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1 Construction of Real Numbers

The first question to think about: is 0.999 = 1? The difference looks like an infinitesimal. Unfortunately < is
not true. If you look at fractions, you multiply

0.999 = 9× 0.111 = 9× 1

9
= 1

It makes sense, right? We’re going to unpack 0.999 rigorously.
One way to interpret this is to think about rabbit racing a turtle. Assume rabbit starts at 0 m and turtle at

9 m. The speed of rabbit is SR = 10 m/s while turtle is ST = 1 m/s. Once rabbit is at 9 m, turtle is at 9.9 m.
Once rabbit at 9.9 m, turtle is at 9.99 m... The Greeks thought this was a paradox as the rabbit never reaches
the turtle. For

xR = 0 + 10t

xT = 9 + 1t

align xR = xT = 10

=⇒ t = 1

The foundation always come from how one defines the real numbers. Let’s begin with the construction of
the real number system R.

1.1 Natural Numbers and Integers

Definition 1.1 (Natural Numbers). Denote the natural numbers as

N := {0, 1, 2, 3, · · · }

The cool property of N is that there exists a function s (successor) s.t.

s : N → N
n 7→ n+ 1

One can take as an axiom the ‘induction property’

Proposition 1.1 (Induction property). Let A ⊆ N. If 0 ∈ A and for any n ∈ A, s(n) = n + 1 ∈ A. Then
necessarily A = N.

The usefulness of this is that it allows one to do proofs by induction. For logical statement p(n) where
n = 0, 1, 2, · · · . To prove p(n) is true for any n, it suffices to prove that

1. p(0) is true.

2. Assume p(n) is true, then prove p(n+ 1) is true.

We’re essentially using
A := {n ∈ N | p(n) is true}

and applying the Induction property.

Example 1.1 (Gauss).

1 + · · ·+ n =
(n+ 1)n

2
∀ n ∈ N

Proof. Note this is statement p(n). We prove by induction.

1. Base Case. We prove p(1). Indeed

1 =
(1 + 1)1

2

2. Inductive Step. We prove p(n) =⇒ p(n+ 1). Assume that for some n ∈ N, it holds that

1 + · · ·+ n =
(n+ 1)n

2

We want to use this to prove p(n+ 1). We add what’s missing to both sides.

1 + · · ·+ n+ (n+ 1) =
(n+ 1)n

2
+ (n+ 1)

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2
=

[(n+ 1) + 1](n+ 1)

2

And we’re done.
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But there’s no analysis that can be done for N.
One can put two copies of N and define Z

Definition 1.2 (Integers). Denote the integers as

Z := N× {+,−}/{+0 ∼ −0}

where we declare equivalence ∼ at 0 s.t. +0 = −0.

1.2 Rationals

We first introduce Equivalence Relation.

Definition 1.3. ∼ is an equivalence relation on a set S if

1. Reflexive. s ∼ s for any s ∈ S.

2. Symmetric. s ∼ t implies t ∼ s for any s, t ∈ S.

3. Transitive. s ∼ t and t ∼ r implies s ∼ r for any s, t, r ∈ S.

Definition 1.4 (Rationals). We denote

Q := {p
q
| p, q ∈ Z, q ̸= 0}/ ∼

where we declare equivalence ∼ s.t.
p

q
∼ r

s
⇐⇒ ps = rq ∈ Z

Let’s check ∼ imposed on Q is indeed an equivalence relation.

Proof. 1. Reflexive p
q ∼ p

q .

2. Symmetric p
q ∼ r

s implies r
s ∼ p

q .

3. Transitive p
q ∼ r

s and r
s ∼ m

n implies p
q ∼ m

n .

Usually we take irreducible fractions as the preferred representative of a class, i.e., we prefer 1
2 over 2

4 or 17
34 .

This is procedure of set theory, where we partition the set into equivalence classes, and pick representative for
each class. Hence Q is understood as a collection of representatives of equivalence classes with ∼ defined above.

Example 1.2. We define R2/ ∼ where

(p, q) ∼ (m,n) ⇐⇒ p−m ∈ Z q − n ∈ Z

What are representatives? This is unit cube [0, 1]× [0, 1] but we glue into a cylinder, and then a torus.

What’s good about Q is that it is an (totally) ordered field. Naively, ordered means there is notion of
smaller, equal, bigger. A field is where +, and multiplication works.

