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1 Manifolds

Intuitively speaking, a manifold is a space which looks locally like Euclidean Space E™.
Definition 1.1 (Manifolds). Let X ={J, X,,. Charts
¢,: X, CX—>E" Z 2,
maps into E™ Euclidean Space with dimension n. For any z € X, N X, we have choice of two maps, and we
want them to transit smoothly. It should be independent of the chart that we use. We need regularity on

®, 00"
Zy =z

1. X is continuous manifold if ®, 0 ®,' € C°. This is manifold with least structure.

2. X is C™ manifold if ®,, 0 @1 € C* is smooth. It admits infinite number of continuous derivatives. It
might be the case that the map has zeros. Hence we want to impose invertibility

Jacobian(®, 0 @, ') #0

For E™ =R",
z#:(zi,~~ ,zZ)ER”quz(zi,n' ,z,) €R™

That Jacobian is nonzero is equivalent to

k
0z,

det( D
o

) £0

3. Complex Manifolds. The local model in complex manifolds is E™ = C".

B, 00"

2=z, 2) €CT IR 2 = (2,00, 20) €C7

We want
(a) The map to be holomorphic, i.c., each z¥ is holomorphic. But notice we’re dealing with n-variable
holomorphic functions.
Definition 1.2 (holomorphic). Let f: Q C C — C. f is holomorphic if for any ¢ € Q,
h) —
L S = £(Q)

exists
h—0 h
heC

In definition of holomorphicity, h € C.
Theorem 1.1. f: Q C C — C is holomorphic iff
1. We can write as power series, and furthermore, it is power series in variable z, no Z.

o

&) =3 ez =)

m=0

ii. f € Cl and satisfies the Cauchy-Riemann Equation

of
I
0z
i.e. 5 1 /o 5
OF _ L (08 00
0z 2\ 0z y
Now we generalize to functions in n-variables.
Definition 1.3 (holomorphic). Let
f:QcCc*=cC
we take the perspective that power series has no z. Introduce M = (my,--- ,my) and z = (2%, -, 2™).

Define



There is powerful theorem due to Hartogs.

Theorem 1.2 (Hartogs). f is holomorphic iff f is holomorphic for each z* with the other variables
fized.

In other words, a function is holomorphic in all variables iff in each variables. It reduces the local
theory in n-variables to one variable.

(b) The Jacobian to be non-vanishing
ozk

det(azm) #0
o

1.1 Functions and Line Bundles

What we’re interested in are functions, vector bundles and sections defined on complex manifolds.

Definition 1.4 (Functions on Manifolds). Let E" =C". X ={J, X,..

P01t
=2k, 2 eC B g = (2,2 e

Let f: X — C. We understand f by restricting to the charts.

(Fo®y")(z) = flx,  (Fo@,") () = flx,

On the overlap they agree with one another. Hence we may glue them together. The name of the game is how
we glue the functions together. Denote

oulzn) = (Fo @) () wu(a)i=(Fo 0.7 (2)
To understand f on X, one try to understand restrictions to small charts
1. ou(z,) on X,
2. ou(zn) = ¢u(2y) on the overlap X, N X, as the Gluing Rule.
But is this gluing good enough?

Remark 1.1 (Differential Forms n = 1). Take the case of n = 1 for simplicity. Then we have the point z
corresponding to

Then
‘pu(zu) — f(2) — pu(2)

One differentiate and notice
0 0
87@80”(2“) # 87%901/(31/)

What is the relation between the two quantities? Take the formula and differentiate

oulzp) = pu(zy)

0 o
aizu‘:pu(zu) = % (ou(20))
1o} 0z,
9z, () 0z,

The quantities transit w.r.t. factor g;” . The differential of a scalar function is no longer a scalar function but

a transition. We need to widen the construction by allowing a transition function.

One has the following definition of Line Bundles as generalization of differential forms.

Definition 1.5 (Line Bundles on Complex Manifold X). Assume we have a chosen cover X =J, X,,. A line
bundle L is an assignment

L < t,,(2) invertible(# 0) functions defined on X, N X, satisfying co-cycle condition

where the co-cycle condition writes

buvtup = tup



Remark 1.2 (Line Bundle). What makes a difference is how one glue these together. We have a new object
tu. What are the t,, that we want to allow? We want

1. tu, # 0 for invertibility issues.
2. tu, satisfies the co-cycle condition. Notice if there’s another chart X, then necessarily we want
tup(2)0p(2) = wu(zn) = tuw (2)0u(20) = tu (2)tu,(2)0p(2) VenX,NnX,NX,
Hence we require co-cycle condition

tuwtup = tup VznX,NnX,NX,
Example 1.1 (Canonical Bundle Kx). Let X =J, X,,. Take

028
tu =det | (=% )1<a.8<n Vze X, NX,
0z
Then with this choice we obtain a Line Bundle. This is known as the canonical Bundle, denoted Kx.
Example 1.2. Line Bundle L is

1. a C* bundle if t,, € C*

2. a holomorphic bundle if t,,, are holomorphic.

3. an antiholomorphic bundle if t,, are antiholomorphic, i.e., t,, are holomorphic.
Remark 1.3. From a Bundle L, we can generate many others.

L = bundle with transition functions &,
LF = bundle with transition functions tﬁl, VzeZ
Ki' = anticanonical bundle

Given Line Bundle L, one can associate it with sections. L is characterised by its space of sections.
Definition 1.6 (Sections of Line Bundles). Let L be a line bundle. A section ¢ € T'(X, L) if

1. pu(z,) on X,

2. satisfying the gluing rule
(PM(ZM) = tuu(z)@u(zu) on X, NX,

1.2 Vector-Valued Functions and Vector Bundles
Definition 1.7 (Vector-Valued Functions on Manifolds and Vector Bundles). On open set in C™, a vector-valued

function f:C" — CN is
f1(z)

f@=| =
fN(2)
To generalize to manifold, we proceed as in the scalar case. We think about how to glue functions together. To
understand f on X = Uu X, one restrict to small charts

1. ¢5(zu) on X,
2. satisfying Gluing Rule
@g(zu) = tuua,@(z)ﬁpg(zu) on X, NX,
forany 1 <a < N.
A wvector bundle L corresponds to
tuw 5(2) € GL(N,C) on X, NX,
One can also write vector-valued functions in row vectors.
U(2) = (Y1(2), -+, 9N (2) = Ya(2)
We want to generalize this to vector bundles by the corresponding rule
@MOC(Z}J«) = <pl/ﬂ(zl/)tuuﬁa(2) Vze XM N Xl,

Now the transition function writes on the Right. This makes a difference due to t,,, right multiplication.



Example 1.3 (AY°(X)). Given complex manifold X = U, Xu- Define

02
n 0z

tl,uﬁa(z): Vi<a, <N

This satisfies the co-cycle condition. The corresponding vector bundle if the bundle of (1,0)-forms, denoted by
ALO(X).



2 Connections and Curvature of Line Bundles

We think about differentiating sections of bundles.

2.1 Differentiations of sections of Line Bundles
Fix a line bundle L — X. ¢ € T'(X, L) is given locally as
1. ou(z,) on X,
2. satisfying the gluing rule
ou(zu) =t (2)u(z,) on X, N X,
Consider differentiating local expressions on X,

0 0
@‘Pu(zu) = (37

2

b (2)) 00 + th)afusou(zu)

We do not want the first term. However, we may assume the Bundle L is holomorphic, i.e., the transition
functions

0
tuw(2) are holomorphic = —t,,(2) =0

0z,
In this case, we're differentiable in zZ-direction
0 0
@@u(zu) = tw(z)aigi@u(zu)
ozt o
=t (2) (2v)

We have this new Gluing Rule. We have the additional piece

azk
?J”. as transition function of A%!
i
Recall that .
0z
(a ; ) is the transition function of a vector bundle denoted by A°
2

We make the claim that a%-go#(zu) is a section of the bundle
Zh

L ® Al,O

JR— =k
upon noticing L corresponds to t,, and AL0 corresponds to g;. This is a tensor product of the bundles. But
4

what about the direction without bar? We need to make some choice. We have obtained

pel(X,L) >V (z,) € D(X, L ® ALO) = T(X, L ® A%)

Y= gﬂ‘ﬂu

We need 9
peT(X,L) % Vp= 5, eul(z) €T(X,L® ALO)
m

One way of doing this is using Unitary Connection.
Definition 2.1 (Metric on Line Bundle). A metric h on L is a section of L™1 ® 7! satisfying
h(z) >0 Yz

— — 1
The transition functions of L™ are t,,(2)~" and those for L ' are tu(2) . Hence gluing condition satisfies

—1
hu(zp) = tuw(2) 1t1u/(z) hy (20)
hu(z,) = \tw(z)|_2hl,(zl,) >0 Vze X, NX,
Here it makes sense to talk about positivity.

Now with the metric, we have notion of length, i.e., one can define the norm of p € I'(X, L).



Definition 2.2 (Norm on I'(X, L)).
o] = 0P,y on X,
and notice
goﬂaﬂh# =p, P, hy, on X, NX,

Now with a metric h, we can define the covariant derivative.
Definition 2.3 (Covariant Derivative). For simplicity we drop the indez of n
Ve = h""9;(hy) (1)

Since hy is section of L™1 ®fil(L) = fil, which is anti-holomorphic. Then 0;(hy) is section of

7 o ALo

again h~' as L ® L hits, we have
Ve € T(X,L®A™)

Ezxplicitly.
Ve = h~ (hd;o + (9;h)p)
=00+ (h'9;h)¢
= 0jp + (9;(log(h))) ¥

2.2 Curvature of Line Bundle w.r.t. metric

6 -
0z},

In summary, let 8; =

Vip = 0O5p
Ve =h""9;(hyp)

But these derivatives are more complicated than the usual ones. Here, partial derivatives do not commute, and
we need to understand why and how. On Euclidean Spaces

B ATy
But here we have something more complicated.
V7, Vie =0
Vi, Vil = V;Vip = ViVjp
= h™10;(h(h™ Ok (h))) — h™ Ok (h(h™10;(he)))
= h718;0k (h) — h ™' 040 (hy)
=h™(0;0k — O0;)(hp) =0
[V, Vil = V;Vip = ViV
= 710, (h(O)) — D0y (h0)
= W (041 Ppe) + h0,05) — B (b (O3B + 959)
— b (0,05 — (O™ k)0 + h ;)
= —(0;0;(log(h)))¢
Definition 2.4 (Curvature of Line Bundle).
Fy; = —0;0(log(h)) € T(X, A"Y)
1s the curvature of L w.r.t. h.

Now we have the key formula in differential geometry.
[V, Vile = Fe (2)

Observations.



F =Y Fpd AdzF
kj

is a (1,1)-form, i.e.
Fc F(X7Al’1 — Al,O ®A0,1)

where A%l = A10,

2. dF =0, since

(0(log(h)))
(9;(log(h))d=?)

dz &(5‘-(log(h)))dzj
9;0:1og(h)dz* A dz
9(0log(h))
(0+0)(90(log(h))) =0

(0
(9

Since

00+00=0"=0" =0
Hence there is closed form but not exact. This is example of De-Rham Cohomology.

Definition 2.5 (Curvature Form).

k.j
F =) (—i)F5dz ndzF = F
k.j

Hence the curvature form is taking Real Values.

Property 2.1. 1. F is closed form, i.e., dF = 0.
2. F clearly depends on the metric, but [Flar de Rham Cohomology class is independent of h.
3. [Flar 1is hence an invariant of the bundle L. We call [Flar the first Chern Class of L

Remark 2.1. Whenever you have a closed form, you can consider the De Rham Cohomology Class.

2.2.1 de Rham Cohomology

We need some Background on De Rham Cohomology.

Definition 2.6 (p-form). Let X be a smooth, differentiable, compact manifolds. A p-form ¢ is an expression

of the type
! Z Ci e iy PN da'v

There is a basic operator, d called the De-Rham Exterior differential

Definition 2.7 (De-Rham Exterior differential). Let f be any function on X, denote f € A°
of du’ ! " local dinat X
Fug (u, -+ ,u™) are local coordinates for

df =
J

Then
d:A° — AL fdf

d can be extended s.t.

1 X )
d: AP — APH! Y dp = P Z(dcz1 i) AT A N datr



82

dum du
d>=0
Definition 2.8 (de Rham Cohomology). Let F' be a p-form which is closed, i.e., dF = 0. Then
[Flar := F/{ezact forms dip where ¢ € AP~1}
Remark 2.2. d? = 0 implies that
{dy} = exact forms C {F | dF = 0} = closed forms

Property 2.2. As consequence of au?;umf =

We consider the de Rham cohomology group
Hip (X) == {F | dF = 0}/{dy}

The group structure is addition. This is in fact a vector space.

2.2.2 de Rham Cohomology on Complex Manifolds

Now given a complex structure. We consider the 1-dim case for simplicity. Let X be a complex manifold, and
let z be a local holomorphic coordinate, i.e.

z=x+ 1wy
One can view u = (z,y) as the real coordinates.
7] 0
df = fd + af

But
dz = dz + idy dz = dz — idy
Adding yields

1
dzx = i(dz—l—df)

1
dy = —,(dz —dz)

df—gf(d +dz)+gi§(dz—dz)
of 10f of 10f
- | == d — —=-=dz
2 (8x+ z@y) ) <8x i Oy y
of .of [ .0F
i Y ds AT s
(81; ay) *3 (83: o oy
of of .
—dz+ ==dz
"9 oz
More generally, for X complex manifold of dimension n, let z!,---, 2™ be local holomorphic coordinates. We

can define

_\9f
J

O
5‘f.fzj:8§jdzj
= df =0f+0f

and we have
o AP7 — APTLa 9 AP1 5 APaTtl

s.t. .
F=0 9 =0

In particular,
0=d?=(0+0)>
—0+0 +00+00
=0+0+ 90+ 09

Hence they anti-commute

00+ 00 =0



2.2.3 Curvature Form F of Holomorphic Line Bundle

Now we come back to )

. 9 o
Fi=—iYy_ = (log(h))dz" A dz*

We can write

. 0 0 P

7,k

=iy i 0 > 9 log(h) | A dz"
; 927 \ 4 oz

= —iddlog(h)

Now F' is readily seen to be closed.
dF = —i(0 + 0)09 log(h)
= —i(9%9 + 900) log(h)
= 00 log(h) = i0*log(h) =0
Thus F is closed. But in general F' is not exact. It is tempting to argue F' is exact by arguing the following
F = —iddlog(h) = —i(d + 0)dlog(h)
= —id(0log(h))
But dlog(h) is not a well-defined form. Since

1

heT(X,L7'@L )

This holds locally but not globally. The cohomology measures something global, but the curvature measures
something local, really dependent on the metric. But the total amount of curvature is fixed.

Remark 2.3 (First Chern class independent of metric). More precisely, let h and h' be two metrics on L and
let F, F' be two corresponding curvatures, i.e.

