det(B)=(-1)"

Recall that if C € O(m) and 1 is not an eigenvalue, then det(C) = (—=1)". So if C' € O(m) s.t. det(C) =
(—=1)™*+1 then 1 is an eigenvalue. Thus our B has to have 1 as an eigenvalue. Now let v € W be the

associated eigenvector and take |v| =1
Bv=wv

Let V(t) be the parallel transport of v along ~(¢). Then since the parallel transport doesn’t change the
norms, and since

A O)=0  (vv)=1
Then

Thus

(P~1odf,)(V(0)) = (P~ odfy)(v) = Av

Hence in particular
Finally we define
h:(—ee) x[0,4] = M (5,t) = h(s,t) := exp. ;) (sV (1))

In particular each
s+ h(s,t)

is a geodesic. Let

In fact we conclude here that
B=foa

Now we consider a curve for fixed s. For fixed s € (—¢,¢), consider
hs:[0,4] = M

a smooth curve from «(s) to 8(s). Now the energy writes

Cauchy Schwarz ] oh 2 1
> dt = —L(hs 2
/| = (15 0k = G
1

(0(s), F o a(s)* > 3d(p, F(p))? = £ = E(0)

~ \

Thus we’ve built this nice vector field. O
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Since the original p and f(p) have shortest distance, all variations get longer. Here is where we’ll get our
contradiction. We use positive curvature. We push off the curve along a parallel field, then necessarily
has decreasing energy. For negative curvature, pushing off the geodesic increases energy. Now to make
this rigorous. What have we shown? Back to our setup: we have v a geodesic, and

(V(t),y#t)=0 Vt= E'0)=0

and because
E(s) > E(0) Vs

Thus E(0) must be a local minimum, so E”(0) > 0. But we have the second variation formula (46)

£ 2 2 2
3E0) = = [ (S + RO VI Vid + (G5 (0.0.7/(60) = (57 0.0).7(0)

dt? ds?
20, v(0) ~ (220),V0)
4 2 2
_ /O (R(v, V)Y, V)t + <%2h(0,£),’y’(€)) - <%2h(o,0),7’(0)> % — 0 since V is parallel

¢
= 7/ (R(~', V), V)dt because s — h(s,t) is geodesic
0

Since v/, V has length 1, v L V, we know {V(t),~/(¢)} span the w(s) 2—plane, whose sectional curvature
is strictly negative

1o, /[
5 (0)——/0<R(W,V)7,V>dt——/0 k(r(t))dt < 0

Thus we have a contradiction.

Remark 5.3. This assumption in fact excludes the case of the sphere.
A:S"—S" D —p

Then this is the opposite of the orientation requirement on the isometry, i.e., A is orientation preserving if n
is odd and orientation reversing if n is even.

Corollary 5.3 (Synge). (M™,g) compact with positive sectional curvature
1. if M orientable, n even, then m (M) =1
2. if n odd, M is orientable.

Proof. 1. For universal cover, M is complete with K > ¢ > 0, then by Myers 5.2 M is compact. We want to
show M = M. If not, ~
M — M
choose ¢ # id, ¢ : M — M transformation (so ¢ has no fixed points). By M orientable, ¢ preserves
orientation. But this contradicts to Weinstein Theorem 5.4.

2. If M is not orientable, there exists orientation double cover
M— M

now ¢ : M —s M is orientation reversing without fixed points, so this is contradiction to Weinstein 5.4.
O

Remark 5.4. RP™ = S™/{antipodal} is orientable iff n is odd.
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5.5 Index Forms
Give (M, g) a compact manifold, p, ¢ € M. Pick
v:[0,a] = M
normalized geodesic and |y'| = 1. We can look at other curves connecting the two points. Recall
Qpq:={c:[0,a] = M | piecewise C* ¢(0) = p, c¢(a) = q}

Now we look at the energy functional on this space
a
d
E:Q,,—R C*—)/ =5 2t

We know that v is a critical point of F, i.e., for every
V e T,y 4 = {V piecewise C° vector field along v, V(0) = V(a) = 0}

we have

dE,(V)=0
The Hessian of E at the point v is
HessE., (V,W) =2L,(V,W) index form, VYV, WeT,Qp,
Definition 5.6 (Index Form). The index form is

¢® DV DW
L(V,W) ::/ <W’W> —R(Y, V4, W)dt
0

In general, suppose W is finite dimensional vector space, and

B:WxW—=R symmetric bilinear

We define

Definition 5.7 (Index of B). Index of B is dim(W_) where W_ C W is a mazimal subspace s.t. By, is
negative definite.

1. Null space of B is Vo ={v e W | B(v,w) =0 VYV w e W}. Nullity(B) is dim V.
2. B is non degenerate if Nullity(B) = 0.
Theorem 5.5. Let V € T8, 4.
1. 'V € Null Space of I, iff V is a Jacobi Field.
2. Nullity(1,) >0 <= q="(a) is a conjugate point of p =(0) along v and

Nullity(I,) = dim{Jacobi Fields V along v s.t. V(0) =V (a) =0} < 00

3. Furthermore,

Index(I,) = #{conjugate point v(t), for 0 <t < a} counted with multiplicity

5.5.1 Morse Theory
Some facts: (M, g), p, ¢ generic, are not conjugate.

Theorem 5.6. For (S",g) any metric, if p, ¢ are not conjugate, then there exists oo-many geodesic connecting
them, i.e. the energy functional
E:Qpq—R

has co-many critical points.

This is done in topology. Idea is to take X compact manifold with complicated topology. A Morse function
f: X—>R

must have many critical points.
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Definition 5.8 (Morse Function). A Morse function is s.t. Hessf is not degenerate at critical points, so there’s
no nullities.

If f: X Morse function with n; critical points of index i, then f is obtained from CW decomposition with
ng k-cells. Once we have the space with this decomposition, we have homology of X, Hy(X). Once we have
homology sometimes we can reverse the thing.

Example 5.2. A Morse Function on T? has at least 1 index O critical point, at least 2 index 1 critical points,
and 1 index 3 critical point.

Proof Sketch. Notice
E:Q,,—R

is Morse exactly when p, ¢ are not conjugate. And

A wm JZ (n—1)]|1
Hi(Q2p,4,8") = {0 otherwise

Hence E has a critical point of index i for every (n — 1) | 4. In particular there’s infinitely many. O
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6 Lorentizan Geometry

Definition 6.1 (Lorentizan Manifold). A Lorentizan Manifold (M, g) is a differentiable manifold of dimension
1+ n endowed with a Lorentizan metric. A Lorentizan metric is a differentiable assignment of a symmetric,
non-degenerate, bilinear form g, with signature (—, +,--- ,+) in T,M for any p € M.

Definition 6.2 (SpaceTime). A spacetime is a non-orientiable Lorentizan Manifold of dimension 1+ 3.

Remark 6.1. Not all manifolds admit Lorentizan metric. This has to do with the fact that, M admits Lorentizan
metric iff M admits a non-vanishing vector field (The vector field that gives the direction of time). Hence M is
either non-compact, or compact with x(M) = 0 Euler Characteristic.

Now g, is not positive definite, and for any p € M,

(T,M,g,) = (R™" —(dxo)? + (dw1)* + -+ + (dz,)?) Minkowski Spacetime

isometric

Since this is an isometry, there exists a basis fo Tangent Space T, M denotes

€0, €1, ,€En
s.t. the metric g, at point p equals
-1 0 0
0 1 0
gp(easep) = Map Map =
0 0 1

In particular, for every v =) v%eq € T,M, we know that
gp(v,0) = =(v")? + (v1)? + - (v")?