Definition 1.5 (Field). A field is a set F with two operations

1. Addition +

+ : F× F → F
(x, y) 7→ x+ y (A1)

2. Multiplication ·

· : F× F → F
(x, y) 7→ xy (M1)

s.t. for addition

(A2) x+ y = y + x for every x, y ∈ F

(A3) (x+ y) + z = x+ (y + z)
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(A4) there exists a special element 0 ∈ F s.t 0 + x = x

(A5) Given x ∈ F, there exists an inverse (−x) ∈ F s.t x+ (−x) = 0.

while for multiplication

(M2) xy = yx

(M3) (xy)z = x(yz)

(M4) there exists a special element 1 ∈ F s.t. 1x = x for any x ∈ F

(M5) Given x ̸= 0 ∈ F, there exists an inverse 1
x ∈ F s.t. x · 1

x = 1.

They also need to satisfy Distributive property

x(y + z) = xy + xz (D)

Definition 1.6 (Order). Let S be a set. A (total) order is a relation < in S s.t. two properties hold

1. If x, y ∈ S, then exactly one of the following holds

(a) either x < y

(b) or x = y

(c) or y < x.

2. There is a transitivity property s.t. if x, y, z ∈ S with x < y and y < z, then x < z.

Proposition 1.2. Q is a field and Q has a total order <.

Definition 1.7 (Ordered Field). (F, <) is called an order field if in addition, we have compatibility between the
first and second property, i.e.,

1. Compatibility with Addition: if x, y, z ∈ F and y < z, then x+ y < x+ z.

2. Compatibility with Multiplication: if x, y > 0, then xy > 0.

Proposition 1.3. Q is an ordered field.

However Q is not good enough for analysis.

Example 1.3.
√
2 is not rational. One can ask two problems

Problem 1: x2 − 2 = 0 has no rational solutions, i.e., there does not exist p
q s.t. (pq )

2 = 2. (This is usually called Q
is not algebraically complete)

Problem 2: you can’t measure hypotenuse of a right angle. (This is called Q is not metrically complete)

For π, similarly, one cannot measure the circumstance of a circle in Q.

We need to complete Q by metric. But before that let’s prove that
√
2 is not rational.

Proposition 1.4. There does not exist p
q ∈ Q s.t. (pq )

2 = 2.

Proof. Assume by contradiction. Assume there exists an irreducible fraction p
q s.t.

(
p

q
)2 = 2

so that gcd(p, q) = 1. Then

p2 = 2q2

thus p2 is even. We’d love to conclude that p is even. We claim that p is indeed even. By contradiction, assume
p is odd, i.e., p = 2k + 1 for some k ∈ Z. Then p2 = (2k + 1)2 = 4k2 + 4k + 1 is odd, which contradicts our
assumption that p2 is even. Thus p is even, so assume

p = 2m

for some m ∈ Z. We obtain that

p2 = 4m2 = 2q2

q2 = 2m2

so q2 is even, thus q is even. But both p and q are even, so gcd(p, q) ≥ 2, which contradicts our assumption
that p

q is irreducible.
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1.3 Real Numbers

We would like to construct an order field that is ‘complete’. Let’s define a sequence in Q that should converge
to

√
2. Let’s start with p0 = 1 (since 12 < 2). To define the sequence recursively, we define

pn+1 := pn − p2n − 2

pn + 2
=

2pn + 2

pn + 2

Then one can immediately check the property of the sequence

pn+1 > pn

p2n+1 < 2

We’re getting the numbers successively increasing but bounded above by
√
2. But in Q the limit does not

converge.

Definition 1.8 (Upper Bound). Suppose S is a (totally) ordered set. Let E ⊆ S. If there exists β ∈ S s.t.

x ≤ β ∀ x ∈ E

Then we say E is bounded above by β, or that β is an upper bound for E.

Example 1.4. The sequence {p2n} is bounded above by 2.

Now comes the first important definition for reals.

Definition 1.9 (Least Upper Bound). If β as an upper bound for E has the following additional property holds

• If α < β, then α is NOT an upper bound of E.

Then we call β the least upper bound of E. We denote

β ≡ supE

Similarly, we define the greatest lower bound.

Definition 1.10 (Greatest Lower Bound). Given an ordered set S. Let E ⊂ S. β ∈ S is a lower bound for the
set E if

β ≤ x ∀ x ∈ E

If in addition, for any ε > 0, β + ε is not a lower bound for E, then

β ≡ inf E

is called the greatest lower bound of E.