Fy; = —0;05log(h)  Fy, = —0;0;1og(N)
However

Fy

- FE/j = —0;0rlog(h) + 0;0; log(h")

h
— ~0;0glog(77)

But % is strictly positive C*° function since

—— — h
hel oL, NWel'el  — €1 = C function >0
Then say
h
W= e for certain ¢ € C™
Now
Fr;— Féj = —0;0¢¢
i(Fyy — Fy,)dz? N dZ* = —i0;0p0d27 A dz
= —i00¢ = —i(0 + 0)0¢
= —id(d¢) exact form
Hence

[Flar = [F']ar

10



Fact. Suppose we have ¥ complex 1-dim submanifold of X. Then L|y, is still a line bundle, and h|L\z is a
metric. Then F' is a curvature form which restricts to 3. Thus

/ F is a intrinsic
b

Let 1 be any meromorphic function of L|s,, which is not identically 0. Then we can prove the following

1
— | F = # zeros of ¢ — # poles of ¢
2T b))

11



3 Connections and Curvature of Vector Bundles

On an open set of C", a vector-valued function ¢ : C* — CV is of the following form
o(z) = here N is the rank

To deal with global notions, we again need some gluing rules. Let

X = U X, coordinate charts
n

A vector bundle £ — X is given by matrix-valued transition functions
{tw”5(2)} on X, NX,
and we define gluing rule

p e (X, E) <= ¢)(2,) on X, satisfying onlzu) = two‘ﬁ(z)gpf(zy) on X, NX,

Ezxplicitly.

@ (2u) tw'y oty [e(z)

: = . : on X, NX,
e (2) b ™ ) el (2)
O
We always assume transition functions are holomorphic, hence it is holomorphic vector bundle.
3.1 Covariant Derivatives of Sections of Vector Bundles
Let £ — X be complex vector bundle. We want to equip & with metric Hgg. Take
¢ = pu(zn) = ¢*(2) e I(X, E)
In the O-direction
Ve = 0pp® € (X, E® A1) =T'(X,E ® A*1)
To construct V;, we need the notion of a metric H on E. If p € I'(X, E)
0 oPHz, >0  ©#0

with Hpz , satisfying the condition that this expression is a scalar, i.e.

o5 () on(5) Hay () = €3 (2) 98 () Hz () on X, N X,
Definition 3.1. H = Hgg is metric on E if

PO Hap? is a scalar
Hence we've obtained a transformation law for Hg, (z,) and Hy (z,). We can now generalize the formula
Ve =h"0;(he)
in the case of line bundle. Define the inverse of HEa by the following equation.
H VEHEQ =047 identity matrix
Similarly o
Hg H =63
We now define the covariant derivative using a Key Formula.
Definition 3.2 (Chern Unitary Connection Covariant Derivative).
Vj® = H¥9;(Hzp¢") € (X, E @ A™°) (3)

One shall observe this generalizes (1).

12



<P1

Components and Matriz Notation. Write ¢ = : as vector bundle of rank N. Write
N
¥
1/’[3 = (¢17"' ,wN)

Write

MY, . My

MU=
MY, .. MNy

Write matrix multiplication
(PQ)“[, =P*Q7 where the first 7y is row index and the second -y is column

Similarly, we can multiply matrices with the type

Kxo  Lus
For example
H K=o H" Ky
O
Example 3.1 (Writing covariant derivative in Components and Matrix Notation).
V™ = HYT0;(Hzp0")
In components
(Vip)™ = (H™'9;(Hyp))"
and in matriz notation
Ve =H"'0;(Hy)
3.2 Curvature of Vector Bundle
We want to know in which way they do not commute. Now we compute the commutators.
[V, Vile = 05050 — 0g050 = 0 as standard formulas in flat spaces
[V, Vile = Vi (H ' 0x(He)) — Vi(H™'9;(Hy))
= H™(0;(H(H ™ 0x(H))) — H™'0,(H(H"0;(Hy))))
= H'0;0,(Hyp) — H '0x0;(Hyp)
= H Y0;01 — 0r0;)(Hyp) =0 standard derivatives commute
Here comes the most important one.
[V, VE9® = ViVie = VE(V;)
— H'0,(Hogp) — 0(H~'0,(Hy)
= H™'0;(Hogp) — Op(H ' ((0;H)¢ + HO;0))
= (H '0;H)0rp+ H "HO;0rp — H "HOz0j0 — Op(H '9;Hyp)
= —{0p(H™'0;H)}¢"
= FEjaﬁcp’@
[V, Vile = Fy;  in matrix notation
where B
Fy;® g 1= —0p(H 9 Hp)
Definition 3.3 (Curvature of Vector Bundles). The curvature of E w.r.t. Hgzg is
By, = —0p(H*70; Hyp) (4)

Notice that in matrixz notation
-1
F%j = —0p(H "0;H)

Also notice that F is a section of A'! @ End(FE)

13



Now we discuss Connection Form.
Definition 3.4 (Connection Form). Recall that
Vip = Oy
Ve = H™'0,(H)
=H 'Hojp+ H ' (0;H)p =00+ H *(0;H)p

We define the connection form as '
A= (H '0;H)d’

i.€.
A= dd Ay + dZF AR
with
S = (H'0;H)*; = H*9;Hxp
A%/a =0 no correction in O-direction
Hence
A= dsz‘;‘ﬁ in component notations
= dz7 A Aj is a matriz, A; = H'0; H matriz notation

Now we introduce the basic formula for the curvature.

Definition 3.5 (Curvature Form).
F= iFEjo‘ﬁdzj AdzF € T(X, AV @ End(E))
But for simplicity we drop i since its cumbersome.
F = FEjo‘ﬁdzj A dz
Lemma 3.1 (Basic formula for the curvature).
F=dA+ANA

The particular combination on the RHS transforms well even though A itself does not.

Proof. We compute the RHS.

dA = d(z dz1 A;) later we drop summation in j
j
= (5 + 8)(dzJAJ)
= dzF(0;Aj) Nd2? + d2F(0p Aj) N d2
= —0:Ajdzd NdZF + d2F (0, A)) A d2d
= Fy;dz NdZ" 4 (0, Aj)d2" A d2

Now
OA; = Ox(H '0;H) = (0,(H "))0;H + H 0,0, H

We claim that
O(HYY=-H'o;HH ' = -H %9;H
To check the claim (5) we note
H'H=1
O(H*H)=0
o(H YH+H 'o,H =0
O(HYY=—-H 'o,HH™!

14



Thus
oA = —H Y0 H)H *0;H + H ' 0,0;H
OAjd2" Ndzd = —(H 'O, H)dzF N (H'0;H)d2 + H™ (0,0, H)dz* A d2
But the last term is 0 due to anti-commute. Hence
(’9kAjdz’“c ANdZ = —Akdzk A Ajdzj
=—-ANA in matrix notation
As a summary

dA=F—-ANA
F=dA+ANA

Theorem 3.1 (Second Bianchi Identity).
dF +ANF—-FNA=0
Proof. We compute
dF = d(dA+ANA)
=0+dANA)
=(dA)NA+(-1)ANdA
=(dA+ANANA-—ANdA+ANA)
=FNA—-ANANF

Remark 3.1. One can think of Second Bianchi Identity as
daF =0
where d 4 is the extension of exterior differential.
A bit review
Remark 3.2 (Identities for the Curvature).
Vip® = Oge®
Vi = H0;(Hzp¢")
= H7 (9;Hzp” + H730;")
= 050;¢" + (H*0;Hxp)¢”
= 9;¢° + (H*0;Hsp)¢"
V™ = Opp® + Ay’
Provided
A%B =0 ¢ =k in the O-direction
Ay = H*"0jHxp
= H_lajH ¢ = j in the O-direction
For Matriz connection
A= Ajs
=dz’ Ay &y = (H'0;H)G
Then we have
I = —OkA;
F=dA+ANA

and the second Bianchi Identity
dF +ANF—-FNA=0
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3.3 Induced Connections

To appreciated the second Bianchi Identity, we need to understand induced connections. What are these?
Notice A vector bundle E gives rise to many other bundles.

Definition 3.6 (E. Dual Bundle). The sections 1, of E. can be paired with the sections ¢* of E to produce
scalars. Given

peN(X,E), ¢el(X, E)
one define E. by requiring an association
Vo p® gives a scalar

Now for transition functions
Vpapy = ¢VB<P€ on X, NX,

This is transition law for 1,q and 1, 3. Thus given E vector bundle, we obtain F, as dual vector bundle.

Definition 3.7 (Induced Connection on Dual Bundle). A connection on E, i.e., a way of differentiating sections
of E, induces a connection on E.. We obtain the induced connection by requiring the Leibniz Rule holds. Indeed,

if Leibniz Rule holds,
(Wap®) = (Vi) o™ + Ya(Vep®) (6)
Notice

1. Yo p® is scalar of Oy on LHS is standard derivative.
2. Vp® is connection on E

3. Now we solve for V).

Ezxplicitly.
(Ortpa) ™ + Ya(0e6™) = (Vetha)#* + va(Dep™ + A50°)
(Orba)e™ = (Vetoa)p® + Pa A’
= (Vetba) o™ + s AL 9"
Db = Vevba + 5 A7,
Viothe = Opthe — zbﬂAfa connection on F,
Recall

Vo™ = 0pp® + A?‘ngﬁ is connection on F

Notice in matrix notation

Vi = 0pp — Ay
Vip = 0pp + Ay
We have both the sign difference, and that square matrix(connection form) multiplying on Left and Right differ.
In particular
Ve = 0jtha — Y (H0;H5,)  Yji=1,---,n
Vitba = Oha Vk=1,---,n

O

Definition 3.8 (Product Vector Bundle). Now suppose we have 2 holomorphic vector bundles E and E. Then
we can construct _
E®FE as product vector bundle

with its transition functions as the product of the transition functions of E and E.

Definition 3.9 (Connection on Product Vector Bundle). In particular if we have connections V and VonE
and E, we again obtain a connection on the tensor product E ® E via imposing Leibniz rule. More explicityly
for y
p e I(X, E), ¢ e (X, E)
we have ~
pp el X,EQFE)
and Leibniz rule requires

V(eg) = (V) + (V) (7)
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Ezxplicitly.
Ve(pp)*® = (V™)™ + (V%)
= (Bup™ + Afpp”)p + 0% (80" + A5¢°)
= Du(pP)°* + Afe”¢% + A3 °
The connection form on F ® F is just ~
Ap+ Ay
O

Definition 3.10 (Endomorphism End(E)). Let E be a vector bundle, and let End(FE) be the vector bundle of
endomorphism
T =Tg € T'(X,End(E))

i.e.,

End(E) = E® E,
Definition 3.11 (Connection on End(E)). If V is connection o E and ¢ € T'(X, E) with
V™ = 9y + Afge”

then
VeTg = ang + A?'yTg — T,?‘Azﬁ

where
1. A%Tg is the connection on E
2. and T;"Azﬁ is the connection on E,.

In matrix notation

VT =0, T+ AT —-TA,
= afT + [Aév T]
We care because we want to differentiate the curvature, which is an endomorphism. Back to
F,?, € (X, A @ End(B))

we want
VgFEj = agFEj + AEFE]' — FEjAZ

In the second Bianchi Identity
0=dF+ANF—-FANA

ie., if

Definition 3.12 (Exterior Derivative d4). we define da on T'(X, AP @ End(E)) by
1 [} £ 4
T = H E Ty, b Bdu LA Adu' p-form
1 m o ‘ ¢ - L
daT := — E du™V Ty, ... 4 ANdut A--- ANdu? defines the exterior derivative
p| s »p ﬂ

By Second Bianchi Identity this yields
daF =0

3.4 Chern-Weil Theory

Let E — X be a holomorphic vector bundle. We let Hgg be a metric on E. Recall the curvature form
v« j k
F; dej ANdzZ

depends on the metric. But in fact the characteristic classes do not depend on the metric.
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Definition 3.13 (Characteristic Class). We can define for each p > 1 the object
cp(F) :=Te(FA---NF) p-factors of F'
Since F is a (1,1)-form, valued in End(FE), this gives
FA---ANF wedge p times gives a (p, p)-form valued in End(E)

Hence
Te(FA---AF) s a(p,p)-form

Then Chern-Weil says

Theorem 3.2 (Chern-Weil). 1. ¢,(F') is always a closed (p,p)-form, i.e.
dep(F) =0

2. [cp(F)lar, i-e., the equivalence class of c,(F) mod ezact forms is independent of the connection V, defines
[ep(F)] := {pth Chern Class}

Proof. Apply the second Bianchi Identity. We begin by proving (1). For simplicity we prove for p = 1 and
p=2. Forp=1
a(F)=Tr(F)

1. To see ¢1(F) is closed, we just differentiate by applying d
dey(F) =d(Te(F)) = Tr(dF)
=Tr(-AANF+FAA)
=0

Since in general, given two square matrices M, N, we have M N # NM but trace commutes Tr(MN) =
Tr(NM). This is due to

(MN)g = M;"Ng
(MN)g = MON]
= NJMY
— (NM))
Tr(MN) =Tr(NM)
What we’re dealing with are forms. But this is indeed fine since F' is 2 forms that commutes so
Tr(AANF)=Tr(F AA)
de1(F) =0
2. To see independence of connection, given A and A’ as two connections, and let F', F’ be the two corre-
sponding curvature form. The claim then is

c1(F) — c1(F') = d{ of Something}

The key observation is to set
A=A"+B

If A and A’ are connections, this B is a 1-form, globally defined. Since
Vo is globally defined, and Vi = d¢ + Ay

as well as
V' is globally defined, and V' = 0p + A’

Then subtracting
Vo —V'¢  is globally defined, and (A — A")y is globally defined
Let’s introduce the following one-parameter family of connections

At = A/ +tB
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linking A’ to A. Let

F be the curvature of A;
Ft :dAt+At/\At

Next we write things as

c1(F) —c1(F') =Tr(F) — Tr(F')
td
= Tr(F}y))dt
| Gy
td
1
0
1
:/ Tr(dB+ BA A, + A, AB)dt  observe A, = B
0

1
=d ( / Tr(B) dt) the latter cancel because A and B are one-forms
0

But since B is globally defined, this gives an exact form.

Now we prove the case for p = 2.
co(F)=Tr(FAF)

1. First, we show ca(F) is closed (2,2)-form.
deo(F)=dTe(FAF)=Te(dF NF + F ANdF)

=2Tr(dF ANF) =2Tr((-ANF+FNA)NF) one apply the Bianchi identity
=2Tr(-AANFAF+AANFAF)=0

2. Next, we show that [c2(F') Jar is independent of the connection V. Once again, let V, V' be two connec-
tions, and set
A=A +B globally defined form

One define
At = A/ + tB
SO
At == A/ t - 0
At = A t= ].
and define

Ft = dAt + At AN At
Next we write

eo(F) — ca(F') = / o) dr

0

1
:/ Tr(Ft/\Ft—l—Ft/\Ft)dt
0

1
= 2/ Tr(Fy A Fy) dt
0
Noticing

Ft:dAt+At/\At+At/\At
=dB+BANA+ANANB

One has

1

ca(F) —co(F") =2 Tr((dB+ BAA:+ A: AB)AFy)dt

=2
1 1

2/ Tr(dB A F,) dt+2/ Tr((B A Ay + Ay A B) A Fy) dt

0 0
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One would like to write the former as an exact differential.
1 1 1
/ Tr(dB A Fy) dt = d(/ Tr(B A Fy) dt) + / Tr(B A dF;) dt
0 0 0
1 1
= d(/ Tr(B A Fy) dt) + / Tr(BA(—A: ANFy) +BA (Fy AN Ay))dt
0 0
Using cancellation one obtain
1
ca(F) — co(F') = 2d(/ Tr(B A Fy) dt)
0

as an exact form.
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4 Kahler Geometry

4.1 Introduction to Kahler Metric

Now we specialize to tangent bundle. Let

x=Jx,

m

be a complex manifold of dimension n.