Now this imposes a trichotomy on 7}, M.
Definition 6.3 (Spacelike, Null, Timelike). We say that v € T, M is

1. spacelike if g,(v,v) >0

2. lightlike/null if g,(v,v) =0

3. timelike if gp(v,v) <0
The latter two cases gp(v,v) < 0 are called causal.
Definition 6.4 (Lightcone). The vectors satisfying

(0%)? = (v1)? + - (")

span a double cone C, C T, M. The interior of the cone C, contains timelike vectors, while the exterior of the
cone C}, contains spacelike vectors. In general a Minkowsk: metric writes

—Pdt® + da® + dy? + d2?

and the lightcone has slope +c. Nothing with mass travels to the exterior of the lightcone. Information/light/gravity
travels as the speed of light, hence on the cone. Anything with mass stays in the interior of the cone.

Definition 6.5 (Time-Orientation; Future Directed). A time-orientation of (M, g) is a continuous choice of a
component of timelike vectors at p € M (future directed). A curve

a: I —-M
18 future-directed if
o (t) € TouyM is a future-directed timelike vector ~ VYt el

The proper time T of an observer (timelike curve) is defined to be the parametrization of its timelike curve such
that
Ga(t) (O/(t)v Oé,(t)) =-1 Viel

This s really the arclength parametrization.
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Remark 6.2. Null curves satisfy
Jay(@'(t),d/ (1)) =0  Vtel

One can still define an affine parametrization s.t.
Vo (t) =0
for null-geodesics.
Definition 6.6 (Submanifold). Let N be a submanifold of M. Then N is called
1. Spacelike if g|p_y is positive-definite so (N, g|r. y) is a Riemannian manifold.
2. Null if ngwN is degenerate, i.e., the first entry is 0. Lightcones are Null Hypersurfaces.
3. Timelike if (N, gy, ) is Lorentizan
Remark 6.3. If a submanifold N is Hypersurface, then N is called
1. spacelike if normal vector is timelike
2. null if normal vector is null

3. timelike if normal vector is spacelike

Definition 6.7 (Causual Future). Let S C M, then the Causal future of S
JF(S) := {all points in M that can be connected to S by a future-directed causual curve}

The meaning of JT(S) is the part that S can influence. This is the only part that S can send information to.
Alternatively,

I't(S) := {all points in M that can be connected to S by a future-directed timelike curve}

Definition 6.8 (Cauchy Surface). A spacelike hypersurface ¥ is a Cauchy Surface if every inextendible causal
curve intersects it exactly once. A spacetime with a Cauchy surface is called globally hyperbolic.

Remark 6.4. 1. A globally hyperbolic spacetime is always homeomorphic to % x R.
2. In a globally hyperbolic spacetime, there exists a global time function t s.t.
{t = constant}
are spacelike hypersurface
3. In a globally hyperbolic spacetime, there exists a timelike geodesic connecting x, y € M, y € I't(z).

Definition 6.9 (Cauchy Development). Let 3 be a spacelike hypersurface. Then the Cauchy Development of
3 is the biggest globally hyperbolic subset of M that admits ¥ as a Cauchy Surface.

Example 6.1. Consider the manifold Ry x R, equipped with the Lorentzian metric

g=—(1+7r?)dt* + dr?

1472
Then
1. Show the manifold is timelike geodesically complete, i.e., all inextendible timelike geodesics can be defined

on all R.

Proof. We start by finding the geodesics for the manifold (R; x R,.,g). We compute, denoting 0 as ¢
coordinate and 1 as r coordinate

goo = —(1+77)

_ 1
M=
goo,1 = —27
_ 2r
g11,1 = (1—}—7"2)2
1
oo = 5911(—900,1) =r(147?)
1 r
o _10 _ L 00 _
Fop =17 = 59 goo,1 = 1+ 2
1 T
rlo— - u ___
11 29 g11,1 112
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Denote 7 as parametrization for the geodesic. The geodesic equation with coordinates (20, z') = (¢,7)
hence writes

d?z° 0 dx® dat _

dr? Ndr dr
d*t 2r(t) dtdr
a2 TTE R drdt

d?at da® da' 5,

Fl 2 Fl —
P + 00(77) + T4 ( d’]')

&>r dt r dr

asr 142y (P2 _ aro _
gz TG = e ()T =0

From there we observe that there is a conserved quantity:

dt dt E
E=(1+7r%— — = : 48
R )
For timelike geodesics, g,, 21" = —1:
dt\? 1 [dr\®
1+ = — =) =-1
(1477 (dT) + 1+ r2 <d7’)
Substituting 4 from (48):
ar\?
— ) =E*-1-r% 49
(&) . (19)
This is a harmonic oscillator equation. For E2 > 1, the solution is:
r(t) =V E? —1cos(t + ¢), where ¢ is a phase constant. (50)

When E? = 1, r(7) = 0 (static geodesic). Substitute (50) into (48):

dt E

dr 1+ (E?2=1)cos®(1 + ¢)’

Integrating gives:

t(r) = \/% arctan (\/ E? — 1tan(r + ¢)) + to. (51)

As 7 — £00, t(7) grows unboundedly. For E? = 1, t(1) = 7 + to. The solutions (50) and (51) are smooth
and defined for all 7 € R. The affine parameter 7 covers R, and no geodesic encounters a singularity or
boundary in finite 7. Thus, all timelike geodesics are complete.

O

2. Consider the time orientation s.t. 0y is future-directed. Is the above metric globally hyperbolic?

Proof. (a) The metric g is static, and d; is a timelike Killing vector field. The hypersurfaces ¥, = {t = ¢}

(b)

are spacelike everywhere since their normal vector d; is timelike. The spacetime is strongly causal
because the absence of closed causal curves is guaranteed by the staticity and the R; factor.

The surfaces ¥, = {t = ¢} are natural candidates. To verify if they are Cauchy, we check if all
inextendible causal curves intersect ¥. exactly once. Null geodesics satisfy g,,2#%” = 0. From

earlier results:
E

P=+FE, {=-—-—,
1472

with solutions: )
r(\) = £EX+719, t(A\) = o arctan(EX 4+ rg) + C.

As A\ — Fo00, t(\) = £5% + C. Thus, null geodesics asymptote to finite ¢-values and do not cross all
Y. hypersurfaces. For example, a null geodesic with ¢(\) — 5% + C' as A — oo never intersects 3.
for c > 7 + C.

Since inextendible null geodesics do not intersect all 3. hypersurfaces, no 3. is a Cauchy surface.
Hence, the spacetime is not globally hyperbolic.

O
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6.1 Null Hypersurface

Definition 6.10 (Null Hypersurface). A hypersurface H of M is null if for every x € M, the normal vector
LeT, M toT,H is null, i.e.

9:(L,L) =0 92(L, X)=0 VXeT,H
Remark 6.5 (Both Normal and Tangent). Since dimT,H = n, and
(LYY =T, H

and since L is null, we only have one extra direction that is allowed. Necessarily L € T, H. Thus L is both
normal and tangent to H itself at v € M.

Remark 6.6. The integral curves of the null line bundle (L,) for any x € H are null geodesics (null generators).

9g(VLL,X)=Dr(9(L,X)) —g(L,V.X) VXeTH
:O_Q(LavXL) _9<L= [L>X])
= _g(vaXL)

1
= _iDX(g(IHL))
=0 VXeTH
Thus VL is normal to H, hence spanned by L
ViL=fL

we can always rescale L=kL s.t. ~
ViL=0

i.€.