Indeed sup{p2n} = 2. But notice {pn} is bounded above, yet has no supremum in Q. We take

E := {q ∈ Q | q2 < 2}

supE does not exist in Q. Hence R consists of adding the supremum of every bounded set in Q, or equivalently,
adding every supremum of a bounded monotonically increasing sequence in Q.

What exactly is R? How do we construct R?

1.3.1 Sketch of the Construction of R

One has three ways of doing this.

1. Let’s be users of R. Just accept it: There exists R ⊇ Q that is an ordered field and s.t. every subset
E ⊆ R bounded above has a supremum in R.

2. In Rudin Chapter 1 Appendix. Define using ‘cuts’.

Definition 1.11. A cut α ⊆ Q is that

(a) α ̸= ∅ and α ̸= Q
(b) If r ∈ α, then s < r implies s ∈ α.

(c) Has no maximal element, i.e., if r ∈ α, then there exists s ∈ α s.t. s > r.
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We define for example
A := {q ∈ Q | q < 0} ∪ {q ∈ Q | q2 < 2}

This is a cut. We call this cut
√
2. We need to tell one how to square it and get 2. We try to define

multiplication of the cuts. We define
A2 := {q < 2}

Including exactly the irrational cuts gives the real number system. It is a nightmare to check each
statement...

3. We do a completion procedure, called a Cauchy Completion. We define

R := {(qn) | qn ∈ Q, qn is increasing and bounded above}

We call
√
2 := (pn). There’s a lot of redundancy here. We declare an equivalence relation s.t.

(pn) ∼ (rn) ⇐⇒ pn − rn → 0 formally

Theorem 1.1. There exists R ⊇ Q s.t.

1. R is an order field

2. R has the ‘Least Upper Bound Property’, i.e. of E ⊂ R is bounded above, then there exists β ∈ R s.t.
β = supE.

3. Q is dense in R.

1.3.2 Properties of R

Theorem 1.2 (Archimedean Property). Let x, y ∈ R with x > 0. Then there exists a positive integers n s.t.
nx > y.

Proof. Define a set
A := {nx | n ∈ N}

Assume by contradiction that nx ≤ y for all n ∈ N. This is to say A is bounded above by y. Hence using Least
Upper Bound Property, there exists α = supA ∈ R. Since x > 0, α− x < α, hence α− x is no longer an upper
bound of A. Thus there exists m ∈ N s.t.

α− x < mx

This implies
(m+ 1)x > α

But (m+ 1)x ∈ A and α = supA. Hence we have a contradiction. Conclusion is that A is unbounded.

Theorem 1.3 (Density Property). Let x, y ∈ R s.t. x < y. There exists q ∈ Q s.t.

x < q < y

Proof. If x < y, then y − x > 0. We apply Theorem 1.2 to y − x. Hence there exists n ∈ N positive integer s.t.

n(y − x) > 1

Also by Theorem 1.2, we find m1 and m2 s.t.

m1 > nx, m2 > −nx

Now we have
−m2 < nx < m1

Hence there exists m s.t. m− 1 < nx < m. Thus

nx < m < 1 + nx < ny

x <
m

n
< y
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2 Countability and Topology of Metric Space

2.1 Countability

In philosophy, one way to classify sets is based on ‘how many elements’ they contain. The simplest classification
is whether a set contains finite or infinite element. However, the tricky thing here is: one can further divide
‘infinite’ into ‘countable’ and ‘uncountable’.

Before we introduce the formal definition, we need to define a way to characterize ‘how many elements’
mappings input and output.

Definition 2.1 (Function). Recall a function f : A → B is a mapping s.t. for any a ∈ A, there exists a unique
b ∈ B s.t. f(a) = b.

Definition 2.2. Let f : A → B be a function. We say that f is

1. injective if f(x) = f(y) implies x = y, i.e., f maps different elements of A to different elements of B.

2. surjective if for any b ∈ B, there exists a ∈ A s.t. f(a) = b, i.e., the image of f is all of B.

3. bijective if f is both injective and surjective.

Remark 2.1. If f : A → B is bijective, for any b ∈ B, there exists a unique a ∈ A s.t. f(a) = b, and vice
versa. In this case we can define an inverse function

f−1 : B → A b 7→ a

let us define a relation on set. We say

X ∼ Y there exists bijection f : X → Y

Lemma 2.1. ∼ defined above is indeed an equivalence relation.

Proof. 1. reflexive. X ∼ X since there exists f : X → X s.t. f(x) = x for any x ∈ X, known as the identity
map, which is indeed a bijection.