Definition 4.1 (Tangent Bundle T*%). We consider the following vector bundle with transition functions

) 077
tw? (2) = (8—;;) on X, NX, V1i<j k<n

We define the tangent bundle T*° where ¢ € T'(X, TH?) if any
Pu(za)  on X,

satisfies the gluing rule _ ‘
‘Pft(z,u) = tuujk(z)@llj(zu)

On the vector bundle we pick a metric ij(z) on T, i.e, we want to let
|2 = ijgokﬁ to be a scalar
Now we have a Chern Unitary Connection on 710,
Ve’ = O’
Vo' = H0;(Hpe")
As we recall
[V, Vile® = Rgfpsﬂp

jozp = faE(Hmame) is the curvature

Question: Why are we using the Chern Unitary Connection? The Chern Unitary connection is dictated by two
conditions

1. We retain the complex structure via Vzo = Orp
2. and it is unitary by definition.

However in the case of tangent bundles, there is another natural connection VX, the Levi-Civita Connection,
which is dictated by

1. unitarity
2. and by the fact that it is torsion 0.
To understand torsion free, for
Vi = 0;0" + A"

We can define

Definition 4.2 (Torsion Tensor).
¢ ._ 7L ¢
Tjp = Ajp — Ay,

Remark 4.1. Notice this only makes sense for tangent bundles, since on a general bundle E — X,
Vit = 050 + Afpel

where j is base index and B is fiber index. Hence for general bundle it doesn’t make sense to talk about torsion.
In general, the most convenient connections are the ones that have torsion zero.
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A natural question to ask is do these two connections lead to the same thing? These two conditions are quite
different. Not surprisingly, the Chern Connection and the Levi-Civita Connection are different.

v#vLC’

Question: are there metrics HE;‘ for which
vV =ve
This is non-trivial. We call these metrics Kéahler.

Definition 4.3 (Kéhler Metric). A metric H; on TH0(X) is said to be Kdhler if
¢ _ : € _ gt
15, =0 i.€e. A, = Ay
But this condition actually has a lot of remarkable properties for the manifold.

4.1.1 Global Implications of the Kdhler Condition
For this we introduce
Definition 4.4 (Kéhler Form). Given a metric g;; on Tangent Bundle THO we create the (1,1)-form
w = igEjdzj A dzF

Lemma 4.1 (Characterisation of Kéhler Metric). gr, is Kdhler iff

dw =20
i.€.

Oegry = 09 (8)
Proof. Tt suffices to just compute.
dw = id(gy;d=" A dz")

= i(dgg; N dz? N dz*)

(0 ’ 0 ' i .

? 0 0 —_— 9 o 3 _—
=3 ((MQEJ - ggﬁz)dze Ndz? A dZF + (ﬁ%y - ggéj)dzz Adz? N\ dzk)

Hence dw = 0 implies both

0 0
92095~ g 9k =0
0 0

o7 ~ g =

We observe now that these are exactly the same as
¢ _
1;,=0

Indeed
¢ ¢ om om
Ajp = Ay, > g " Oigmp = g " OpGrmj

4.1.2 Key Themes

Assume now that our manifold X is compact. The reason we do so is because we want to talk about the
cohomology classes. Then a Kahler metric has an associated cohomology class. Recall

[w]ar = {equivalence class of w modulo exact forms}

The Key theme in complex geometry is
1. Fix a Kéhler class [w]qr.

2. Is there a representative metric in this given class with ‘best’ curvature properties?
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3. Such a metric is called the canonical metric.

The answer: ‘Best’ will turn out to be metrics of constant scalar curvature and whether they exist is a deep
and very hard question, which is the analogue in complex geometry of Einstein’s Equation. Our program:

1. Understand better the curvature tensor of Kéhler metrics (e.g. First Bianchi Identity, and properties of
the Ricci Curvature tensor).

2. Constant scalar curvature condition becomes an explicit 2nd order non-linear PDE.

3. We can solve this PDE in some very important cases (e.g. Yau’s solution of the Calabi conjecture).

4.2 Curvature Tensors of Kahler Metrics
Let X be a complex manifold, and 955 be a Kéhler metric.

Definition 4.5 (Curvature Tensor of Kéhler Metric). Recall in general that the curvature of a metric gr; 18 of
the following form B
Ry, 1= =06l ™ 0s0m)

as special case of FEJ-QB. Introduce lowering index

R

o L
Tiap ‘= Jaelt

k5 p
Definition 4.6 (Ricci Tensor). Ricci curvature is the contraction of the full curvature

_ Rt
Ry, = Ry; ,

and the Ricci form _
Ric(w) = iRg;dz’ A dz*

Lemma 4.2 (First Bianchi Identity). One has the First Bianchi Identity

joﬁp = Rﬁjﬁp = Rﬁpﬁj (9)
i.e., we can permute 1, 3 indices and 2, 4 indices.
Proof. We compute
Ry jam = 9a¢(—=05(970;9pm))
= —9q¢ (35(9)9i9pm + 9P 050;9pm)

Notice we have formula B B B
O(9?) = —9" (Opgrs)g™P

In matrix notation this is

To see this we know

G'G=1
%(Gil)G + GilﬁgG =0
%(G_l) = —G_lﬁgGG_l
Hence we use this formula and substitute to above.
Rijam = 929" (O5975)9°7 01 95m — 929 T 0503 9pm
= 939" (95975)9°7 i 9pm — OgOjgam  since ggug”? = &7
Now to interchange indices, using that gqggﬁ = 52 one has
Rijgm = (0593:)9°095m — 050igam
One may indeed interchange k and g, and j and m using the Kihler property (8). O

Lemma 4.3 (Ricci: The fundamental identity in Kéhler Geometry). Given Ricci curvature tensor Ry;, one
has the explicit form
Ry; = —0;05log(det(ggp)) (10)
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Proof.
Ry; = REJ ¢
= —0(9"P0;9p0)

It suffices to prove B
970950 = 9; log det(gpe)

Notice in matrix notation G = (gz¢) this is
Tr(G~19;G) = 9, log(det(G))

Assume that G is diagonal, i.e.,
A1

Then

0;(log(det(G Za log(A¢) =

Hence we have the fundamental identity in Kéhler Geometry

Ry = —070; log(det(gpe))

Alternative Proof of (10) using forms. We claim the basic identity we need is the following: if
T = iTydz’ Nz

Then

where Trace denotes the contraction _
Tr(T) := ¢'* T,

To check this, assume that both are diagonal, i.e.

T=i) Tyds' Adz
4

and
w= iZwEkdzk A dzF
k
Then up to some constant
TAW" = (iZTndzz/\dz ZWIC dz" /\cfk1 . Z Wik Fon—1 /\dék"*l)
L k1
= Ty ([ [ gmp) (d2' AdZ A -+ Ad2" A dz")
pF#L
=> (T ([ gpp)(dz" NdZ* A Nd2" AN dZ") = g™T, W
‘ P

We would like to use this formula to apply to Ricci curvature. Take the form

w= igEjdzj A dz*
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Then the variation writes

) 7)ot
= LA A+t @A A W)
_ dw Awnt
o
- nTriiW) %T(n —1)! = Tr(dw) = g7 dwr; = ™ dgmq

where in the last line we used the trace identity. So in particular
9;(log(w™)) = 97" 0;(gmq)
Ry = —05(9"" 0 gmq) = —00; log(w")

And we obtain in forms
Ry, = —070;(log(w™))

Remark 4.2 (Geometric Consequence). Observe that gz is a metric on T°(X). This implies

det(gpe)
is a metric on A"TY°(X) the mazimum wedge power.
Definition 4.7. If Vi,---,V,, are sections of T*9(X), then
ViA---AV,
is a section of A"TH0(X).
Hence transition functions of A"T1°(X) correspond to det(gge). Notice A"T*°(X) is a Line Bundle.

In the following we reinterpret (10). Set
Kyt = A"TH(X)

Then
—0;:0; log det(gpe) = —0;0p log(metric h on K') = c1(h)
Notice the RHS is the curvature of K;(l. Moreover assume that X is compact, then
[er(h)lar = a1 (Kx1)
Lemma 4.4 (Ricci Form). Given Ricci form Ric(w)
d(Ric(w)) =0
[Ric(w) Jar = 1 (K"
Where K;(l is the mazimum wedge powers of TV, This is ‘Anti-canonical Bundle’
Proof. To see Ric(w) is closed form, notice
dRic(w) = —i(0 + 9)9d(log(w™))
= —i(0%0 + 000) (log(w™))
= —i00d(log(w™))  using 9* =0
= i852(10g(w")) using 90 + 99 = 0
=0 using 52 =0
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4.3 Calabi-Yau

Given X a compact, n-dim complex manifold.

Remark 4.3 (Calabi Conjecture). Given a tensor Ty; (1,1)-form, is there a Kdihler metric w for which
Ric(w) =T

i.€.

Ry;(w) = Tg;

where ‘
T = iTy;d2? A dz"

Remark 4.4 (Necessary conditions on Calabi Conjectures). Clearly, a necessary condition is that T is closed
(dT =0) since ~ o
Ric(w) = i001og(det(g)) = dRic(w) = (9 + 0)id0log(det(g)) =0

since 92 =8 = 0. Also one needs

[T]ar = [Ric(w) Jar = e1(Kx')
Hence, if there exists w s.t.

Ric(w) =T

then we must have

a1(Kx') = [Ric(w)]ar = [T]ar
necessary condition for the solvability of the Finstein’s equation

[T] = ci(KxY)
Proof of Remark /.4. Notice (12)
Ric(w) = —iddlog(w™)

But w” is an (n,n)-form, i.e., a section of
Kx ® Kx

where K x is the line bundle whose sections involve
f(2)dzt Ao A d2™

So Kx is really the bundle of n-forms. This implies w”™ is a metric on K;(l. Why? A metric on a line bundle
L is by definition, a strictly positive section of

L 't'eLt
Now let L := K)_(1 we see that a metric on L is thus a positive section of Kx ® Kx. Thus
Ric(w) = —i0d(log(w™))
is precisely the curvature of the bundle K ;(1. Thus
[Ric(w)Jar = e1(Kx")
is independent of w. O
Proposition 4.1 (Calabi Conjecture; S.T. Yau 1976). Given T satisfying dT =0 and
[T]ar = [Ric(w) Jar = e1(Kx")
Then in any Kdhler class [wo ], there exists a unique w € [wo] with
Ric(w) =T
Corollary 4.1. In particular, suppose that we’re on a manifold with 0 Chern class
a(Kx')=0
Then in any Kdhler class [wq ], there exists a unique Kdhler metirc w € [wo ] with
Ric(w) =0
Back then people didn’t know whether metric with zero Ricci curvature exists. Then this is striking.

Remark 4.5. Observe the equation
Ric(w) =0
1s the Fuclidean analogue of Finstein’s Equation in vacuum

Ry; =0
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4.3.1 Reduction to PDE

How did Yau solve it? Reduction to partial differential equations.
Lemma 4.5 (99-lemma). Let [wo] be a Kdihler class. Then
wE [wy] &= w=wy+i0dp, wy+i00p >0, ¢ is unique up to an additive constant

Up to an additive constant
w <= ¢ (scalar function) Kdhler potential

We can try solving for ¢ in the following way. We want to solve

Ric(w) =T
Ric(w) — Ric(wy) = T — Ric(wp)
—id0log(w™) +i00log(wy) = T — Ric(wp)  in the same class ¢; (Ky")
—i00 log(w—n) =i00f for some f well-defined up to constant, using 09-Lemma 4.5
0
- log(w—n) =f since w—n is a scalar function

wo wo

Ea

wWo

W =wpe!
(wo + 100p)" = wite ™! using 99-Lemma 4.5 once again, since we assume w € [wp |

This is the well-known Monge-Ampere Equation. Notice i0d¢ essentially involves the Hessian of . In coordi-
nates, the equation is

det((go)z; + 9;050) = (det(go)g; )e’

This is very nonlinear second order equation. This is solved by Yau, a big achievement in 1976. Idea is to use
the Method of Continuity.

4.3.2 Method of Continuity

Imagine we have a space of equations. Imagine somewhere a point in the space, which is a equation that we
want to solve. The key idea is to look at some other equation in the space such that we know how to solve. We
want to connect these two equations via a path. We need requirements

1. Suppose at any point on the path that we can solve, we can solve for nearby equations. We hope to go
all the way to the equation we want to solve.

2. But there is danger that the neighborhood for the equation we can solve becomes smaller and smaller and
we cannot reach beyond. We need to guarantee that we do not get stuck. In order to show we do not get
stuck, we need the idea of ‘a priori estimate’, the key in Partial Differential Equations. We need to prove
the a priori estimate.

In this history one have all a priori estimates but for one. Yau gave the estimate and won the fields medal.

4.4 Solving Monge-Ampere Equation using Method of Continuity

Fix X complex compact manifold and wy K&hler form and f(z) scalar function. We want to solve

(wo 4 109p)" = wiel (13)
wo + 100 > 0

Recall that

T(z) — Ric(wp) = i00f for some f only determined up to an additive constant
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4.4.1 Path of Equations
Set

w = wy + i00¢

w>0 << w 1is ametric
The equations that we know how to solve is
(wo + 18&0)" = w{}

The solution is just ¢ = 0.

Remark 4.6 (Necessary condition). Observe a necessary condition for the existence of solutions to

(wo +100p)" = wie!

1s that

Proof. Indeed the equation implies

/wgef /(woJriagcp)"
X p's

_ / W+ Ol 1000 + Ol (1099)%) + - -+ + C(idTp)"
X

We claim that

/ witivdp = 0
b

Indeed, using Integration by parts

/ Li0dyp = / A(wh~tidy) since dwl ! = (n — 1)(Awo)wi 2 but dwy = 0 since it is Kihler

= / (0 + 0)0(wi i) since & = 0
X

= / d(O(wptip)) = Awhtip) =0 using 0X = @
b

Now we make a choice of a path of equations linking what we want to solve, i.e., (13)
(wo +100p)" = wie!
to the equation that we know how to solve
(wo +10d¢)" = wy

The candidate is 7 B
(wo +100p)" = w”etf“t wo + 1900 >0 Vo<t<l

We need to verify the necessary condition (14) as well, so we need

199 — netftect
{<w0+’f‘2‘ﬁ% woe VO<t<l
Jx wie = f Wy
Proof that the path (16) is reasonable with proper choice of ¢;.
ecf/ wgetf = / wp
b'e X
ect — fX w()l
fX wget!
_ Jwt
ce = log( ot etf)
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Clearly at t = 0 one has ¢; =0, while at t =1

Jx wiel
Thus with choice of ¢;
J @
= log(——"— 17
Ct Og(fX wgetf) ( )
we can choose the path (15). O

We notice
t=0 = ¢=0 with ¢ =0
t=1 = (wo+1i00¢p)" = w{ with ¢; =0
Remark 4.7. If we can solve the equation (15) for some value to, then we can solve it for t close enough to t.

We formally define the interval
I:={te€]0,1] ]| (15) admits a solution} (18)

It is clear that 0 € I. By method of continuity, if we’re further able to show I is both closed and open, then by
connectedness I = [0, 1] the whole interval, and thus our equation (13) is solvable.