0= ViLkL = kV (kL) = k(kV L + L(k)L)
0=L(k)+ kf

Solving for the ODE yields the result.
Example 6.2. 1. Lightcone
2. {u = constant} for any u s.t. g(Vu,Vu) =0.

6.2 Einstein Equations

Definition 6.11. A spacetime in GR is a triple
(N47§;,Ll/’ THV)

where N* is a 4— dim manifold, Gy 18 a Lorentizan metric, T, is a (0,2)—spacetime tensor, called the energy-
momentum tensor, s.t. they satisfy the Finstein Equation (52).

Where does Einstein Equation come from? Consider the Action

S(Gu) = / (Lo +87Lyr)
N
where L is Einstein Lagrangian and £); is the matter Lagrangian.

Lg = R\/—det(g) R denotes the scalar curvature

We compute the variation

oL v v o= 1
5 ¢ _ \/ — det(ﬁ)GH " =R" - §g’“’R the Einstein Tensor
nZ

The variation of the Matter Lagrangian is

0L\

0G0

= 7"/~ det(9)
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Thus to find a critical point for the Action S, we obtain the Einstein’s Equation (1915)

G" = 8xTH

— 1
Rp,u - igm/R = 87TT;UJ (52)

LHS is curvature of the spacetime while RHS is the matter. We wish to understand what kind of equation this
is.

Remark 6.7 (Bianchi Identity).
V,.G*" =0

According to Einstein this implies
vV, TF =0

So we expect some sort of conservation law.

Lemma 6.1. Show that the second Bianchi Identity for the Riemann Tensor implies that the Einstein Tensor

1
Guv =Ry — ingR
18 divergence-free, i.e.
VG =0

Proof. Denote V as the Levi-Civita Connection. Bianchi’s Second Identity gives
VR 830 + VR gy + VoR g0y =0
Contracting once gives

0=VaoR8u + ViR 800 + VLR g0
=VoR%8 — VuRg, +V,Rg,

Contracting again gives
0=V*Rap,” = V,R,+ V° Ry,
=V°Ro, — V,R+ VR,
1
=2(VRq, — ivuR) relabelling

Thus
1
V”(RMV - QQMVR) =0
O
Remark 6.8. 1. (52) is a Tensorial equation, of physical meaning and should not depend on coordinates.

This has infinite degree of freedom (gauge). We also choose a gauge to start with studying the equation.

2. g= we have 10 unknowns, 6 equations, and 4 gauge {x*}.

3
10 4

N O Ot
© 00 N

Example 6.3. Take T'=0. We get

_ 1 _
RMV - §gMVR =
1
R— i4R =0 take trace
Ricy, =0 (53)

FEinstein Vacuum Equation.
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Example 6.4. Let
1
T=2F®F — 5g|F|2

where F' is a 2-form that satisfies Mazwell Equations
dFF =0 divF =0
Then this is Finstein Maxwell Equation.
Definition 6.12. We say T satisfies local energy condition if
T(v,v) >0 Vv timelike

It is only understood in 1952 (Choquet-Bruhat) that this is a Cauchy Problem, i.e., GR is a well-posed theory.
With appropriate initial data, there exists unique solution.

6.3 Cauchy Problem

Initial data set

(M 3 3-dim manifold, gi; Riemannian metric, h;; symmetric 2-tensor, p local energy density, J ¢ local momentum density)
(54)

Motivation: consider N* = R x M with coordinates (t,z,). How would one construct g?

g = —dt’ + ¢’ (t)dz;dz;

We use convention

1<i,7<3
0<a, f<3
S0
9ij = 9i;(0) Riemannian metric
1d . 0
hij == —| ¢ symmetric 2-tensor, 2nd fundamental form w.r.t. —
2 dt|,_, ot
o 0
=811 (=, =
p=281T(5, 5)
, 9 0 .
J'=8rT(=—, =—)g"
T (315’ O’ )9
More generally we want N4 with a time function
(dt,dt) <0
and we normalize to take
<60a 60> =-1

Then

_ 1_
Roo + §R= 8T

ROi = 87TJ1‘

This is the Einstein Equation under the setup. But this is not everything for the initial data. Since M is
submanifold of N, they need to be compatible s.t. they satisfy Gauss-Codazzi. Recall Gauss Equation (22)

R(X,Y,Z,T)=R(X,Y,Z,T)—-(B(Y,T),B(X,2)) +(B(X,T),B(Y, 2))
Rijke = Rijre + hjohix — hiohjk
R = Rou007" 7% + Ra0pog*’7" + Rijreg™ g’
= —2Rgo + (Rijre + hjehix — hichji) g™ g7*
= —2Rgo + R+ (Tr(h))? — |h|?

— 1—- 1
871'/1, = Roo + §R - §(R + (Tr(h))Q - |h|2)
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Recall Codazzi (23)
R(X,Y,Z,n) = (VyB)(X,Z,n) = (VxB)(Y,Z,n)  ni=eg
Rijko = —hikyj + Njksi
8mJ; = Roj = Rijrog™ = (—hin;j + hjw;i)g™
= *(Tr(h));j + hjk;igik
Thus we have constraint equations
1
Smp = 5 (R+ (Tr(h))* — [n]*)
8mJj = —(Tr(h));; + hjrig™

Theorem 6.1 (Choquet-Bruhat 1952). Given an initial data set (54), there exists a unique spacetime (N*,79)

solution to the Einstein Vacuum Equation (53) s.t.
it M*— N*
is an isometric immersion with
i'g=y
and h its 2nd fundamental form.

Sketch of Proof. We need to fully use our Gauge freedom. We choose harmonic gauge (harmonic coordinates)

S.t.
H" =0yt =V, Vot
This quantity explicitly, is

O—H“—ZW ( —det(g)go‘ﬁagx“)
azﬁ \/W ( *det(g)g‘”“‘)

1
=y <8aga“ + 59" ngaaagpa>

po

On the other hand

1
Ruu = _5 Z gaﬁ (_2858(1/9“)04 + aaaﬁgm/ + auaugaﬂ) + F;,LV(g? ag)
«,

Then we have reduced Einstein Equation

R =R+ gagudn H®

1
=52 9" 0a039, + F(9,09)
oB

This is a quasilinear wave equation.

1 a
Gu = R;w - §RHng - Z(ga(uaV)H -

(03

1 wan
quvaaH ) = tO

Thus setting

G =0
R, =0
We have
1
0= Z —igaugp“apﬁuHa + Lo.t.
TR
So H satisfies a wave equation. If
HH == 3tH“ == 0
initially then H = 0 everywhere. Indeed if H = 0 initially, then
d
7 H=0 consequence of Codazzi = G, (0)" =0
t=0

so H =0 then R” = 0 satisfies Ric = 0.
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6.4 Positive Mass Theorem
Definition 6.13 (Asymptotically Flat). Any initial data set (M?,gi;, hij, p, J) is asymptotically flat if
1. M is orientable and (M, g) is complete, and for some compact set K and some Ball B
M\ K=R3\B
This fixes the topology.

2. On M\ K 2R3\ B o
g = gijda’dx’

defines (w1, o, x3) the coordinates on R3. Let
r=/x?+ 2%+ 22

Gij = 0ij + a;j, aij = 0(-),

then on the metric

On the fundamental form

What is not asymptotically flat? The big bang where it is expanding. But even in the universe if it expand,
if we study how two blackholes merge, then it is asymptotically flat because how the universe expands doesn’t
matter as it is negligible. This is isolated system.