4.4.2 Open interval: Implicit Function Theorem

Proof that interval I (18) is open. For any ¢ € I, we want to show (¢t — 0,¢+ 6) C I for some ¢ > 0 sufficiently
small. From this we consider the map

100p)"™ :
(wo +i00p)" o

t

(tv 90) = ]:(t7 90) =

wy
where
fit=tf+to
and we apply the Implicit Function Theorem to be discussed in Lemma 4.6. O

Let’s recall the implicit function theorem from Calculus.
Remark 4.8 (Implicit Function Theorem). Suppose we want to solve an equation of the type
F(t,z) =0
and we have one solution
F(to,z0) =0

Indeed for proper F', around the fized ty one has a solution in the small neighborhood. But the danger is when
the graph F' is vertical at tg so on one side one has no solution, but on the other side there are two. But this is
equivalent to say

oF

%(to, 1’0) = 0
So it suffices to require

oF

%(to, zo) #0

Lemma 4.6 (Implicit Function Theorem on Banach Spaces). Let By and By be Banach Spaces, and consider
a map
F:Rx By — B (t,x) — F(t,x)

and we assume

F(to,w0) =0
We assume also the following that F € C!, and
oF o . ) . .
%(to,x) 1s invertible with bounded inverse as a mapping B; — Bs

Then there exists an interval (to — €,to + ) with the property that there exists a neighborhood V' of xg s.t. the
following is true: for any t € (to — ,to + €), there exists a unique x € V that satisfies

F(t,z)=0
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In our case, what is the function F that we want? We want

100p)™
(t) 5 Flt,g) = LT 100" (19)
wo
where
fei=tf+c

We also need to specify what By and By are. A naive choice would be
B, =C?
By ="

But these naive choices do not work since they’re hard to manipulate. The good choices are in fact, for fixed
a € (0,1), and choose

By = C**(X)

By = C"*(X)
where C*%(X) are Holder Spaces defined as follows
Definition 4.8 (Holder Spaces on R?"). Consider Q € R?".

CO,a(Q) = {W functions on Q |sup |[¢Y(z)| + SupM < o0}
sty |z —yl*

and for k € N
C%(Q) := {4 functions on Q | Dy € C®* for all B with |B| < k}

What about on complex manifold X?

Definition 4.9 (C*°(X)). For ¢ functions on X, it corresponds to ¢,,(z,) on ®,(X,) so we require 1, € C**
for all p.

But in fact, to address subsequent uniqueness, we choose

Bii={p e ()| [ wfp=0) (20)
X
Byi= (v e 0" (X)| [ wpv=0) 21)
Lemma 4.7. With By and Bz as in (20) and (21), and F as in (19), the map
OF . . . .
8—(t0, ) : B1 — Bs is invertible with bounded inverse
¥

Remark 4.9. How to understand g—g ?

1. For function of one variable f : R — R, differentiability is

Af=06f+o0(df)

of
/ —_ 7
2. For functions of several variables
f:R" > R?
Consider a change
ox:h—=4df
Then the derivative in the direction h is
of of
_ h— —
ox ox

which is a linear map from R™ — R?,
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3. For function on Banach Space
F By — By

Given a direction h € By let 0 f be the increase corresponding to (6x)h the derivative is

of
hn—>%

Proof. We begin by computing

F= n
“o
0F = oo J;ia&o)n since f; does not depend on ¢
_ né(wo sz'a&p) A (wo +109¢p)" 1
W
= ni@é(&p) A (O:u(;l+ o) since dwy = 0 and that §(0d¢) = 0 (d¢p)
0
One recall the identities (11)
TS ) )=
Here for the choice with
w = wp + 100

w= igEjdzj A dz*
One may take
T =i0;0:(0¢)  or in matrix notation T = i0d(5¢)
Tx(T) = ¢*9;0:(6) = Do (5)

Thus
wn wn
0F = (Tr(T))— = Au(dp)—
F = (THT) 2 = Au(09)
Let h € By be a given direction, and let
dp = (0z)h
Consider SF ) . n
w™ w
h— 52— 3a w((62)h) o (ALh) o

This is the formula. We first address Invertibility of g—i. For our

B, 2% B,

g—i is invertible means that, setting h = d¢p

Y € By, there exists unique h € By s.t. (A h)— =1
w
The equation can thus be rewritten as

(Auh) = = = Ayh =20
wy wn

We need to be able to solve for arbitrary i € Bs. if Here we need a famous theorem regarding solvability of
Laplacians.

Theorem 4.1. Let (X,w) be a compact Kahler manifold, w Kdihler form. Consider the equation
Ayh =T
Then
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1. The equation admits a solution iff fX W' =0
2. The solution is unique up to an additive constant.
3. If ¥ € C% then h € C*“. Moreover, if ¥ € C™, then h € C*.

In our case, the condition

O:/w"@:/w"ww—%:/d}w(’} V1 € By
X X w X
Hence by definition of B, the equation indeed admits a solution. O
4.4.3 Closed Interval: A priori Estimates
Now the hardest step is to show I (18) is closed.
I:={t€]0,1]] (15) admits a solution ¢ € By}
i.e., we have to show that if {¢;} C I and ¢t; — T, then T € I. In particular
1. t; € I means that there exists ¢; € By satisfying
(wo +100¢p;)" = witelts
2. T € I means that there exists pp € B satisfying
(wo + 10Dpr)"™ = wirelT
Suppose ¢;; converges in By, then

or = lim @y, satisfies (15) at T
j—o00

In general, think about: if sequence of equations converge, does its solution converge? In general, no! The
question is: if t; — T, do ¢y, converge in B1? The key observation in the theory of PDEs is that a weaker
statement suffices!

If t; — T, is there a subsequence of {¢;,} which converges in B;?

We do have tools to show that the sequence has a convergent subsequence. And the convergence of a subsequence
can be achieved if we can prove some estimates. We have the model theorem for the existence of a convergent
subsequence.

Theorem 4.2 (Arzela-Ascoli). Let {f;} be a sequence of functions on compact Q € R™. Assume the following
1. {f;} is uniformly bounded for all j, |f;| < C.

2. the sequence {f;} is equi-continuous in the following sense: for any ¢ > 0, there exists 6 > 0 positive so
that |x —y| < & implies
hj(z) —h;(y)l <e ¥V

Then {h;} admits a uniformly convergent subsequence.

Remark 4.10. Now how do we prove a sequence of functions is equi-continuous? An example of a sequence
{h;} which is bounded and equi-continuous is a sequence that is

1. bounded

2. and satisfies
Vhjl<C Vi

Indeed by the Mean Value Theorem
|hj(z) = hi ()| < sup [Vhjlle —y| < Cle—y[  Vj

Hence we have the equi-continuity statement.
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Now we go back to our problem. How do we convert the Arzela-Ascoli Theorem that we want to our case?
Rather, we need to show why this is good enough and we prove the estimates. In our case, we want a subsequence
converging in By C C%“. Simplify ¢, := ¢¢;- We claim the following:

Lemma 4.8. If we can show that
e
2. [[Aupill <C

8. Only two third order derivatives are uniformly bounded ||VjVEVgg0|| <C and HV;V}CVZQOH < C suffices

Then we shall have convergence of a subsequence in C*<.

The key in these estimates is the uniformity w.r.t. ¢;. We shall prove the following a priori estimates. For ¢
solution to (15) with (16), i.e., for F =¢f + ¢; for any 0 <¢ <1

(wo +100p)"™ = wiel’
wo + 285@ >0

/ wie =0
b'e

/ whel’ = / wp

X b'e
Lemma 4.9 (Estimate (a)). There exists Co = Co(X,wo, ||F|/c0) s-t.

[ellco < Co (22)
Lemma 4.10 (Estimate (b)). There exists Co = Co(X,wo, || F|| o ,i%fAF) so that

[A¢llgo < Co (23)
Notice that wg is a given metric, while

w = wp + 100y is another metric
Here A is the Laplacian w.r.t. wg metric where
AF = (g0)7*0; 07 F

Lemma 4.11 (Estimate (c)). There exists C3 = C3(X, wo, || Fllco s IVF| co , |

vjvEFHCO ’

VjVEngHCO) s.t.
IViVEVeelco < Cs (24)
here, e.g.,
IV, VeVeo|| o = sup {gémgrﬁgégvjvngm}
and V is the connection w.r.t. the reference metric wy.

Remark 4.11. Notice here not all derivatives occur here in (24). Notice not all 3rd order derivatives of ¢
appear. The derivatives V;ViVyp and V3ViVyp are missing.

With a priori estimates (22), (23), (24) we’re able to prove the following theorem.
Theorem 4.3 (Yau 1978). Consider the Monge-Ampére Equation.

(wo +i00p)" = wie!
wo +100¢ > 0

/wggozo

X
/wgef:/wg
b'e X

Then for any finite integer k > 3, and any 0 < o < 1, if f € C*, then there exists a unique solution ¢ to the
above equation and ¢ € CF1(X).
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Remark 4.12 (Heuristics). ¢ € C*t1® for 0 < o < 1 essentially means that ¢ is as close as possible to being
of class C**2 i.e., if RHS of class C*, then the solution ¢ is very close to being of class C*t2. Informally, the
solution gains 2 derivatives.

Corollary 4.2. If f € C*°(X), then there exists a unique ¢ € C(X).
Proof. By Uniqueness in the previous theorem 4.3, the solution one obtains for k and k + 1 must coincide. O
We return to the method of continuity with a more precise setup. We return to the path of equations (15)

(wo +i00p)" = wiefter Vo<t <1,
wo + 100¢ > 0,

/ whe =0, ()
b

/wgetf+c‘:/w8 Vo<t<l.
X X

We introduced

I:={t€[0,1]| (%) admits a solution ¢ € By where By := C*™1*(X)n {/ wge =0}} (25)
X

similarly choose
By =€) 0 { [ whe=0)
X
By considering the map

100p)" ,
F(t, ) :[0,1] x By = By Flt, ) := M _ ptfte
wo
We already know by the implicit function theorem that I is open. The Key remaining step is I is closed, i.e.,
ti—=T, tjel = Tel

Let ¢; be the solution to path (x;) at ¢ = ¢t; which exists due to t; € I. Question: Does {¢;} have a convergent
subsequence, and if so, in what norm?

— t:—T
(wo + 108" = wiel = wirelT

But we have no idea for the LHS. We cannot conclude anything about the limit unless we know that

2

C
Yj = T

for some function 7. We shall show that, using the a priori estimates (22), (23), (24), there exists a subsequence
of {¢;} which converges in C?, and that the limit

or € CM(X)

and satisfies the limiting equation ~
(wo + 10Dpr)"™ = wieTS+er

The answer will be YES if {¢;} has a convergent subsequence converging to some o7 € Ck+1: in a norm which
is stronger than C2.

Compactness and Weak Compactness

Theorem 4.4 (Compactness in R"; Bolzano-Weierstrass). If we have a sequence {¢;} C R"™ with |p;| < C,
then there exists convergent subsequence {p;, } s.t.

Pjp — P k — oo

Notice such compactness theorems cannot hold in infinite dimensions. Here is a simple example that one can
easily see.
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Example 4.1. Let H be an infinite dimensional Hilbert Space. Let {e;} be an O.N.B. for H so |le;|| =1 and
(ej,ex) =0 for any j # k. Then {e;} does not admit any convergent subsequence. This is simple as one can
look at the distance between any two of them. One can compute for any j # k

lej —exll® = (ej — enej —ex)
= (ej,¢ej) — (ex,e;) — (ej, ex) + (ex, ex)
=2

lej — ekl = V2

Since in co-dimensions Compactness does not hold, we formulate something known as the Weak-Compactness.
There are in fact 3 main such notions, which are useful in different contexts, which are useful in different
contexts.

Theorem 4.5 (Banach Alaoglu Theorem). If B is a Banach space which is countable and reflexive, then
any sequence {@;} C B which is bounded admits a Weak*-convergent subsequence, i.e., there exists a limiting
function po € B and there exists {@;,} s.t. for any £ € B* the space of bounded linear functionals on B,

<€7 ijk> - <€v 9000>
This convergence is very weak.

Theorem 4.6 (Rellich Compactness). Suppose that, fiz s < t, and assume we have a sequence of functions
{pj} C Hyy(X) where X is a compact manifold s.t. ||<pj||(t) < C. Then there exists a subsequence {p;, } which

converges in Hg)(X). In general H5)(X) 2 H)(X).
The above only converges for weaker norm |[-[|,) < ||-||(t).

Theorem 4.7 (Weak Compactness for Holder Spaces). Fiz0 < a < 8 < 1. Then any sequence {p;} C C*P(X)
satisfying
lejllors <C

admits a convergent subsequence w.r.t. the norm ||| qn.a -

This norm ||-|| or.« is weaker than the norm ||-|| -r.s. We want to apply this weak compactness for Holder Spaces.
Recall that we want {¢;} solution of

(WO + 165%-)" = wgetff‘j +ei;
to have a subsequence converging to some function 7. Thus we want to show that there exists § > « s.t.

H%‘Hcm,ﬁ <C vV (26)

Hence by Weak Compactness of Holder Spaces, there would exist a subsequence ¢;, converging in this weaker
norm ||| cr+1.« and hence its limit ¢ is in C*T1* as well. If k > 2, this allows us to take limits in the equation
and that’s what we want.

To conclude Closed Interval If we can prove the Estimates (22), (23) and (24) then one can prove (26)

H(pj||ck+1./3 <C vV

Observe that on the RHS, if say k = 5, we would need to obtain C# bounds for all derivatives of ¢ up to order
k+1=6. On the LHS, the following are missing

1. Bounds for the gradient V;¢.

2. Bounds for the mixed Derivative V;Vip, VzVip and V;Vie.
3. Bounds for V;V; Ve, V5ViVie.

4. Bounds for all the derivatives of order > 4.

Remark 4.13. The General Theory for Elliptic PDE is the theory which will allow us to obtain all the missing
derivatives from the ones listed in (22), (23) and (24). This is the product of years of research.

Proof that I (25) is closed using A priori Estimates (22), (23), (24). Assume that there exists a sequence t; €
I, t; — T i.e., there exists p; € C*¥T1:2 solution of the equation

(wo + 108" = wheliITe

and t; — T
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1. We claim that there exists a subsequence of ¢; (still denoted ¢; for simplicity) s.t. ¢; converges to some
@7 in the norm C*+1-« But this implies then (x;) is solvable at t = T', i.e., T € I. Hence I is closed.

2. Next, we show how the claim follows from the a priori estimates. To do so we introduce a second claim:
the a priori estimates imply that for some a < 8 < 1, there exists a constant independent of j such that

||S0J'Hck+1,ﬁ <C

How does claim 1 follow from claim 2?7 We use Weak Compactness Theorem 4.7. Hence the key to prove
is the Claim 2.

3. We're left with showing the A priori Estimates (a), (b), and (c) imply that

||<PjHok+1,ﬁ <C

Luckily here we can apply general PDE Theory. This follows from the following observations (for simplicity
we write ¢ instead of ¢,)

(a) Our first estimate is
Auop < Cy = |[|0p0g¢l < C4

This is because wy + i0dp > 0 positive-definite i.e.
(90)5; + 0050 >0

and a norm for a positive-definite matrix Mz, is Tr(M). Indeed, a positive definite(Hermitian) matrix
Mz, can always be diagonalized, i.e.

M =UDU* unitary o diagonal o unitary

Thus
n
Tr(M) = Tr(D) = Z i A; eigenvalues of D
i=1

|My,| < CTy(D) = CTr(M)

Thus it suffices to control the trace for a positive-definite matrix to control its norm. Now we take,
assuming (wo)pq = dpq

M = wg +i00p = [0pq + 050, < C(n+ Ay,p)
with observation B _
Tr(wo + i00p) = gék((go)gj +0;0z0) =n+ Aoy
Tr(wo + i08¢p) is a norm for wy + iddep, i.e. n+ Ay is a norm for wy + idp. Hence any entry of
wo + 100y is bounded by n + Ap. Thus
H(go)gj + ajégapHOO <n+Ap

Hence
00 <n+Ap < Cy

(b) Set w = wp + i9J¢ we have then
w S C4UJ()

a control on unknown metric w using our reference metric wy. Our next estimate is: There exists
Cs > 0 with
w 2> Cswo

We claim the reverse estimate is also true. How to show this? We claim it suffices to show that for
any eigenvalue A, of w, we have
)\p > 05
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It suffices to compare entries on the diagonal. By normalization, we assume eigenvalues of the
reference metric are all 1. At this step we use the Monge-Ampere Equation.
(wo + 100p)"™ = wietl+er
W = whel’ F:=tf+c
det(w™) = det(wy)e’
Ao Ay =1-€F
A =€ v
J#p
MOp > eff
)\pZCZ("_l)eminF min FF =min{tf +¢ |0<t <1} >0
A;r) > 05

Thus the net outcome is 9;0;¢ bounded iff metrics wy and wy + i0d¢ are equivalent, i.e.

Cswoy < wo 4100 < Cywy

where we used a lower bound on ef’.

Next we claim the following: w is a metric with Lipschitz coefficients. The coefficients of w are

(90)pg + FpOgp
the gradients of the coefficients of w are bounded. For example, suppose we differentiate
Opwpq = 0e(g0)pq + 0e0p0z¢p  where 0p(go)pq is a fixed smooth matrix
Then we conclude this is bounded using Estimate (c¢) (24). Hence wgq is Lipschitz. Thus for any
0<B<1,wp € Ch.

The punchline is, now we differentiate the Monge-Ampére Equation

det(wpy) = det((wo)zq)e”
log det(wpq) = log(det((wo)pq)) + F
de(log(det(wpy))) = Or(log(det((wo)pq))) + O F
97 9egpq = 97 (9e((90)5q) + 070,00 0) = De(log(det((wo)zq))) + OeF
(97 0g0p) 00 = —g™0p(g0)pq + Or(log(det((wo)pq))) + O F

Wp
Wp

Thus dpp satisfies a Laplace Equation whose coefficients are g?%?. But gz, are Lipschitz, and by
Monge-Ampere Equation, det(g) > C. Hence g% are also Lipschitz. In particular for any 8 < 1, gP?
is of class C®. Let’s use a theorem from Elliptic Regularity.

Theorem 4.8 (Elliptic Regularity). If g%?9;0,1 € C?, g% € C”, and g% > Cs. Then 1) € C*P.

We apply Theorem 4.8 to our case, to get
dpp € C*P
But this is true for any £, thus ¢ € C3#. We can differentiate again to get

970504 (0mOe) — 97 Omgrsg° 0504 (Orp) = Ou{-- - }
gqﬁaﬁaq(amaﬂp) = {Cﬁ} +0m{---} € oL

By the same Elliptic Regularity 4.8 we get
OmOpp € C*P

But thus ¢ € C*#. Continuing we get
g€ Ck+1’6
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4.5 A Priori Estimates
4.5.1 a Priori Estimate: A
We denote

w=wy +i00p >0
w":wgeF F=tf+c¢ 0<t<l1

The following is Yau’s major contribution.

Theorem 4.9 (Estimate (a) (22)). Let ¢ satisfy (*;) equations. Then there exists Ay depending only on X, wy

and supef s.t.
X

lellco < Ao

Proof. Recall the algebraic identity:

a™ 7Bn _ (a 7ﬂ)(0¢n71 +an72l8+an7352 +.'.4»57171)
Since the multiplication of (1,1)-forms is commutative, the same identity holds for a, 8 given by (1, 1)-forms.
Thus
2wo + -+ wp )
=i00p(W"t + W 2wy + - Fwh T

w" —wi = (w—wp) (W' +w"”

From the Monge-Ampere Equations, we get
wirel” —wl = i00p(w" ! + W 2wy + -+ wi )
(eF = Dwpt = i00p(w" ™ + w" 2wy + -+ +wi ™)
/ ple = 1wy = / iddp(W"t +w" g + -+ wp )
X X
= / iddyp (w"_l + w2+ -+ wgfl) using d = 9 + 0 and 3 =0
X
= / d ((piénp(w”_l +w 2wg 4+ -+ wgfl)) by Stokes Theorem this term integrates to 0
X
— do) N idp(w™  + W 2wy + -+ wl Tt it suffices to deal with dp A i0yp
0
X

- / @idpd(W" ™ 4+ W 2wy + - Fwi T dw"™ ™t = (n — 1)dw A w"™? = 0 since w is Kéhler
b'e

In the second term, notice that

-2

W 4w g

isa (n — 1,n — 1)-form. Furthermore,
(do) Nidp = O Nidp + Do Nidp = Op N iDp
Hence the second term reduces to
(00 N i) (W™t + W 2wp + - W)
Thus we find
/ olef — 1w = 7/ 100 A p(w™ ™t +w" 2wy + - Fwp )
X X
This implies an L? gradient estimate for (! Indeed this follows from some simple observations
1. Consider idp A dp A wj ™! and recall the identity for T = iTEjdzj A dz"

n—1 — n
w % w
0 _ gj T 0

T/\(n—l)! = (90 kj)n!

Now apply this to
T =i0p Adp = ZZ 900 pdz? N dz*
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Then

= wpt % wg

— (%5, jud (1

i0p A Op A e (9095 90) |
_ 2 Wi
= oI, 8

/z&p/\@gp/\ /H 112 wO
X

On the RHS this is the L? norm of the gradient of ¢.
2. All the terms on the RHS are positive, i.e.
/Xz'&p/\ggo/\wnflfpwg >0 Vp
In general we prove positivity of the following term
/Xi&p/\&p/\wp/\wg

For our purposes, we say that a form of the type (k, k) is positive if it is a linear combination with positive
coefficients of terms of the following type

i61 /\El A (ieg /\Eg) VANCERWAN (iek /\Ek)
Then

(a) If ® and ¥ are positive forms of type (k,k) and (¢,£) then ® A ¥ is a positive form of the type
(k+L,k+20).

(b) w and wp are both positive (positive hermitian forms can be diagonalized)

(c) i0p A Op A wP Awd is always positive

(d) All positive forms of type (n,n) must be proportional to w{ with a positive coefficient.

3. We take for granted that we do have the eigenvalue inequality

_ 3
daolleln < ([1062)" st [ =0
X X
4. Thus we can conclude

wy 1 _ n— Wi
/|8 |2 = 7/){28@/\890( — (" + W™ Pwy + - D)

= _7(71_1 i /Xap(eF — Dwg

0< [ 1oeitut <n [ lolle” - 1o
X X
[ ioels <A [ ol A= supe” + 1)
X X X

Furthermore

We use now the eigenvalue estimate for the Laplaaan w.r.t. wo

( / |ago|iow3) > A ( / |<P|2w6‘>
X X

1
2
Ao 0l 2 ( / 3wiow3> < Allgl»
3
Aoy (/X awzowz;) <4

This gives the L? gradient bound of ¢.

We find now
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In fact we can keep improving. We shall try to estimate ||¢||,, for higher and higher p until we reach p = oo
and obtain

el = ellpm = 2 M@l = l[@llgo
This can be done by adapting to the Monge-Ampere Equation the method known as the Moser Iteration. This
method was designed for linear equation in divergence forms. Idea is we try to do the estimate for

a2
IV(elel )|,  VYa=0
Why we want to estimate o|p|2? This is because p!T2 is difficult to deal with if ¢ < 0. Why |¢|2? Since
|| > 0.

Lemma 4.12. p
%(t|t|°‘) =(a+1)t* VteR

Proof. The formula is obvious if & = 0. So assume for o > 0. Now the formula is true at t = 0 since 4 (¢[¢|*) = 0
which vanishes of order > 1 and
(a+1)[t[*,., =0 Va>0
Thus we need to verify the formula for ¢ > 0 and for ¢ < 0. At ¢ > 0, it is again obvious, since
t|t|a — taJrl |t‘a — ta
At t <0, set t = —s with s > 0. Then

d a

tt|* = (—s)s® = —stl — ﬁ(t|t|a) = _d5<_sa+1) =(a+1)s® = (a+ 1)t

Next, we try to estimate
IV Colel )3 o)
Previously we had
w" —wl = (w—wp) (W +w" Pwg + -+ w(f_l)
W W 2w Wl 1)

wher —wi = (i09yp) (
- (i100p) (W' +w" Pwo + - +wi )

(e —1)wh =
olo|®(ef = 1wl = o|p|*(i00¢) (w”_l +w" 2wy 4+ wg_l) we multiply both sides not by ¢, but by ¢|p|*
/ plel* (e = Nwg = / ele|*(i00p) (W + W Pwo - +wg ) d=0+40
X X

)
= /X d(p|e|*i0p (w"—l 4w 2w+ + wg_l)) 0 by Stokes Theorem
- /X d(plp|*)i0p (W™ +w" 2wy + -+ +wp ) reduces to /X Aplp|*)idp (W' + -+ wi ™)
— /X ol “idpd (W' + W Pwy + - +wp ) 0 since Kihler dw™ ' = -+ = dwj~' =0
/X ol (e’ — Dwf = — /X A(plp|®)idp(w" 4+ wi™)  we change of variables ¢ v ¢
= —(a+1) [ 160 AT o) Va0

(at1) /X (]800 A 10l 3Tg) (@™ + - 4w )

—(a 8(‘P|90‘%) 5<p|tp| ) Wt using Lemma
(+1)/X((g+1)/\( ))( +otwph) gL

oY n a+1 . o o e
/9""‘3' (e" = D :_ﬁ/ i0(ple|2) NIl F) A (W 4+ wg )
X (5+1)? Jx

Now notice all the terms in the sum in the RHS have the same sign. Thus picking any piece

a+1 . a = a n— ey n
e [ 0elel®) nBelel) A < [ ol + 1
(3 +1)? Jx X

0P AP AWt = (gmaqu&w) ] |V¢|2 wo making the observation

+1
e MG mmwﬁ/mwwe+n
2
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Notice this is the same argument as in the previous class with ¢ ~ ¢|¢|? for any a > 0. Now to exploit this,
we shall apply Sobolev Inequality on (X,wp). This inequality says that

Lemma 4.13 (Sobolev Inequality on (X, wy)).

%
(/X |u|2ﬁwg) <c., (/X |vu30wg+/xu|2wg> =1 (27)

Let’s simplify our notation and say all integrals are w.r.t. wg. Since we’re allowed to choose u, we choose

a
2

u = @lp

Let’s do some preliminary calculations.

[ul> = (lellpl2)? = |p** = [of?
where we set p:=a+2>2sothat p—1=a+1 and
uf® = |pl??

Applying (27) we have

Velel )P + [ lop)

() e

9

Thus we have gained the control of
ellzes S 1@l o + llll Lo

We want to iterate this game. Let’s simplify the above inequality that we just obtained as follows. What’s the
idea?

1. On the Right Hand Side, first we control ||¢||;,-1 by ||¢]|;, by Holder’s

/X|so|p1s</x|¢|p)p”1(/xl);

1 1,3
loll7o-s < llellfs Vo°

We do have the same homogeneity and the powers add up to 1.

2. We can now write
_ 1.1
p /X o /X o < p el Ve + Ll
-1 1
Il e < O{pllwllip VP + Ilel’ﬁp} (28)

Thus we can control |¢||;,s from the norm ||¢||,,!

For the purpose of Moser iteration, we use the following corollary:

Corollary 4.3.
1
max{1,[|¢[l.»s} < (Cp)» max(1,[l¢],)

This inequality is easier to iterate.
Proof. We consider two cases.

1. First case, if ||¢||;, < 1, then from the previous inequality (28), we see that

1
lollZ,. < C (pvop + 1) <Cp VYp>2

H@HLMS <(Cp)»
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2. In the second case assume ||¢||;, > 1, then on the RHS of (28)

—1 1
Pz Vi + Iel2, < plielo, Ve + el
< (Cp) lelLs
lellz0s < Cpllollz

1
Ielles < (CP)7 lloll L

Now we write the Corollary 4.3 in the log form
1
logmax(1, [|¢| 1ps) < Elog(Cp) + logmax(L, [|¢] 1) (29)
Next we apply (29) with p — pB*. We get

log max(1, ||| ; pox ) < log(CpB~") + logmax(L, ||| psr—1)

1
pﬁk—l

1 _
< ng(cpﬂk N+

k—1
1
< 3 5 loa(Cps") +logmax(1, ] )
£=0

1 .
e log(CpB"~?) + log max(L, [|¢]l ,e-2)

Now we let £ — co. We get a geometric series on the RHS

o0

log max(1, ||¢]] ) Z 0g(CpB*) + log(max(1, [|¢|l 1))
—o P

log max (1, [|¢] o) < Cp + log(max(1, ¢l 1))
Here we’re allowed to take any p we want. Take p = 2, we get
log max(L, [[¢]| o) < C2 + log max(1, [|¢]|2)
Since we know that [|¢||;. < C, then

log max(L, [ ¢]..) < C
Il <C

4.5.2 a Priori Estimate: B

Theorem 4.10 (Estimate (b) (23)).
Agp < C

where B
Aoy = gb?0,07¢ the Laplacian w.r.t. wy

Proof. The strategy is: We try to apply the maximum principle, in showing that the quantity we want to
estimate satisfies a Laplace Inequality, and look at the points where this quantity attains its maximum. There
are two metric

wy — AwOZAO
w=wy+i00p = A, =A

We shall use A instead of A,,, because we shall need to differentiate the Monge-Ampere Equation and we have
seen it in the proof of openness and the use of the Implicit Function Theorem) that it is the Laplacian w.r.t.
the unknown metric w which appears. Thus we compute

A(Agyp)

and hope to extract a differential inequality. Geometrically we’re making use of the Ricci curvature. To make
the Ricci appear, it is better to compute with the endomorphism. We shall try to compute

A(Tr(h))
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What happens? The method is: We introduce the Endomorphism h by
Wy = 93" gmq = 909
wo = (90)pq = i(90)5;dz" N dz*
w = (9)pq = ig;dz’ N dz"

Fixing wy we have one-to-one correspondence between h and g. We shall prove the following key inequality: If

o satisfies the Monge-Ampere Equation

(wo + 100p)"™ = wiel’

then
Alog(Tr(h)) > —CTr(h ™) (30)

for C constant depending only on wy.
1. We begin with quoting the Maximum Principle.

Proposition 4.2 (Maximum Principle). In calculus, at a local mazimum xg of a function f(x), we must
have

f"(x0) <0

In several variables, at a local mazimum xo of a function f(x), x € R™, we must have

0% f

2
Af(ro) = Tr(( . g;) (20)) <0

Hence

Now do we use the Maximum Principle?

(a) We find an inequality satisfied by Af.
(b) We look at this inequality at a maximum point of Af.

(c) We hope that the inequality gives some useful information.