Definition 6.14. If we have asymptotically flat initial data set, we define

1. mass/energy
= ﬁrhango/ Z iJij — ]gu N 'dA

rlj

2. linear momentum

@JE&/Z ij = (Te(h)gij ) N7 dA

where
.7 3.2 2 2 _ .2
Sy = {(x1,22,23) € R® | 27 + 25 + 25 =71}
and )
. xJ ) )
N? = — exterior unit normal
T

and dA is the area element of g;;.

One can show this is well-defined and doesn’t depend on the coordinates nor the foliation. Mass is hard to
define locally, but if one go faraway this definition works.

Example 6.5. If M = R3, then

1
Pi=—lm | (X,v)do  Xj:=hy—(Tr(h))gi;  fizing i

T r—oo Jg

We could apply the divergence theorem and write
— lim / div(X
87r r—00
= — lim To:dV by constraint equations

Some history
1. Schoen-Yau 1979-1981
2. Witten 1982
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Theorem 6.2 (Positive Mass Theorem). Let (M3, g, h, u,J) be asymptotically flat initial data set satisfying the
constraint equations (55), (56) and the dominant energy condition. Then for any asymptotically flat ends

Moreover, if there is equality

Ey—|Py| >0

E, = |P,|

for some £, then M has only one end, is diffeomorphic to R, and

(M3, g5, hij)

isometrically

n

(Rl-i-i%7 (—dx0)2 + Z(dxz)Q)

i=1

The gravitational energy of an isolated system is nonnegative, and = 0 iff there does not exist gravitating object

(Minkowsk).

6.5 Null Structure Equations

Let S be 2-dim spacelike hypersurface of a 4-dim Lorentizan manifold.

1. A spacetime can be foliated by null hypersurfaces, either outgoing (outgoing C' null cone) or ingo-
ing/incoming (ingoing C null cone).

2. We can choose a null frame

s.t. eg is in the direction of ingoing null cone, e4 is in the direction of outgoing null cone and

{ela €2, €3, 64}

g(es,e3) = g(es,eq) =0,

9(63» 64) = 727

{e1,e2} tangent to S,

g(e3aea) = 9(647611) =0,

3. In general we want to define the Christoffel symbols

A
Ve, €0 = E L'ex
A

{63, 64} null

g(eq,ep) = dap

a, be{l,2}

and we’re interested in those with at least one e3 or e4. They are completely determined by the following
coefficients (all the quantities are tensors on the sphere, but we only care about es and e4). For any

a, be{1,2}

Xab = 9(Ve, €4, )

Xab = 9(Ve, €3, €p)
0 = 9(Vesea, €aq)
Ta = 9(Ve,e3,eq)
w=—g(Ve,eq,e3)
w=—g(Ve,e3,e4)

§a = 9(Ve,e4,€3)

§,=9(Ve,e3,e4) = —Ea

Theses are tensors on the surface S.

Remark 6.9. (a) x, x are the projection of the 2nd fundamental forms of the embedding of S w.r.t.

es/es. In fact

1 1
H(X)Y)= §X(X, Yes + ix(X,Y)eZL

=VxY - ¥xY

(b) Observe that this is the same computation we did to show that the second fundamental form is

symmetric.

So x symmetric iff [X,Y] L eq iff [X,Y] € Span(es,es)™ iff (es,es)*

X(X’ Y) - X(YaX) = g(DX€4,Y) - g(DY€47X) = g((€4, [Xv Y])

sense). In the case of Kerr x is not symmetric.
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(c) We can decompose into shear and expansion

. 1
Xab = Xab + iTr(X)gab

. 1
X, = X, T in(X)gab

Example 6.6. For standard spheres of radius v in Minkowski spacetime

X: :0

SN [

Tr(x) =

4. Now we decompose the curvature. For a,b € {1,2}

aqb = R(eq, eq,ep,e4)
a,, = R(eq, €3, e, €3)
Ba = R(eaq,e4,€3,€4)
B, = R(ea, €3, €3, ¢4)

p = R(es,eq,e3,¢€4)

o = ¢ Rapza = (*R)3434 where (xR)agys = €uvap R s

where € is the spacetime volume form w.r.t. g and ¢ is volume form on the spheres S w.r.t. induced metric
g. Observe that Ric(g) = 0 implies
Tr(a) = Tr(a) =0

5. The null structure equation are propagation equations for Christoffel symbols (comes from definition of
curvature)

Vil =R+T -T+yT
Vsl =R+T-T+XT

Example 6.7. One has Raychaduri Equations, Codazzi Equations, and the Gauss curvature of S
1
VaiTr(x) = —§(T1r)<)2 + wTr(x) — |X)? Raychaduri Equations

VaTr(x) = —5 (TH(0)? +wTH(0) — 3P

Vaix =wyx — Tr(x)x — Codazzi Equations
X

6.6 Trapped Surfaces
This is a gateway to blackhole.

Definition 6.15. A closed spacelike surface S is called trapped if the expansions are negative
Tr(x) <0 Tr(x) <0 VYpelsS

Remark 6.10. This condition implies that the area of the surface decreases when deformed along the two null
directions. As time passes, the sphere is forced to shrink. Let T be affine parameter along ey. Then

d
Eg(eay Bb) = g(v€46a7 eb) + g(eaa ve46b) = g(veae47 6})) + g(ea7 vebe4)

= 2Xab

4 Jaei(g) = v/~ detlg)™ g, = Tr(x)/~ dei()
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Theorem 6.3 (Penrose Incompleteness Theorem). Let (M,g) be a 3 + 1-dim globally hyperbolic Lorentizan
manifold with a non-compact Cauchy surface whose Ricci curvature satisfies Ric(v,v) > 0 for any null vector v
(dominant energy condition). If (M, g) has a closed trapped surface, then (M, g) is future geodesically incomplete.

Sketch of Proof. 1. Jacobi Fields. Consider our surface S with the outgoing null cone generated by .S, denote
as C. A Jacobi field X on C is called a normal Jacobi field if

Le,X =0
The Jacobi field measures the displacement of the geodesics.
2. Focal Points. Given p € S on the surface and
q="p(7s)

for +y, the geodesic along C starting at p. ¢ is a focal point to p if there exists a non-trivial normal Jacobi
Field along C' s.t. J(7.) = 0.

3. To show existence of focal points, Raychaduri Equations are used. For geodesic L = e4 and L = e3
(DL =DpL =0 implies w = w = 0)

L(Try) = 5 (Te(x))? ~ §I? ~ Rie(L, L) < 0

1 . .
L(Tx(x)) = *Q(Tf(x))z —|%I* = Rie(L, L) <0
Due to assumptions on Ric(v,v) < 0. Hence Tr(x) and Tr(x) will remain negative if they are negative

initially.

4. Existence of Focal points with a trapped surface. If Tr(x) < 0 at a point p € S, then p has a focal point.
We know by Raychaduri

Tr(x)(0) = -k <0
L(Tr(x)) <0

Thus Tr(x(7)) < 0 for any 7. We solve

L(Tr(x)) < —5(Tr(x))?
1 1
1 1
Lomp) =72
1 11 1 7
Tr(x) w2 Tk 2
ST >
Y p——

. T—Tk
Hence there exists some 7, = 2 s.t. Tr(x)(7) "=~ —oo. Hence one can construct

Jt = Mj(es)? = det(M(7,)) =0

5. Now we sketch the proof. Suppose (M, g) is geodesically complete. Take our trapped surface, take p € S
and so Tr(x) < 0. Then +, is defined for all times. But also there exists a focal point between % Then
the boundary of the future of S is contained in the null-cone generated by the null-cone of this ~

0.7%(5) € (10, 2) U ([0, -

K
Thus p € 8J1(S) iff p lies on a null geodesic starting orthogonally from S and not containing focal points.
But RHS is compact due t focal points. Thus 0J(S) is compact. But we have a non-compact C Cauchy
surface. For each ¢ € 8J71(S5), the integral curve of T timelike vector through ¢ intersects the Cauchy
surface X exactly once via ¢ homeomorphism. Now p(9J1(S5)) is open and closed in ¥ and so

©(0J7(S)) =%

D vp is tangent to C

but ¥ is non-compact and we reach a contradiction.
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6.7 Blackholes

Definition 6.16 (Null-Infinity). The future null-infinity T consists of all ideal limit points of null geodesics,
which reach arbitrarily large spatial distances.

Remark 6.11. Any asymptotically flat spacetime admits a null infinity.

Remark 6.12. A perturbation of Minkowski has complete T+ (Christodoulou—Klainerman)

Definition 6.17 (Blackhole). A Blackhole B is a region of spacetime that cannot send signals to TT, i.e.,
B=M\J (IT")

The boundary of blackhole OB is called the event horizon.

The presence of a trapped surface implies the existence of a blackhole.

Proposition 6.1. If S is trapped, then S cannot lie on J—(IT).

Proof. Suppose S C J~(ZT), then there exists p € ZT s.t. p € 8J1(S). But then p lies on a null generator of

S, and v must be complete. But S is trapped, so all null generators of J¥(S) has affine length. O

6.7.1 Schwarzschild: Spherical Symmetry

By imposing spherical symmetry, we reduce to 2 degree of freedom. SO(3) acts isometrically. Orbits of this

group are
r2(d6?* + sin® (0)dp?)

For M > 0 constant
M =R; x (2M,0), + S?
then the Schwarzschild solutions write

oM 1
gu = —(1 = ==)dt* + 1— aag &r” + v (d6° + sin® (9)d)

1. This is indeed a solution to Ric = 0 Einstein Vacuum Equation, as 1-parameter family. This is spacetime
of an isolated body of mass M! This is general relativity version of Newtonian theory. This spacetime
does not have matter! The effective mass M comes out of the gravity.

2. % is a Killing vector field for gy, i.e.

(E%Q)W =09 =0
When this happens, we say the metric is stationary, so the metric does not depend on time.
3. as r — 00, the metric goes to
—dt? 4 dr® 4+ 12(d#* + sin®()dp?) = Minkowski
Hence Schwarzschild solution is Asymptotically flat.
Theorem 6.4 (Birkhoff). The Schwarzchild metric is the only spherically symmetric solution to Ric(g) = 0.
Notice » = 2M is not a singularity.

Example 6.8. Consider the metric
g = —t2dt* + dz?

on M = (0,00); X R;. This metric looks singular at t = 0. But take
- 1,
t:=—=t t>0
2

Then
§=—dt* + dz?

this is Minkowski. Hence t = 0 is just a coordinate singularity (since we change coordinates we can just extend
past t =0).
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We introduce ingoing Eddington-Finkelstein coordinates

re =71+ 2M log(r — 2M)

v=1+T,
Thus
N 2M o 2 192 | 2 2
g=—(1- T)dv + 2dvdr + r(df” + sin®(6)dy*)
Thus for » = 2M this is regular
01 0 0
10 0 0
0 0 72 0
0 0 0 r%sin®(0)

Now R
M =R, x (0,00), x S

One can easily verify that {r = 2M} is a null hypersurface. In fact {r = ¢} is timelike if » > 2M and spacelike
if r <2M. {r =0} is a singularity (crashing singularity)

C
RuuaﬁRwaﬂ = 7](\;[ — 00 r—0
r
At r = 0, any future directed causal geodesic starting at r < 2M will reach » = 0 in finite proper time. We
cannot extend § past r = 0 as a C? metric. In fact it cannot be extended as a C° metric (Sbierski 2018). But
one can possibly do Kruskal extension. What is a null geodesic flow? For example take timelike hypersurface
{r = 3M} (photon sphere). There are null geodesics ‘trapped’ here.

6.7.2 Geodesic Flow in Schwarzschild
Let

(1) = (), 7(7),0(7), 0(7))

be a geodesic. Since sphercial symmetry, we can assume that «y lies on # = 5. We have the following constants
of motion

0 null
/ N _
L9t y) =r= {1 timelike

2. g(v, %) = F Energy/Mass. This is constant since

0 0
Vo (9(v, a)) =0 V(ZVI(&)V) =0

3. g(+/, %) = L angular motion.

These are actually enough constants of motion so that the Hamilton-Jacobi equation is completely integrable.
In particular, for r = r(7)

1 M L? MIL?
V(T‘) = 5:“; — HT + ﬁ - 773
By studying this ODE we get lots of information about the geodesic.

1. For example for timelike geodesic (x = —1) there exists stable circular orbits for » > 6M and unstable
circular orbits for 3M < r < 6M.

2. For null geodesics k =0
L?
V(r)= 23 (r—2M)

V has a maximum at » = 3M so there exists unstable circular orbits at r = 3M.
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6.7.3 Kerr Black Hole

The Kerr Black Hole (1963) is a 2-parameter family M € R, a € R for |a| < M. Define
A:=1712 —2Mr + d?
p* i=1% 4 a® cos?(0)

re =M+ M? — a?

And our manifold is
M =Ry x (r4,00), X s?

Our metric is
IM.a = gudt® + grpdtde + grrdr® + gogdf® + gopde®

with
2Mr
g = —(1— )
P2

Grr = pj

rr A
Jog = P2

2Mr .,

Gtp = — asin®(0)

¥ ()02

2Mra?

Gop = (* +a* + 2 sin?(#)) sin?(6)
This is still stationary. Axis-symmetric, but not spherical-symmetric. a stands for angular momentum.

1. This is solution to
Ric(gu) =0

2. a = 0 reduces to Schwarzschild. For |a] < M, A has roots so there exists black hole. For |a| = M, A has
double root A = (r — M)?, this is extremal black hole.

3. Asymptotically flat.
4. Symmetries. 0y, 0, the killing tensor K, satisfies V(, K, ) = 0. For any ~ geodesic
K,,7""y"" = constant
hence geodesic flow is integrable

5. superradiance. 0y is timelike for r > 1.
g(@t, at) >0

M+ vVM?2—a?<r<M++/M?—a?cos?(6)

close to Ht

Note Penrose process.
6. Trapped Null geodesics. In a full interval [ri, 2] roots of
r(r—3M)?* — 4a*>M
but still unstable.

There is conjecture: Kerr is the only asymptotically flat stationary solution of Einstein Vacuum equation (no
hair theorem).

6.8 Wave Equation

We consider Wave Equation on Minkowski Spacetime (RY3,m).
On¢ =—07¢ + 020+ 0,0 + 02¢

We want to formulate the Wave Equation as Cauchy Problem. The natural prescribed conditions are



We have formula. There exists unique smooth solution ¢ : R'? — R s.t.
o(t )*L (ta(y) + F (W) + > (9. /)y — 2"))dS(y)
F) T g ly—z|=t 7 Y 3 vl M Y
Some remarks

1. We almost don’t expect this to hold true in the curved spacetime. This is special to Minkowski. (Not
robust enough)

2. Our data can only propagate in a finite speed.
3. Sharp Huygen’s Principle in 3 + 1 dimension.

What are robust things? The energy estimate. We first discuss energy estimate for wave in Minkowski. We
start with the equation and try to use the idea of Noether : Symmetry gives conservation. The 0;¢ is very
important!