In the case at hand, assume that we have succeeded in showing (30) for some constant Cy. According to
the maximum principle, we look at the inequality at a maximum point. At the maximum point of Tr(h),
we also have a maximum point for log(Tr(h)). This is simply because log is increasing. Thus

0> A(log Trh)(z0) > —Ci Tr(h™1)

But this doesn’t seem useful. The RHS is negative anyway. However, by a slight modification, we get
exactly what we want. For this, observe that

Tr(h™1)

Tr(g~ " 90) = 9" (90)ap

9" (ggp — OpOgp)
n—Ap

Let’s now consider the expression

A(log(Tr(h)) — Ap) = Alog(Tr(h)) — AAp
= Alog(Tr(h)) + A (Tr(h™') — n)
> —C Tr(h™ ') + ATr(h™Y) — An
Take now
A:=2C;
Then

A(log(Tr(h)) — Ap) > CiTr(h™') = Cs  C3:=—An

Now apply the maximum principle to this. What happens is the following. Let z; be a local maximum
point of log(Tr(h)) — Ap. Then

0> A (log(Tr(h)) — Ap) (21) > C1Tr(h™ ) (z1) — Cs

Tr(h 1) (21) < C4 Cy = &
C
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Let Ay, -+, A, be the eigenvalues of h at z;. Thus we have

1 1
—<C
)\1 + -+ N, S 4

and then 1

A, Ay > O = —

1, ) 5 04
But now from the Monge-Ampeére Equation,
w" = wiel w—n =el
Wo
Thus the product
H )\g = eF
(=1
Coa < (M| A =€"
bF#r
max el’
A < Cg = pogus Vi<r<n
5
Now at an arbitrary point z € X, we can write
(log(Tr(h)) — Ap) (2) < (log(Tr(h)) — Ap) (21)
< (log(nCs) — Agp) (21)
(log(Tr(h)) — Ap) (2) < C7 — Ap(21)

Now we can rewrite

log(Tr(h(z))) < C7 + A(p(2) — ¢(21))
< C7 + Aosc(p)
Tr(h(z)) < CgeAos(®)
< Oge2Allelico
< Cy using Estimate (22)
Now using B
90" ((90)ap + OpOgp) = 1+ Dop
We have
n -+ Ao(p < Cg

. In the second step we prove the key inequality (30). To derive this, we need to express the LHS in terms
of curvatures R;kém of wg since the Monge-Ampere Equation is an assignment of the Ricci curvature Rz,
of w. Observe that we have two metrics and hence two notions of curvatures. In the following we discuss
relation between Curvatures

Y
Wy —> Rjk m — R}k
w = Wy +’L(95<,0 - R;kem - R}k
How are the curvatures related? The basic formula is

Ry —Ry' = —0:(Dphh ™), (31)

m

where D, is the covariant derivative w.r.t. w. Let’s assume this basic formula (31) for the moment. We
return to the calculation of Alog(Tr(h)). We begin by calculating A(Tr(h)). Write

ATr(h) = gP1070,(Tr(h)) = gP107D,(Tr(h))
= gpq&Tr(Dph)
—g”qéL ((Dphh™1)h)

1 (Tr(9g(Dphh™")h) + Tr(Dyhh™")0gh)
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Now notice 1
Te(0g(Dyhh~)h) = 0g(Dyhh )Y, - & — (Rgy', — Ray',,) - 1

Hence
ATe(h) = g1 (~Ray” 5 + By 5 ) bl + g™ Te(Dyhh™")gh
Now we simplify
ngﬁpaahg = Rghg

=Rj gg qua by definition of h

= R~s gg g lowering indices
On the other hand

Ryp = —0p05log(det(w"))

= —3@&7log(det(%)) — 0pdslog(det(wy)) Recall Monge-Ampere w"

0
Rep = —0p05F + Ryp

Rasgs’ = g5 0s05F + g5 R
=—-AoF+R where R is scalar curvature of wq
Thus we find
A(Tr(h)) = AoF — R+ g" Ry, b, + " Tr(Dyhh™")0gh
Next we compute (exploiting the strict positivity of some quantity)
Alog(Tr(h)) = 670, log(Tr(h)

- (20

_ <5aap(Tf(h)) _ ap(Tr(h))ff?a(Tr(h)))
Tr(h) (Tr(R))?
A(Tr(h)) 710y (Tr(h))0g(Tr(h))

Tr(h) (Tr(h))?

We use the previous formula so

DoF — R+ g"Rgp" ghiy  gPTTe(Dyhh)0gh  g¥10,(Tr(h))dg

(T

n

:woe

r(h))

F

Alog(Tr(h)) = Tr(h) Tr(h) (Tr(h))

We do estimates on each term

(a) Estimating the terms on the RHS

AoF-R_ . 1
Tr(h) "Tr(h)
n n 1
= <Tr(h™') = — —
v Wi A I U Al WA
AoF — R
> Tr(h™!
2 CaT )
(b) The next term that we estimate is
" Rap® gha
Recall that
h=g5'g
9 = goh
g—l _ h—lgal

2

(32)



Now

9" Rap® gha = (h™)PR" hg

retp plo
|9quapaﬁh | < (Te(h™) [ R (w0) | Tr(R)
gquqp ﬁ a -1 i
|Wl CoyTr(h™1) as desired

(¢) Aubin-Yau Inequality. (purely algebraic)

9P Tr(Dphh™")0gh P10, (Tr(h))0g(Tr(h)) >0

Tr(h) B (Tr(h))? (33)

If so then indeed our desired inequality (30) holds.

Lemma 4.14 (Formulas Relating the covariant derivatives with respect to w and wy). Notations
wg = Vy
w:wo+i85<p = Dy
Then for any vector field V™ and differential form W,, we have
DV™ = VV™ = (Dihh™ VP hi=gg g, iy = (90) grm
DiW,, — VW, = —W,(Djhh )P,
Proof. To see this, write (by the Chern Unitary Connection)
ViV =gq'0;(90V) = hg™'0;(gh™'V)
= hg 'D;(gh™'V) Gsm(h~H)™ V" section of an antiholomorphic bundle
=hg 'gD;(h™'V)
=h (D;(h~'V))
=h(=h " H(D;R)A'V + h7D;V)
—(D;jh)h'V +D;V

Now we want to get relation between curvatures. Apply d; to both sides
FV,V™ = 9(D,V™) — (DA V™)
Vi(0gV™) — REjmpr =D;(0;V™) - REJ.MPVP — O:((Djhh~ 1) V™)
Vi(05V™) = Dj(95V™) = By,™ VP = Ry,™ VP — O=((D;Rh~ V™)
—(DjR)h M (OV™) = REijVp - REijVp — 0g(D;hh™ V™ — (D;hh™1)OV™ using Lemma 4.14
Rg)™ VP =Ry VP = Op(Dshh™ )V
R™ =Ry, = Op(Dihh ™))

Then next thing on the checklist is to prove the Aubin-Yau Inequality (33).

Proof of Aubin-Yau (33). We begin by making the first term on the LHS more explicit. Recall

DV — V™ = (Djhh ™) VP
D;(g™") — Vi(g™") = (Djhh ™) gP"
~V,;(g"") = (D;hh~ ) g?"
—gmaV;(g"") = (Djhh™ )" gra

= (D;hh~ 1)}

—gmx (=9 (V;g50)9"") = (Djhh ™)}

9"V igsn = (D;hh ™Y

(Djhh™ ) =g™ V]gos,\
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Next we calculate
Oghm, = Vi((90) g7m)
= gorvkgrm
= 9o Virm
Altogether we have
FFTH(D ) 0gh) = ¢ (g7 s )9 Viprm
= 9" 9" 90"V jpsa Viorm (34

We work now at an arbitrary point zg. We claim that in suitable normal coordinates, we can assume
that at zg,

(90)pa = 950y V=0,
©pq = (0p¢)Ppp simultaneous diagonalization

Thus at diagonal, j =k, m=sand A =7r
ngTr((Djhh_l)ﬁgh) = 6jE(1 + V5 )_16"”5(1 + %m)—léﬁawgrawﬁ

] |Owprr|? (35)

Z 1+‘Pkk (1+<Pmm

k,m,r

We need to compare this expression to

R0, (Te()Og(Te(h) = 3 ——— 0 (S (1+ @) 0> (1 + 272))

1
= zk: 1+ o, ; Ob{prn z@:é‘z%g

We apply the Cauchy-Schwarz Inequality so that

8k80m7n aEQOZ[
0 mm6L 1 1
kP P70) = Z ((1 For)? (145t

¢ 0 (Te(h)O(Tr(h)) = 20 o

me m,lk
Do P ool

<z(z o) (ZW)
|0k P

(s ) ¢

Onpmm ’
= |Z (1+ mm)? (Z 1+9|0k§0)(1|+<p )> 2 make the trace of h appear

|ak@mm|
< g (1 + omm E Cauchy Schwarz
(m )k 1+(pmm 1+‘P1¢k)

g°*0;(Tr(h))O(Tx(h)) [Onprim
Tr(h) = k;ﬂ (1 + pmm)(1 + @Ek)

But this is less terms than RHS of (35).

4.5.3 a Priori Estimate: C
Proof of (24). Recall
wo = V = Ry’ — Ry
w=uwy+i00p = D = Ry' — Ry

We shall prove: Let
So = g6"9™" 96" VopsaVaprm ~ [VV VI,
Then
So < C
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1. Observe that Sy ~ S with S
S = g" 9" gV po3a Vaorm
since we know that
cwy < w < Cwy

by the estimate for Agh Cs estimate.

2. Key observation for our proof:

S = |Dhh 12

3. We claim that
ALS > —-C15 —Csy

4. We claim that for A large enough, we have

Au(S + ATr(h) > C58 — C4

(36)

(37)

Now assuming these, we have the desired estimate. Let z; be a point where S + ATr(h) attains its maximum.

Then

S(z1) < — =0C;
cs

At any point z, we have
S(z) + ATr(h(z)) < (S + ATr(h))(21)
< Cs5 + AmaxTr(h)

< Cs by the Cy estimate (23)
S(z) < Cs VzeX

Now we prove the claims.
Proof of (37). The key thing is to compute
(32) _ . _ _
Au(Tr(h)) ‘= AoF — R+h™'YRL hi + g""Tx(Dyhh ™" 95h)
Since we already know that h and h~! are bounded by the C? estimate (23).
A, (Tr(h)) > —C7 — Cs + gP1Tr(Dyhh ™1 05h)

> —Cog + g"Tr(D,hh~'05h)

34 o M F
ey + 979" 45"V ppa Vgiprm
> ChpS since gé‘7 ~ g\

Thus

Aw(S + ATr(h)) >-C1S—-Cy+ A(—Cg + C105>
> (=Cy + ACy)S — Cy — ACy
> C128 — Ci3

Thus we need only to show
A,S > —-C1S —Cy
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Proof of (36). Recall the notations S = [Dhh~!|?> and h = g5 'g. We rewrite
S = (Dhh™*, Dhh™1)
A, S = g""D,Dg(Dhh~ !, Dhh ™)
= ¢"(D,D;(Dhh~ '), Dhh~ )
+ g*1(Dhh™*, DD, (Dhh ™))
+ g"1(Dz(Dhh ™), Dy(Dhh ™))
+g"(Dy(Dhh™"), Dy (DhR™Y))
= |D(Dhh 12 >0
= |D(Dhh™ )2 >0
A, S > (¢gP"D,Dz(Dhh™1), Dhh™ ") + (Dhh™ !, g DyD,(Dhh™ 1))
Let’s work out the first term.
gpaDp(D?(Dlhhil))g = QPEDP(*REZQﬁ + Rﬁlaﬁ)
= _gpﬁpqueaﬁ + Dp(gpaRﬁfag)

We need to work a bit harder to get Ricci tensor. For this we need the second Bianchi identity. If w is Kéhler,
then

Dp(Rﬂaﬂ) = DﬁRﬁpaﬁ

This is only true for Kahler. In fact we can compare to the second Bianchi Identity which is valid for any
connection. If we have a connection D on a vector bundle E, then

dpF =0
i.e.
DZF@“B — D;Fagaﬂ =0

where D* is the covariant derivative in End(E). But in our case D is the covariant derivative on all the indices
£, p,a, B. With this second Bianchi Identity, we can write

Dp(9" R 3) = 9" DyRac”
= g""D,Ryp* s Second Bianchi (38)
= De(9"Rgp" 5)
=DyRj
Now recall our Monge-Ampére Equation is precisely designed so that
Rep =156
where T is a given (1,1)-tensor. Hence

DyR§ = De(9* Ryp) = Di(g* " T5p)
= 9" D55

Furthermore, we're dealing with
ID/R3| < 557 +Cy Recall that D,W — V,W = (D,hh " )W
How about the other term? The other term is of the same size.
9" Dy Ry 5| < C38% +Cy use Dy, — V,, ~ Dyhh ™!
Thus by Cauchy-Schwarz
[{g"D,(Dg(Dehh ™)), Dhh™)| < C55 + Co
It remains to estimate the second term

(Dhh™!, gP"DyD,(Dhh ™))
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To exploit the formula linking curvatures, we need to change the order, i.e., we permute Dy and D,. Thus
9P DyDy(Dehh™")§ = gDy Dp(Dehh ™)
+ 9% (~Rpg™ (Dhh™")5 + Rz (Dehh™)} = Ry 5 (Dehh™)3)
= gDy Dy(Dehh™")§ — Ry (Dinhh™1)§ + RS (Dehh ")) — RY(Dehh™ 1)
|gPI DD, (Dhh~1)| < C287% + CsS% + Co
< 01057 + Ciy
(Dhh™, gP"DyD,(Dhh™1))| < C12S + Ci3

Finally we want to prove the second Bianchi identity for Kéhler metric.
Proof of (38). We already know
D; (Rﬁfag) = DzRﬁpaﬁ
On the LHS and RHS this is
D;(’Rggaﬁ) = D,,Rgzo‘ﬁ + A;ngREmag
DzRﬁpaﬁ = DfREpaﬁ + A?lpRﬁmaﬁ

Thus the difference is
0=( Z} — AZ,)R@,LO‘B

for Kahler Metric.

This concludes the proof of the whole Calabi-Yau conjecture.
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A  Mid Term

We setup our discussion.
1. Let X be a compact n-dim complex manifold.
2. We write
x=Jx,
o
where {X,} is family of open charts as a covering of X.

3. Consider one-to-one and onto map to an open set ®,(X,) in C"
®,: X, —»o,(X,) cC" Z 2y = (z:b,,zZ)
s.t. the transition functions are holomorphic
D, 00, :9,(X,NX,)CC"—>d,(X,NX,)CC" 2,2
with invertible Jacobian matrix

J
azu

(@)Kﬁykﬁn
14

4. We define a function f on an open set {2 C X to be holomorphic if f o <I>;1 is a holomorphic function on
®,(X,NQ) CC" for any p.

A.1 Holomorphic Line Bundle

We define holomorphic line bundle and sections on the line bundle

1. Let a holomorphic line bundle L — X be specified by its transition functions ¢, (z)
L& {t.w}
that are holomorphic

(a) Invertible t,, # 0 on X, NX,

(b) and satisfies cocycle condition
L (2)tp(2) = tup(2) on X, NX,NX,
2. A section ¢ € I'(X, L) is defined by a collection of function ¢, (z,) defined on ®,(X,,)
@ e (X, L) < {pu(z)}
which satisfies the gluing condition
oulzy) =tw(2)eu(z)  VzeX, NX,
For convenience we drop p for ¢,(2,) and write ¢(z).

Problem A.1. What is a metric h on L?

Answer A.1. A metric h on L is a section of L™! ®f71 satisfying
h(z) >0 vz
— — 1
The transition functions of L™ are t,,(2)~' and those for L ' are tuw(2) . Hence gluing condition satisfies

1
hu(2u) = tuw (2) 1tw(z) hy(20)
hu(z) = [t (2)] 2R (2,) > 0 VzeX, NX,

Problem A.2. Fiz a metric h and let V be the corresponding Chern unitary connection on L. What are the
explicit formulas for V;p and Vo ?
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Answer A.2. Define the Chern unitary connection(covariant derivative) on L in the 0-drection
Vep =0mp e (X, Lo A”)  Vepel(X,L)
Define in the 0-direction
Vip=h"t0;(hg) e (X, L A"Y)  VeeTl(X,L)
= 9+ (9;(log(h)))¢
Problem A.3. Show that the commutator of V; and V is of the form
Vi, Vile=Fre  Veel(X, L)

and determine explicitly FEj'

Answer A.3.
[V, Vil = Vi Ve — ViV
= 171 0,(h(g)) — (0, (1))
~ ((951)(9g) + h0;05) — O (h™ 1 (Dh)¢ + ;)
~H(0;h)0pp — 0505 — Op(h™0h)p — h™"0;hdfp — 8500
= 7@, — (O(h™9h)p + h™0; i)
—0g(h™105h)p
—(0;05(log(h)))e
Hence

Py, = —(9;05(log(h)))
Problem A.4. Let the curvature form F be define
= Y Fydd AdzF = - 0;05(log(h))y
jok=1 Gk=1
Then F' is a closed form, and its de Rham cohomology class [ F'] is independent of the choice of the metric h.