0= 0606
= (076 = A0)0ro
= L0100P) — v, (016V.6) + Vo016 Vo

1
= 58,5(@(;5\2) — div, (0:dV ) + OV - Vi using (R"3,m) is flat (if not this commutation gives lower order terms)

= 2067 + [VOP) — div.(0,6V0)

Then we want to integrate this in the region [0, 7] x R3, assuming ¢ decays fast enough as |z| — co. We get

[ Qo +19oRa = [ (a0 + 9P
= 912 gy + 1125 oy
Now we discuss Wave Equation on a general spacetime (M, g).
g = ¢""'V, 0,0 =0

Energy-Momentum Tensor method. What is the Energy-Momentum tensor? This is a symmetric 2-tensor
defined associated to 1

1
Tyul] = 0,00, = 59,,9°°0u0050  here LIV] = g arid0

T =dp o dp— g v, di)g

Proposition 6.2 (Local Conservation Law).

VAT 9] = (Bg)0u¢

In particular if Ogp = 0, then
VT, =0

Proof.

VT = V0,400 + 0,V O — %gw(v“aad}a% + 0atpVHO% 1))

= Dgwauw + 3,#/JV“5V¢ - vvaawaaw
= 0yv0,¢

O

Corollary 6.1. If X is a spacetime vector field (thinking of X as multiplier) on (M,g), then T,, X" has
diwergence V" (T, X").
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Proof. Note (Lxg)* = VFXY + VX" and define deformation tensor (X)T1#
VAT, X")=VH*T, X" + T, V*X"
= o, v XY + TW%(V“X” + VY XH)
VAT XY) = Ogp X () + T, XTI

The heuristic is £[g,, %, 09 is given.

Slg, ] == /M Ldy,g

Say g is given, local diffeomorphism is like a local symmetry. Then this gives us local conservation.

oL 1

= -5 LV‘C
dgrv 29

ZLV

is divergence-free if ¢ solves the Euler-Lagrange Equations. Note

Llg, ¢] := g" 0,0,y
Proposition 6.3. For X, Y future casual vectors, then T(X,Y) > 0. For X, Y timelike vectors, we have

concrete lower bound
341

T(X,Y)>e) |0,

p=1
fore>0.

For Minkowski, apply divergence theorem to 7},,[¢](9;)” between boundaries {t = 0} and {¢ = T'} which we
take to be spacelike (n = ;). Ol =0 if Oy = 0, then

0 </ T(0¢,n) :/ T(0¢,n)
{t=T} {t=0}

This is true because J; and n are timelike, hence {t = T'} is spacelike.

Proof of 6.3. Take null vectors L, L and normalized s.t. g(L,L) = —2 then

T(L,L) = |Ly|*
T(L,L) = |Ly|?
T(L,L) = |e1t|* + |e2t)]?

O

We discuss Divergence Theorem on Lorentzian manifold. Recall Stoke’s Theorem. Let M be an oriented
n-manifold with boundary M and let w be a smooth (n — 1)-form on M with compact support. Then the

Stoke’s Theorem says
/ dw = / w
M oM

This is idea of Poincaré Duality. If suffices to give a metric structure. In our case we want to give the manifold
a Lorentzian structure. Then the volume form of (M, g) is

€:=/—det(g)dz® Adax' A - Adz"

The interior derivative is the following: for a k-form w and a vector field X, we define (k — 1)-form ixw as
contraction

in('Ulv“' akal) :w(Xv’Ula'“ ,’Ul)

Lemma 6.2 (Cartan’s).
d(ixe) = (divX)e
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Now we plug into Stoke’s Theorem with the setting that M (n dim) being timelike or spacelike (we exclude
null pieces). If e1,--- , e, is an ONB of T,,(OM), and N, ey, ez, - e, is an O.N.B. of T,M (n+ 1 dim). Then

for w = ixe, we have
/ d(ixﬁ) :/ ixﬁ
M oM

/Mdiv(X)e: /M d(ixe) = /8 ixe

The point is to make sense of what the RHS is. Let’s try to compute

On the other hand by Cartan’s

Z.Xe(ela €2, aen) = E(X; €1, 7en)
g(X,N)N
_ X e e
e< G, N) —|—Xi:g( ,€i)€iy €1, ¢ s €en
9(X,N) . .
==—""2¢(N,eq1, - 1 fi t
G N) e(Nyer, -+ ,en) using volume form is tensor
X,N
= Mea M this is how we define the volume form on the boundary
g(N, N)

Plugging this in and we see the following

/M div(X)e = /M d(ixe) = /BM ixe = /8M mﬁawf

We take our X := T(0;,-)#. We really take the normal to be inward —N = —3;. Now integrating

/M div(X) = /{ - T(8,, —N) + /{ o T(8,, N)

Thus we get
/ T(8t7M)+/ div(T (O, -)) :/ T (0, N)
{t=T} M {t=0}

If in practice we can show [, div(T(d,-)) > 0 then we can bound our energy.
In general, for future timelike X

/EtT-XmN/E S (0ut)? = E(t)

t «a

Thus
E(t) + / O X () + T, T = B(0)
R

We want to choose X and 1 solving the equation so that the middle term has a sign.
On Schwarzschild, thinking of event horizon as {r = 2M}, X = 9, we verify

T(0, ) ~ (O + (1= 25)(@,0)? + TP

We still have a symmetry
at v
I =0

1. For Oy = 0 we have Energy Estimate
E(t) < E(0)

This middle term can be resolved by Red shift Method (Dafermos-Rodnianski).
2. We also have Morawetz Estimate. Want to choose X s.t.
T 0TI >0

On Schwarzschild near photon sphere, we have

/R (006)° + 02 + (r — 3MY2(00)* + ¥ %) < E(0)

This is the trapping phenomenon. This we cannot resolve because it is some physics. Alternatively one
can go to higher derivatives.

In Kerr, however, d; is not timelike everywhere outside Black hole. This is the Ergo Region.
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A Final
Problem 1

Consider
n+1

S = {(z1,+ , zny1) | Zx? =1}
i=1

equipped with the Riemannian metric gean induced from the Euclidean metric on R*+!. Define

fSn%R f(xly"‘>$n+1)::xn+l

Then for ¢t € (—1,1),
My = f7H(t)

is an (n — 1)-dim C*° submanifold of S”. Let g; be the Riemannian metric on M; induced from (S™, gcan). Let
H, be the second fundamental form of M; in (S", gcan) w.r.t. the unit normal

b grad f
~ [gradf]

Problem A.l. Show that for a fized t € (—1,1),
Hy = A(t)gt

for some constant A(t) € R.

Answer A.1. First we note

i (Mtagt) — (Snagcan)
is an isometric immersion. Denote V as connection on (M, gt) and V5" as connection on (S™, gean). Now by
definition, to compute the second fundamental form, we want to compute for any X, Y € X(M;) and p € M,

Hy(X,Y)(p) == (Su(X),Y)g.(p)

where S, has the explicit expression
S,(X):=—(Dxv)"

where D = i*V>"

1. Let’s begin by understanding the unit normal v. To do so we need to know gradf = grad™* f w.r.t. M,.

But one can partition the full gradient graanJrl into radial direction and spherical direction. Thus for
any € S, using f(x1, + ,Tny1) = Tpi1 S0 the full gradient is en11 = (0,---,0,1), we write

grad® f(z) = grad®" f(z) — (grad™" f(x),2)x
=ent1 — (€nt1, )T
In particular, when restricted to My, xp41 =1t S0
grad™ f(z) = epqq — tx

so the unit normal v restricted to M; writes

v(z) = Cnt1 — 1O Ent1 1T
||en+1 - tl‘” \/1 - 2t<6n+17$> + t2|l’|2
€nt1 — T

== using x € S™ and M, == f~(t)

2. Notice My is (n — 1)-dim submanifold of S™ so S, as the shape operator is
SV (X) = —Dxl/

We make observation that in the spherical direction, differentiating position vector x w.r.t. X € X(S"™)
yields the vector field unchanged, in particular

DX(lL') =X
Hence
1
SV(X) = 7\/17_7-&2DX(6”+1 - tfﬂ)
t t

X
1—¢2 V1—1t2
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3. Now we obtain

= T 29t(Xv )
Thus for each t € (—1,1), A(t) :== \/127 € R is the constant.
Problem A.2. Find A(t) for allt € (—1,1).
Answer A.2. As in the previous problem we found
() = —— Vie(~1,1)
1—¢2

Problem A.3. When is M, totally geodesic?

Answer A.3. Recall M; is totally geodesic if the second fundamental form vanishes for any normal vector, at
any point p € M. Thus we equate
t

=0
V1—t?

and find this is only possible for t = 0. Since the codimension is 1, the normal vector v spans the whole (T M;)*
at each point on My. Then indeed My is totally geodesic for the vanishing A(0) = 0.

A(t)

105



Problem 2
Let (z,y) be coordinates of R?, and let 2z = x + iy.

Problem A.4. Let
H? == {(z,y) e R? | y > 0}

be the upper half plane, equipped with the Riemannian metric

_ dz? + dy? _ 4dzdz
NP
Prove that the map
Frzes az+b
Pz
cz+d

where (i Z) € SL(2,R) is an isometry of (H?,g).

Answer A.4. To show isometry, let’s compute the pullback metric f*g.

. 4 az+0b, azZ+b
f g=- az+b az+b |2 ( = )
|cz+d - cE-&-d' CZ+d ¢z +d

4 az+b, az+b

)

= T aiearhG— z
|cg\z\zz+id(zi§)+zd2‘2 cz+d”cz+d

Let’s compute the two differentials first.

az+b a acz + be
d = — d
(cz—|—d) (cz—|—d (cz+d)2) :
ad — be
= ———dz
(cz +d)?

1 . a b
= mdz using det (c d) =1
az+b ad — be

d = z
(CZ—Fd (cz+d)? :
1
E—, 1
(cz +d)? -
Thus it suffices to compute
4 1 1
ffg=— dzdz

| SEEREE 2 ez + P (e + d)?

4
- dzdz
lad(z —2) + be(z — )2~
4
_ dzdz
Iz — ZPJad — b2
B 4dzdz _
|z —z?

Notice that positive determinant yields invertibility of the matriz, hence f itself is a diffeomorphism. Thus using
ad — bc = 1 makes f an isometry of (H?,g).

Problem A.5. Let
D*:={(z,y) e R* | 2® + ¢ < 1}

be equipped with the Riemannian metric

b A(da® +dy®)  4Adzdz
TU-F -y PP
Prove that the map
frz— oz + 5
) Bz+a
a B ) . 2
where 3 a € SU(1,1) is an isometry of (D?,h).

106



Answer A.5. Recall that (a ﬂ) € SU(1,1) if |a|> — |B|?> = 1. Let’s compute pullback f*h

8 @
= 4 az+ B m+5)
(1-|g§%§|2)2 Bz+a’ pzta
7 4Bz +al* d(az+ﬂ)d(m+3)
C(IBz+al—laz+ 822 Brt+a Pfzta
We compute the differentials
d az+ 8, a az+ [ —
Bz+a Bz4+a (Bz+a)?
= 7|Oi‘2 — ‘mzdz
(B2 +a)?
_ 1 A 2 2 _
= Wdz using |a|* —|B]° =1
az+p3, 1 _
d(BEJra) N (Bera)?dz
e s S S = S S
Bz+a’ Bz+a (182 +a|?)? |fz + al*
Thus
4
h = — dzdz
I Frar—jarap? "
4 dzdz
= — — zdz
(18122 + @pz + Bza + |a* — |af?|z]* — faz — Baz — |B]?)?
4 .
= mdzd? =h using |a)? — |B]> = 1

Notice positive determinant makes f a diffeomorphism. Thus f is an isometry of (D?,h).

107



Problem 3

Let (M, g) be a complete Riemannian manifold of dimension n > 2. Suppose that there exists constants a > 0
and ¢ > 0 s.t. for all pairs of points in M and for all minimizing geodesics v(s), parametrized by arc length s
joining these points, we have

of

Ric(v/(s)) > a+ Bs

along v, where f is a function of s satisfying |f(s)| < ¢ along 7.
Problem A.6. Show that M is compact.

Answer A.6. Take any two points p, q € M, p # q. Since M is complete, by Hopf-Rinow there exists a
minimizing geodesic connecting p and q with arc-length parametrization, denoted as

y:[0,L] =M  ~0)=p, ~(L)=¢q

Our job would be to prove L has an upper bound uniform in p, q, hence L is totally bounded. Combining with
M being complete, this yields M is compact.

We construct a variation by imposing a vector field along the curve y. Let {e1,--- ,e,} be an ONB of T,M
where we choose e, :=~'(0). We do a parallel transport and denote {e;(t)} as the parallel transport of e; along
v. We define our variation as

V;.(t) = sin(%t)ei(t), Z:L ,TL*].

Notice under such definition

Vi(0)=Vi(L)=0 Vi=1,---,n—1
Thus we have a family of proper variations {hi}?:_ll associated to the variational field
hi:(—e,e) x[0,L] = M (s,t) — hi(s,t)
s.t.
hi(0,t) = ~(t)
i (0.1) = Vit

s
hi(s,0) =~(0)=p due to proper variation

For these variations we define the energy as

L
rRoon
Bi(s) = [ 15
Notice

0 1

hs
S (s, >

EVIIRY
3 > Lf(hl) Cauchy Schwarz

E;(s) ::/0
> 1

L

|
{(v)? since vy is geodesic
= E(7) = E(0)

Now that «y is geodesic and V; are proper, we know E}(0) = 0, so this is indeed a minimum. Thus E!'(0) > 0.
Since h; are proper variations, the second variation formula writes

1 L D,
3200 = [ (B o+ re i) ) a
0

L 2 . - -
= —/0 (_(22)<Sin(Lt)ei(t),sin(Lt)ei(t)) +Sin(;)2R(7l,€i,’y/,ei)> gt

(
<[ ’ (a3~ + Fhiep) ae
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We compute the integral

_r 7 ism(gﬁ) " L
2L 212 2rm L’|, 2L
L
7/0 asin(%)zdt = f%
L L L
2
0 g—{(t)s' (%)2@&: sin(%t)Qf(t) 0 _/O %sin(%)cos(%)f(t)dt

Lo .27t
Lof . owt
|/0 a(t)sm(f)zdt\ < 7c

Combining above and imposing E"(0) > 0 yields

w2 al

g< ok
Sop g e

2
gLQ—ﬂ'cL—%gO

Using that a > 0 so LHS is quadratic polynomial with positive opening, if the root exists, L has upper bound
C =0C(a,c¢)
independent of p and q. More precisely

I me+ V722 + w2a ct+vet+a
= =T

a
c++Ve2+a
<T— =

- a

a

:C(a,c) < o0

Problem A.7. Calculate an estimate for the diameter of M, and observe that if f, ¢ = 0, we obtain the
Theorem of Bonnet-Myers.