Answer A.4. We can write

Z 927 ( )dzJ A dz"
_ Z ai (Z aic log(h)> A dz

= ffl‘alog( )
Now F' is readily seen to be closed.

dF = —(0 + 9)9d1og(h)
—(9%9 + 909) log(h)
= 00log(h) = 9*log(h) =0

Before moving on, we recall the definition of de Rham cohomology. Let F' be a p-form which is closed, i.e.,
dF =0. Then
[Flar := F/{ezact forms dip where ¢» € AP~}

is defined as the de Rham cohomology class of F'. Now we show this object is independent of the metric h. Let
h and h' be two metrics on L and let F', I’ be two corresponding curvatures, i.e.

.= 78j6§10g(h) FE/J‘ = 78j8510g(h/)
However
P — FE/j = —0;0¢ log(h) 4+ 0;0 log(h)

h
= —0,05108(5)
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But % is strictly positive C*° function since

— — h
he L '®L 1, h’EL_1®L1:>ﬁ€]l:>C°°function>O
Then due to positivity, say
h
o e? for certain ¢ € C*°
Now
Fy; = Fy, = =005
(Fyj — Fy;)dz? ndz* = ~0;0p¢d2” N dz*
—00¢ = —(0+ 0)9¢
—d(0¢) exact form

Hence due to quotient and O¢ as 1-form, we conclude
[Flar = [F']ar
A.2 Holomorphic Vector Bundle
Set r € Z7.
1. Define holomorphic transition function tuy“ﬁ(z) for1<o,8<7ronX,NX,st.
(a) tuw () =05 if p=v
(b) and satisfies the cocycle condition
t}tvaﬁ(z)typﬁ,y(z) = tupo‘,y(z) VzeX, NX,NX,
Notice a necessary condition for co-cycle is (¢,,) = (t,,,) " as inverse matrices.

2. Define the holomorphic vector bundle E — X by its space of sections ¢ € I'(X, E), whose elements are
characterized by vector-valued functions ¢f(2,) on ®,(X,,) for any 1 < a <r s.t. the gluing rule holds

n(zu) = tWO‘B(z)gpf(zu) VzeX, NX,

Problem A.5. Let H be metric on E defined on each ®,(X,) s.t. it is a positive-definite Hermitian matriz
(Hu)5a(20) and for any ¢ € I'(X, E)

On(Hy)z,00
transforms like a scalar, i.e., is invariant under p — v. Define the Chern Unitary Connection V on E w.r.t.
H. Give explicit formulas for V, both in terms of indices, and in terms of matrices.

Answer A.5. Define V s.t. in the 0-direction
Vep® =0pp® eT(X,E®@A™)  V1i<a<r, Vepel(X,E)
Define in O-direction
Vip® = H9;(Hyp¢%) e T(X,E@AY)  V1<a<r, Veel(X,E)
Using Einstein summation convention, in components
(Vio)* = (H'0;(Hp))"

and in matrix notation
Vip=H 10;(Hp)

Problem A.6. Show that the commutator of V; and Vi is of the form
[Vjavﬁ]wa:FEjaﬁQPﬁ VSDEF(XvE)

and give explicit expressions for FEjo‘ﬁ both in terms of indices and in terms of matrices.

53



Answer A.6. We compute
[V, VEle® = V; Ve — Vi(V;e)
— H™10,(Hoyp) — 0p(H™'0; (Hep))
= H™'0;(Hogp) — Op(H™" ((0;H)¢ + HO;))
= (H™'0;H)0gp + H™ ' HO;0pp — H™ HOp05p — Op(H™'0;Hy)
= —{0p(H™'0;H)}¢"

.« B .
=: ij 5P mn components
[Vj, Vil = Fy,e in matriz notation

where we define F € I'(X, A" @ End(E)) as

FEJ.O‘B = —0g(H*70;H7p) in components
B = ~0x(H'0;H) in matriz notation

Problem A.7. If j is an unbarred indez, set
?B = H‘ﬂaij
where H*7 is the inverse matriz of Hxg, i.e.
Otherwise set Ajy = 0. We also define the connection matriz
Aj = A?,B
and the connection form
A=Y A;de
j=1
Show that the connection V can be expressed as
Vo =dp+ Ap
Answer A.7. Foranyl <a<r
VEQOOL _ %@a
Vj¢® = H10;(Hxp¢")
= H7 (9;(Hxp)0" + Hy50;6°)
= (H*70;Hs5)¢" +650;¢°
= (H*0;Hz3)¢" + 0;0°
:>Vg<p“=85<p“+A?ﬁ<p5 Vi=3j,k Lk=1,---,n
Vo =dp+ Ap in matriz notation
Given that we’ve defined
A%B =0 ¢ =k in the O-direction
55 = H"70;Hsp
=H'o,H { = j in the O0-direction
Problem A.8. Let the curvature form
Fi= Y Fpdd ndz*
J,k=1

Show that
F=dA+ANA

Deduce the second Bianchi Identity
dF +ANF—-FNA=0
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Answer A.8. 1. We compute the RHS.

dA = d(z dz1 A;) later we drop summation in j
J
= (0 + 0)(dz7 A;)
= dzF (07 Aj) N d27 + d2F (0p Aj) A d2?
= —0:Ajdzd NdZF + d2F(0A)) A d2d
= Fy;dz NdZ" 4 (0 Aj)d" A d2
Now
hA; = 0n(H '0;H) = (0h(H 1))0;H + H 0,0, H

Notice
o(HY)Y=-H'9,HH ™!

To check the claim we note
H'H=1
O(H'*H) =0
O(H WH +H '0,H =0
O(H Y= -H 19, HH™!
Thus
OA; = —H Y0y H)H '0,H + H ‘0,0, H
OA;dzF Ndzd = —(H 'oRH)dzF N (H™10;H)dz? + H Y (0,0, H)d2" A d2?
But the last term is 0 due to anti-commute. Hence
akAjdzk ANdZ = —Apdz* A Ajdzj

=-AANA i matriz notation

As a summary

dA=F—-ANA
F=dA+ANA

2. Now we deduce the second Bianchi Identity. We compute

dF = d(dA+ AN A)
=0+d(ANA)
=(dA)NA+(—-1)ANdA
=(dA+ANA)NA—AN(dA+ANA)
=FANA—AANF

A.3 Dual Bundle

We consider the dual bundle E, defined by requirements that its sections are given on ®,(z,) by vector-valued
functions (¢,,)a(2,) for 1 < a < r that satisfies the condition that

(¢u)a(zu)4pﬁ(zu)
is a scalar, i.e., it is invariant under y +— v.

Problem A.9. Show that there exists a unique connection on E,, denoted by V for simplicity, which satisfies
Leibniz’s rule

Ot(Va®) = (Vo)) o™ + Vo (Vep)® V¢ el(X,E,) Vel (X, FE)
and V 1is given by
Vihg = 0pthe — z/JﬁAfa imn components
Vi =dip — A in matrix notation
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Answer A.9. Assume there exists V s.t. Leibniz rule holds, then V necessarily satisfies

(Oetha) ™ + Ya(0ep™) = (Vitba) o™ + Pa(0ep™ + Afs”)
(Oea)p™ = (Verba) o™ + vaAs”
= (Vetba)p® + s Al o° relabelling
Detba = Vetha + U5 A},
Vit = detha — YAy, as connection on E,

In particular

Ve = 0jthe —Ys(H0;Hs,)  Vji=1,--,n
Vitba = 0o Vk=1,---,n

Hence

Ve = 0pp — YAy imn components
Vi =diyp — A i matrix notation

Recalling A vanishes in the 0-direction.

Problem A.10. Show that the commutator of V; and V3 on E, are given by

[V, VElta = =t Fg," in components
Vi, Vv = _7/’FEJ' in matrix notation

where FkJO‘B is the curvature of E.

Answer A.10. We compute
[Vi; Vilta = ViVita — VEVida
= 0,05t — Dptop (70, o) = Oyt + (D) (H10; Hzo) + 00 (H10 H)
= —p(—0g(H"0;Hx,))
= =Ygk Ej N in components
[V, Vil = =y B, in matriz notation
Problem A.11. Check that the notion of metric H on E can be given by a simple equivalent definition in terms
of Ex: a metric H on E is a section of the bundle E, ® E, satisfying the condition that the Hermitian form on

(X, E) defined by
pel(X,E)—pHp is positive definite (39)

Answer A.11. Assume H € T'(X,E, ® E,) s.t. (39) holds. Then by gluing rule, for tuw 5 the transition
functions on E — X

e ——1
(Hu)ﬁa:(t;w 1) 5(t;w )ﬁ,y(HV)W(S

—B

B (H) gt

§
B 00 (20) () 5ot 505 (20)
) =

(Hy)ms using positive-definiteness of t,,"
@2 (2) (Hy 759 (2)
el(z)H)rsen(m)  on XN X,

O (20) (H,) 5095 (20

Hence e
gDBHEagoa transforms as a scalar Veoel(X,E)

On the other hand, (39) is important to go backwards, as we need to take inverse of o3(2,)(H, )5s¢5(2,) on both
sides, which only makes sense when 9H is positive definite. Then conclude using characterization of sections

in I'(X, B, ® E.) using transition functions of the form t;,jl Qto.
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A.4 Kahler Geometry

We now apply the set-up to case of E = T19X, whose sections are given in local coordinates as

Y= Zsﬁ 8z17

1. A metric on T1°(X) is denoted by gp,(2)

2. The curvature of its Chern Unitary Connection is denoted as jom
Ry;™ = —0k(9"70;p4)

3. Given a metric gz, we define its symplectic form w as
n
w:i=1 Z pqdz? N dzZP
p,q=1
Problem A.12. Define the notion of Kdhler metric.
Answer A.12. For connection form A defined via
Vip® = 0;0% + A%(pﬁ

In particular

S5 = (H'0;H)" y = H*0;Hsp

A% =0 no correction in O-direction

we define the torsion-tensor as
AV IRY
T P Ajp Apj

Now a metric H; on TH9(X) is said to be Kdhler if
0 _ : £ _ gt
T;,=0 i.€. A, = Ay
In particular, we introduce an important characterisation of Kdhler metric. Jr; 18 Kahler iff
dw=20
i.€.
859%;’ = 0095
To see this, it suffices to just compute.
— j k
dw = 1d(g5;dz" N dz")

= i(dgEj Adzl A dzF)
9 0 4 j k
Dz ggkjdz + ngjdz ANdz? Ndz
i 0 0 o B .
=3 ((WQE]- s =95 d2" N NdZE (S - ﬁgzj)dzf Ad2 A dzk)

Hence dw = 0 implies both

9 9
02098 ™ 921 IR
R

We observe now that these are exactly the same as
¢
1;,=0
So indeed
Aﬁp = Afoj = 9" 0i9mp = 9" Opgm;
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Problem A.13 (First Bianchi Identity). Assume the metric gpq is Kdihler, and set
B jomg = gmpREqu

FE'stablish the identities

Answer A.13. We compute

Ry g = 9me(—05(90;9p9))

I
|
)
3
~
—
N
<}
&~
3
S
=
)
_|_
e}
&~
el
=L
&
S
)
SN—

Notice we have formula
In matrix notation this is

To see this we know

G'G=1
BE(G_I)G + G_lagG =0
Op(GTY) = -GGG
Hence we use this formula and substitute to above.
Ry jig = 9mit9"” (05975)9°7 0954 — 9meg " 050,95
= gmeg"" (O5rs)9°70; 9pg — 050;gmg since gmeg® = 0L

Now to interchange indices, using again that gmeg"" = 0= one has

Ry e = (Opgms)9°P 05954 — 030;9mq

kjmq —
One may indeed interchange k and m, and j and q using the Kdhler property (40) hence

Ry = (09ms) 970 9pq — 05059
= (Om95,)9°7 0954 — Om0igr, = B

ijq
= (Om955)9°" 0a9pj — amaq%j = RMqu

Problem A.14. In what follows we need the following simple algebraic identity. Let

M =iy Mgydz9 Adz

P,q=1
be a Hermitian (1,1)-form, i.e., satisfying o
Mpq = Mgy
Then .
w"™ w”
M A =Tr(M)—
(n—1)! (M) n!
where

Tr(M) := g% My,
Prove this identity.

Answer A.14. To check this, assume that both are diagonal, i.e.

M =i My,dz" Adz'
y4

and
w = iZgEkdzk A dz"
k
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This uses the fact that a Hermitian metric w and a Hermitian form M can always be simultaneously diagonalized.
Then

wnfl

M A i (0 Y Mpdz" NdZYA (0 g, d2 NdZM YA A (Y gy, d2Fr AdEE )
: /4 k1 kn—1

=i" Y My (] [ gpp)(dz' AdZ! Ao Ad2" A dZ")
P pAL

="y (g5, )My ([ [ 9mp)(d2" A dZ' A~ A d2 A dZ™)
4 p

— wn wn
n!

= gmezmm = Tr(M)
Problem A.15. Letting Mp, = 0gpq where 0gpq is an arbitrary Hermitian variation of the metric. Deduce that
dlog(w™) = Tr(dg) = g™ dgp

and hence for any partial derivative Oy B
O¢log(w™) = g% Oy gp,
Answer A.15. The variation writes

d(w™)  d(wA---Aw)

§log(w") = _
ogw") = —— —
1

:E((‘s‘*’/\"’/\W)+"'+(WA---/\5w))

_glunem

= -

(1) Tr(dw) w™ — B

- HTF(R — D! =Tr(dw) = gjkdwﬁj = g"%6gp,

and hence for any partial derivative
9y (log(w™)) = 9™ 3y (gmq)
Problem A.16. Define the Ricci curvature of the metric 955 by

_ — R4
Ry, = Ry,

Show that
Ry, = —00; log w™

Answer A.16. Note
Ry = Rquq
= —0(9™0;954)
Notice from the previous problem, we derived
9;log(w") = g™ ;954
Hence plugging in we obtain

REJ' = —0r0; log(w")

A.5 Anti-Canonical Bundle and Calabi Conjecture

Let the canonical bundle K x be the bundle A™° of (n, 0);forms, and let the anti-canonical bundle be the bundle
K;(l. Observe that w™ is the positive section of Kx ® Ky, and hence w™ can be viewed as a metric on K}l.

Problem A.17. Ezxplain why the Ricci curvature REj can then be interpreted as the curvature of K;(l with
respect to the metric w™.
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Answer A.17. Since w" is an (n,n)-form, it is a section of
Kx®Kx
where Kx is the bundle of n-forms, i.e. the line bundle whose sections involve
f(2)dzt A A d2™

This implies w™ is a metric on K;(l, Since a metric on a line bundle L is by definition, a strictly positive
section of

L'®L!
Now let L := K)_(1 we see that a metric on L is thus a positive section of Kx @ Kx. Thus

Ry; = —050;(log(w™))

is precisely the curvature of the bundle K;(l due to definition of curvature for holomorphic line bundles.

Problem A.18. Let the Ricci form Ric(w) be defined by

Ric(w) := Zjodzj A dzF = —9d(log(w™))
k.