Answer A.7. Recall

diam(M, g) :== sup d(p,q)
p,qEM

and we already obtained

/2
L=d(p,q)§w¥<oo Vp,geM

Thus we can upper bound the diameter of M by

c++vVe2+a

a

diam(M,g) <=

If c=0 and f =0, then
diam(M, g) < Wﬁ
a
Notice % =0 and so
of 1

Ric(y'(t)) > a + g5 =07 3

then
a
T—— =77
a

and we recover the Bonnet-Myers Theorem.
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Problem 4
Let (21,22, 23) be coordinates on R3. Given any p > 0, define

3

Sy = {(x1, 2, 23) € R? | Z(xl)z =p*}

Let
(r,9,0) € (0,00) x [0,7) x [0,2m)

be spherical coordinates on R?, i.e

o' = rsin(

<

) cos(0)
x? = rsin(¢) sin(0)
3 = rcos(e)
The Euclidean metric on R3 is given by
go = (dz)? 4 (dz?)? + (dz®)? = dr? + r?(dp? + sin®(¢)dh?)
Problem A.8. Let
dQ' = da® A da?
dQ? = da® A da'
dQ? = dx' A da?
and let
ip: S, = R?

be the inclusion. Show that
(sz) (:r rsin(¢)de A db)

Answer A.8. Let’s compute using brute force

ip(dQ') = d(psin(¢) sin(6)) A d(pcos(¢))
— (pcos(6) sin(6)de + psin(@) cos(8)d9) A (—psin(¢)do)
= p*sin®(¢) cos(A)dp A df = psin(¢)(psin(¢) cos(8))dp A db
=iy(r sin(¢)x'dp A df)
i (dQ%) = d(pcos(¢)) A d(psin(¢) cos(6))
— (—psin(@)dg) A (pcos(s) cos()dg — psin(8) sin(6)d6)
= p%sin’(¢) sin(h)de A d
=iy(r sin(¢)z2de A d)
i;(dQ3) = d(psin(¢) cos(0)) A d(psin(¢) sin(6))
= (pcos(¢) cos(0)dp — psin(@) sin(6)dh) A (pcos(¢p) sin(0)de + psin(p) cos(8)db)
= p? cos?() sin(¢) cos(p)dg A df + p* sin?(0) sin(¢) cos(¢)de A db
= p*sin(¢) cos(¢)ded A db
= i%(rsin(¢)z’de A df)

Problem A.9. Consider an asymptotically flat Riemannian metric on R? of the form
g = u(r)?dr?® + r*(d¢? + sin?(¢)db?)
where u(r) > 0 is a C™ function in r, and there exists constants M > 0 and R > 0 such that
M 1
u(r)zl—l—T—i—o(;) Vr>R

Prove that

/’7,] 1
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Answer A.9. This first thing to notice is g;; is small perturbation of 0;5, i.e.

g = (u(r)®> = 1)dr* + go
oM 1

=(=— —))dr?
o dr? + g0
Notice
ar? = (/G @R+ @R @+ T @)
1
= T—Q(xldasl + 2?da? + x3da®)?
ipd
= x;: dx'dx?
,
So
1 2M 1
9ij = 51] + ﬁ(i +0(7))$z$3
6M 7 1. 27 1 i i
9i9i5 = ( pYa (=) — )"’ +(7Tg+0(73))($ + 2"6;5)
6M 1., oM 1.,
_(_F +o(=)) ($J)2+(Tg+ ()@ + x"0i5)
6M x° 1 at
0911 = (— ol DY@+ R+ o2y

6 M 1 2M 1
= (=5 tol3
r r
1, ‘
939i; = 0igjj = (— 5~ +o(-5))(@" + a0 — 227y5)
& 5. oM o
Z (0j9i5 — 0ig55) = Z(ig +o(=))(3z" + 2" — 22")
1,j=1 i=1
3
oM 1,
= 2_31(7 +0(r3))2x

Now let’s integrate against the volume forms

3 3

; 2M 1 ‘
> (0595 — Dig;;)dQY' = Z(T—S + 0(—5))2(2")?r sin()do A df
t,j=1 i=1

= B o2 sin(9)ds 1 do

3 27 ™

/Sp ile(ajgij — 0ig;;)dY = AJ:M/O /0 sin(6)dpdd + o(1)
=8Mm /7r sin(¢)d¢ + o(1)
0
= 8Mm (—cos(¢))lg + o(1)
=16Mm + o(1)
1 i ,
i Tor /S Y (Digis — 0ig;)d = M

Pg,5=1
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Problem 5

Consider the metric
h = —22dt? + da?

on N = (—00,00)¢ X (0,00).
Problem A.10. Is x =0 a curvature singularity?

Answer A.10. In order to see whether x = 0 is curvature singularity, let’s just compute the Christoffel symbols,
and then the curvature and see if it blows up at x = 0.

hoo = —a?
1
00 _
W=
hip =h' =1
hoo 1= —2x

using I‘fj = % Z}C:O htk (hik,j + hrji — hij ) we obtain
1
g, =T%=—
01 0= 7

I’(l)0 =z

Then we want to compute R = %F% - %Fg’}c +> I‘ka’j"}; > I’?kf‘?} we see
J i g g

0 0
Ry = %F})o - &F%O + gL} — Tl
1
=1—-—-2=0
x

and all other Riemannian tensor components vanish trivially. Thus the manifold (N,h) is flat, and has no
curvature singularity.

Problem A.11. Can you isometrically embed (N, h) into a larger manifold?

Answer A.11. This part of the solution is based on [Wal8/] page 149 - 151. One can make a series of change
of variables to isometrically embed (N, h) into (R2, —dT? + dX?). In each ‘change of variable’ we denote h as
the new metric and h as the original metric, abuse of notation. One start by computing null geodesics. The
null condition reads

0=—a2?*+4?

where the dot denotes derivative w.r.t. affine parameter. Rearranging yields
dt
(%)=
solving for the ODE gives
t =+log(z) +C
where + correspondences to outgoing geodesic, and — to ingoing geodesic. Hence we change into null coordinates
u=t—log(x)
v =1t+log(x)
and our metric takes the form
h = —exp(v — u)dudv
= —2%d(t — log(x))d(t + log(x))
1 1
= —2?(dt — ;dm)(dt + ;dx)

1
202 2y _
= —z~(dt —Ide)—h

But this still corresponds to the region x > 0 in N. To extend beyond x = 0, we define

U=—-e"
V=e
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Thus our metric again writes

h=—dUdV = —d(—e ")d(e")

= —e “e"dudv = h

Now there is no longer singularity at U =0 or V =0 so we extend via

T:U—i-V
2

X:V—U
2

and obtain

h=—dT? + dX?

U+V V-U
= —d 2d 2

()
=—dUdV =h

Hence composing all change of variables, (N, h) — (R?, —dT? 4+ dX?). If one is unhappy about this we can also
write out the change of variable directly

z=(X2-T?):3
T
t=tanh™' (=
anh (%)
or equivalently

T = xsinh(t)
X = x cosh(t)

Now we directly verify

—dT? + dX? = —(sinh(t)dz +  cosh(t)dt)? 4 (cosh(t)dz + 2 sinh(t)dt)?
= —sinh®(t)dz? — 22 sinh(t) cosh(t)dzdt — 2% cosh®(t)dt? + cosh(t)?da? + 2x sinh(t) cosh(t)dxdt + x* sinh®(t)dt?
= —22dt* + da?

Hence this embedding is isometric.
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