Ezplain why Ric(w) is a closed form, and why we have
[iRic(w)] = e1(Kx")

Observe that the right-hand side is independent of the Kdhler metric w.

Answer A.18. 1. To see Ric(w) is closed form, notice
dRic(w) = —(9 + 0)0d(log(w™))
= —(0%0 + 000)(log(w™))

= —009(log(w™)) using 9% =0
=99 (log(w™)) using 00 + 09 =0
=0 using 52 =0
2. Recall the definition for de Rham cohomology
[Ric(w)]ar := Ric(w)/{ezact forms dp where 1 € A'}
Assume two metrics wl and wy gives rise to two Ricci Forms
iRic(wy) = —i00(log(w?)) iRic(ws) = —i09(log(wy))

Notice

But Z—g s a strictly positive C* function since
2

n
w?EKX(X)Kx, (.OSGKX(X)K)(, jG]l
2
Thus "
o . o
—=ce for certain ¢ € C°° and ¢ >0
)
Now

R%j - R%j = —00;¢
i(Ry, — Ry )d2? A dz* = —i0p0;¢d2? A dz"
= —i00¢ = —i(0 + 0)0¢
= —id(0¢) exact form
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Hence
[iRic(wy)] = [iRic(wa)]

is independent of the metric w™. Thus in particular
[iRic(w)] = [e1(Ric(w)) ar = e1(Kx")
Problem A.19. Let ME]' be a given Hermitian matriz, and let
M :=>" Mg,d2 Adz*
kj
We consider the following equation for a Kdhler metric w
Ric(w) = M
Find necessary conditions on M for the existence of solutions.

Answer A.19. 1. One necessary condition for existence of solution w is that M is closed, i.e. dM = 0.
This is because
dRic(w) =0

is closed

2. Another necessary condition is
[M]ar = e1(Kx")

since we necessarily have
[M]ar = [Ric(w) Jar = e1(Kx")

Problem A.20. Formulate the Calabi Conjecture.
Answer A.20. Given M satisfying dM =0 and

[M]ar = [Ric(w) Jar = e1(Kx')
Then in any Kdhler class [wg ], there exists a unique w € [wo | with

Ric(w) = M
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B Final

B.1 Chern Connection and Curvature w.r.t. two metrics

Let X be a complex manifold of dimension n. Let w and @ be two Hermitian metrics on X. In local coordinates,
they write

n
w:i=1 Z g;ﬂdzj A dz"
k=

Let V and V denote their Chern unitary connections respectively w.r.t. @ and w. Let R%qu and Rﬁj” . be the
corresponding curvature tensors.

Problem B.1. Write down the explicit formulas for V and V acting on vector fields V'™ and differential forms
W, where m and p are unbarred directions.

Answer B.1. We denote j as unbarred direction and k as barred direction. For vector fields
VIV = G0,V = 67705, V)
@Evm — GEVTYL
ViV =g7l0i(gV™) = g™ 0;(95,V?)
ViV =0V
For differential forms, we compute using Dual Bundle

@ij =W, =W, (ngajgip)

@EWP = Wy
VW, =0;W, — Wq(ngaj%p)
VilWp = %W,

Problem B.2. Let h be the relative endomorphism with respect to both metrics & and w defined by
hy == 9" gimg
Show that h is a positive endomorphism w.r.t. both metrics & and w. Hence so is h™1.
Answer B.2. Denote (-,-)o and {-,),, as inner product w.r.t. to the two metrics. We first show that
(ViV)w = (W, V)
and it follows that h is positive w.r.t. @. To do so, for any V # 0 vector field
(V, V) = g5, VIVE
= Akp (gpmgmj) VIVE
= G, " VIVE
= G, (WV)PVE = (hV, V),

Since LHS is a inner product and positive, then h > 0 w.r.t. @. Similarly, h~! is also positive w.r.t. &.
Interchanging roles of w and & we obtain positivity of h and h™' w.r.t. both metrics.

Problem B.3. Show that the covariant derivatives V, V on vector fields are related by the formula
ViV =V VT = (Vhh ™)™ VP (42)
and on differential forms are related by the formula

VW, — VW, = —W, (V0 ), (43)
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Answer B.3. Notice

Hence

ViV =47'9;(gV) = hg~'0;(gh™'V)

=hg 'V;(gh™'V) Gsm(h~H)™ V" section of an antiholomorphic bundle

=hg gV, (h7V)
=h(V;(h™V))
=h(=h " (V;R)h'V + 'V, V)
—(V;R)h™ 'V + VY,V
On the other hand

VW = ;W — W(§719;9)
= 0;W — W(hg=10;(gh™"))
= ;W — W(hg~*(9;9h™" — gh™ " (9;h)h~
=0;W —W(g~10;9 — h='0;h)

= ;W —W(g'9;9) + W(h™'9;h)
=V,;W +W(V;hh™ ")
Rearranging both yields (42) and (43).
Problem B.4. Show that the curvature tensors of w and & are related by
Ry", = Ry, = =0x(V;hh= )
Answer B.4. Apply 05 to both sides of (42)
6Lv V™ =0(V;V™) — 0p((Vihh 1 V™)
Vi(0gV™) — Ry, VP =V(05V™) = Ry VP = 0p(Vihh™HV™)
@07~ V06V = By, VP = Ry VP (V™)
(VNG = Ry VP - By VP (Vb VT
p_ M m _ ) -1 m
Ry; pr — Ry; pr = 0¢(Vjhh™ ")V
Ry; - jomp O (Vihh™ )7"

Ry™ = Ry)” = —0p(Vihh )y

kjp

B.2 Kahler Geometry and Calabi Conjecture
Let X be a complex n-dim Kéahler Manifold.
Problem B.5. Define the first Chern Class ¢1(X) of the manifold X.

h)

(V,;hh~!

(44)

Answer B.5. For a general connection V on the holomorphic tangent bundle TY°X, ¢ (X) is represented by:

c1(X) = [Tr(R)]4g € H"'(X,R),

where R is the curvature form of V. In our case

[Flar = F/{exact forms dyp where 1) € A°}

Problem B.6. Let

n
w=1 Z gEjdzj/\dE]c
Jk=1

be any Kdhler metric on X. Show that its Ricci form

Ric(w —ZZR]kdzj/\dz
ik

is a closed (1,1)-form and its de Rham cohomology class is always c1(X).
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Answer B.6. The Ricci curvature form associated to w is:
Ric(w) =i Y  Rgdz AdzF,
gk
where Rz = —0;0;logdet(g). We first show it is closed (1,1)-form. Indeed
dRic(w) = —i(d + )00 (log(w™))
= —i(0?0 + 000) (log(w™))
= —i000(log(w™)) using 0% =0
=00 (log(w™)) using 00 + 00 = 0
=0 using 52 =0

Conclude by observing that Ricci form is defined as the trace of the curvature form. The first Chern class is
thus the de Rham cohomology class

c1(X) = [Ric(w)] 4z € H"' (X, R).

Problem B.7. We consider the question of whether X admits a Kdhler-Finstein metric of negative scalar-
curvature, that is, whether X admits a Kdhler metric w which satisfies the following Euclidean analogue of
Finstein’s Equation

Ric(w) = —w

i.€.
REj = ~9%; (45)

1. Explain why a necessary condition for the existence of such a Kahler-Finstein metric is that ¢1(X) must
be negative-definitive, in the sense that —c1(X) admits a representative which is a Kahler metric.

2. Furthermore, explain why a Kdhler-Einstein metric w satisfying (45) must be in the cohomology class
—C1 (X)

Answer B.7. 1. We first discuss necessity of —c1(X) being positive. The Ricci form Ric(w) represents the
first Chern class ¢1(X) = [Ric(w)]4g- If Ric(w) = —w, then

Since w is a Kdhler metric, [w]ar is a positive (1,1)-cohomology class. Thus, —c1(X) must be positive,
i.e., —c1(X) admits a Kahler metric representative. This makes c¢1(X) negative-definite.

2. Cohomology class of w. From the equation (45), take cohomology classes
[Ric(w)]ar = —[w]ar
By definition, [Ric(w)]ar = c1(X). Substituting
a(X) = —[wlar = wlar = —c1(X).
Thus, w lies in the cohomology class —c1(X).

Problem B.8. Assume now ci(X) is negative definite, and let © € c1(X) be a Kdihler metric. Since the de
Rham cohomology class of Ric(w) + & is 0, by 90-lemma, we can write

Ric(@) + & = i00F (46)
for some function F which is unique up to an additive constant. Show that if

w=0Q+i0dp >0 (47)
is a Kdhler-Finstein metric, then after possibly shifting ¢ by an additive constant, o must satisfy Monge-Ampére

Equation B
(& 4 i00p)" = et E (48)
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Answer B.8. We want to express Ric(w) — Ric(®) in two different ways. Using w satisfies (45) and & satisfies
(46) we write

Ric(w) — Ric(@) = @ — w — i00F
—i00 log(w™) + 00 log(&w") = —idI(F + @) using Ricci and (47)
o )) = —i99(

iag(log(%)) = i00(F + )

w

—i09(log(

F + )

n n
log(——)=F+¢ using — s scalar function
wn wn
n

w

=ty

wn

W' = @rel T

(& 4 i00p)™ = Qnef e using (46) again

B.3 (C° Estimate

We consider the problem of a priori estimate for the Monge-Ampeére Equation (48).
Problem B.9. Show that any C? solution ¢ of the equation (48) must satisfy the following C° estimate

lellco < 11F1lco (49)

Answer B.9. Proof. First we consider zy where ¢ attains its maximum. Then at such point, the Hessian
(0;0z¢) of ¢ must be a non-positive matrix. Hence at zg

w=+i00p <&
But then

w™(z0) = (") (29) < O™ (20)
e?(20) < = F(20)
max ¢ < [|F| o
On the other hand consider z; where ¢ attains its minimum. Then the Hessian (0;0:¢) of ¢ must be a
non-negative matrix. Hence at 2z; B
w=w+1i00p > &
Then
w(z1) = (@) (21) > & (21)
e?(21) > o= F(21)
H}}néﬁ 2 = 1Fllco
Thus we conclude (49)
lellco < 11Flco

B.4 (C? Estimate

We still consider the Monge-Ampere Equation (48) or its equivalent formulation using Ricci curvature (45). Let
h be the endomorphism defined by B
= 7 g
Let the trace of h be defined as usual by
’I‘I‘(h) = hg = gpmgmp
Problem B.10. Show that Tr(h) satisfies the differential identity
A~ r —
A(Tr(R)) = (h™)ER, + Te(h) + g™ Tr(V,hh =" 0gh) (50)

where A is the Laplacian on scalars with respect to w A = gP1VzV,,.
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Answer B.10. We calculate

A(Tr(h)) = g"1VgVp(Te(h)) = " Vq(Tx(V,h))
— TV (Tx(V,hh)h)
— gPI(TH(V4(Vphh~)h) + Tr(V,hh~1)ogh)
We compute the first term. Notice using (44)
PTIH(Vg(Vphh ) = gP(Rg, " — Ry ),
= gpgéﬁpmehfn - gpaRﬁpmehfn
Using (45) we know
gpaRﬁpmghﬁz = R’Zlhé

_ 'rn AZE

Ny
= Ry,9

On the other hand

Collecting terms we obtain
0T _
A(Tr(h)) = (b)Y R, b3+ Tr(h) + g" Tx(V,hh ™) dgh
Problem B.11. FEstablish the following general identity.

A(Tr(h))  ¢P70,Tr(h)dgTr(h)

A(log(Tr(h))) = ) (T ()2 (51)
Answer B.11.
Alog(Tr(h)) = gP1940, log(Tr(h))
_ g [ Ge(Tr(h)
- (%)
- pq<563p(TT(h)) _ Op(Tr(h))9g(Tx(h )))
Tr(h) (Tr(h))?
_ A(Tr(h)) g0, (Tr(h))0g(Tr(h))
Tr(h) (Tr(h))?
Problem B.12. Deduce the following identity for the above Monge-Ampére Equation.
TR (T o) g0, (T() 3y (Tx(h)
A1) = = +1+ (S mae ) o

Answer B.12. We put (50) and (51) together.

A(Tr(h))  g"10,(Tr(h))05(Tr(h))

A(log(Tx(m) = =5 (Tx())?

g"10p(Tr(h))Og(Tr(h))
(Tr(h))?

(1R, b (Y, hh~)0gh  gT0,(Tx(1))05(Tx(h))
Te(h) “*( Te(h) (Tx(h))? >

= 1 ( R S+ Tr(h) +gp§Tr(Vphh*1)85h) -
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Problem B.13. Ezxplain why Tr(h) can be viewed as a norm for h, and similarly Tr(h=') as a norm for h=!.
And hence we obtain

TV L _
(R, B3| < Cag(Te(h))(Te(h™1)) (53)
for Cy constant depending only on the curvature tensor of the reference metric .

Answer B.13. The trace Tr(h) = §P" gmp measures the "size” of h as the sum of its eigenvalues. Similarly,
Tr(h~!) = G Grmp measures the size of h=1. For positive-definite Hermitian endomorphisms, these traces act as
L'-norms on eigenvalues. Due to the given reference metric, one can choose Cy, large to bound the components
of R. Now by the Cauchy-Schwarz inequality

(R, h| < o Te() - T
Problem B.14. Deduce the following differential inequality using Aubin-Yau (33)
Alog(Tr(h)) > —CyTr(h™') +1 (54)

Answer B.14. Recall Aubin-Yau’s Inequality (33) algebraic inequality.

9" Tr(Vphh™)0gh  g*10y(Tx(R))0g(Tr(R))
Tr(h) (Tr(h))? -

Hence plugging (53) and (33) into (52) we obtain

Alog(Tr(h)) > —

Co(Te(M)(Tx(h7Y) | (g™ Tx(Vphh™H)0gh _ 70, (Tr(h))0g(Tr(h))
Tr(h) Tr(h) (Tr(h))?
> —CpTr(h™ ) +1+0=—-CpTr(h™ ) +1
Problem B.15. Deduce that there exists a constant K, depending only on & and ||¢|| oo, so that at any point

z € X, we have
Te(h(2)) < K

Answer B.15. Let’s now consider the expression for A to be chosen

A(log(Tr(h)) — Ap) = Alog(Tr(h)) — AAp
= Alog(Tr(h)) + A (Tr(h™!) — n)
> —CpTr(h™ ) + 14+ ATr(h™1) — An

Take now
A= 20‘;,

Then
A(log(Tr(h)) = Ap) > CoTr(h™) = C3 Gy = —An—1
Now apply the mazimum principle to this. Let z1 be a local mazimum point of log(Tr(h)) — Ap. Then
0> A (log(Te(h)) — Ag) (21) > CoTe(h™1)(21) — C

Tr(hil)(zl) < Oy Cy = %

Let Ay, -+, A\ be the eigenvalues of h at z1. Thus we have

1 1

- ~ <

/\1+ +)\n7 4
and then 1

1, ) = U5 04

But now from the Monge-Ampére Equation (48),

wn
Wt = Qe = T = et
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Thus the product

=1
Crn < A | A =€t
bF#r
2F
)\TSCG—mai: Vi<r<n

where in the last step we used CO estimate (49). Now at an arbitrary point = € X, we can write

(log(Tr(h)) — Ap) () < (log(Tr(h)) — Ap) (21)
< (log(nCs) — Ap) (21)
(log(Tr(h)) — Ap) (2) < (

Now we can rewrite

log(Tr(h(2))) < C7 + A(p(2) — ¢(21))
< C7 + Aosc(p)
Tr(h(z)) < Cgetose(¥)
< Cge?Aliellco

<K using Estimate (49)
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