2. symmetric. If X ∼ Y , then there exists bijection f : X → Y . Thus we can build an inverse f−1 : Y → X
which is also a bijection.

3. transitive. If X ∼ Y and Y ∼ Z, then there exists

f : X → Y bijection

g : Y → Z bijection

Hence the composition
g ◦ f : X → Z x 7→ g(f(x))

is also a bijection.

Let’s define countability. First denote N⋆ := N \ {0}.

Definition 2.3. We say a set X is

1. finite if X ∼ {0, 1, 2, · · · , n} for some n ∈ N.

2. countable if X ∼ N∗

3. uncountable if otherwise.

Let’s given some examples.

Example 2.1. N is countable.
f : N⋆ → N n 7→ n− 1

is indeed a bijection.

Example 2.2. Z is countable. Define

f : N∗ → Z f(n) :=

{
n
2 n even
−n−1

2 n odd

so that f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, · · ·

8



Example 2.3. We ask whether Q is countable. Indeed Z× Z := {(p, q) | p, q ∈ Z} is countable as indicated in
the following proposition.

Proposition 2.1. If A, B are countable, then A×B is countable.

Proof. Since A and B are countable, we denote

A := {ai}i B := {bj}j
We rewrite

A×B = {(ai, bj) | ai ∈ A, bj ∈ B} =
⊔
k=1

{(ai, bj) | i+ j = k}

Corollary 2.1. Countable unions of finite sets if at most countable.

Now one can view Q as subset of Z× Z via

h : Q → Z× Z
p

q
7→ (p, q) where

p

q
is of the irreducible form (1)

Thus
Q ∼ h(Q) = {(p, q) ∈ Z× Z | p

q
is of the irreducible form}

Hence the question whether Q is countable is equivalent to ask whether h(Q) is countable. This can be achieved
via the following proposition.

Proposition 2.2. Infinite subset of countable sets are countable.

Proof. Let our countable set be A := {ai}i∈N∗ . Let E ⊆ A be an infinite subset. We define a sequence as follows

1. Let k1 be the smallest index s.t. ak1
∈ E

2. Let ki be the smallest index s.t. ki > ki−1 and aki ∈ E, for any i ≥ 2.

Thus
f(i) := aki

is a bijection from N⋆ to E.

Corollary 2.2. Q is countable.

Proof. Since Q can be seen as a subset of Z × Z using (1), and Q is infinite, thus using Proposition 2.2, h(Q)
as an infinite subset of a countable set is itself countable.

Example 2.4.
Qn := {(p1, · · · , pn) | pi ∈ Q i = 1, · · · , n}

is countable from Proposition 2.1.

Now let’s give a non-example.

Example 2.5. Look at
2N := {subsets of N} = {f : N → {0, 1}}

as the set of all sequences with entries zeros and ones.

Proposition 2.3. 2N is uncountable.

Proof. We argue using contradiction. Assume 2N is countable and enumerated, say, as

c1 = (c11, c
2
1, c

3
1, · · · )

c2 = (c12, c
2
2, c

3
2, · · · )

...

where cji ∈ {0, 1} for any i, j ∈ N∗. Let’s define a sequence of zeros and ones as

d := (1− cii)i∈N∗ = (1− c11, 1− c22, 1− c33, · · · )

which is essentially inverting each diagonal entry from 0 → 1 and 1 → 0. Then d does not lie in such enumeration.
But d is indeed some sequence of zeros and ones, hence 2N is uncountable.

Example 2.6. [0, 1] ⊂ R is also uncountable. Indeed

f : 2N → [0, 1] c = (c1, c2, · · · ) 7→ 0.c1c2 · · · as binary expansion

defines a bijection. Since 2N is uncountable, [0, 1] is uncountable. Also, since Proposition 2.2 says subsets of
countable sets are countable, we know R is uncountable.
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2.2 Basic Topology of Metric Space

We want to rigorously rebuild calculus. Intuitively, limit/continuity needs ‘open sets’; derivatives needs an
underlying field R; integrals need lengths of intervals

∑
i f(xi)∆xi.

We have now Rn := {(x1, x2, · · · , xn) | xi ∈ R}. In fact we can build more structure on Rn.

1. One can view Rn as vector space so we have vector addition and scalar multiplication.

2. One can define

(a) inner product ⟨x, y⟩ :=
∑n

i=1 xiyi

(b) norm ∥x∥ :=
√
⟨x, y⟩ as defined by the inner product. Notice from high school

⟨x, y⟩ = ∥x∥ ∥y∥ cos θ where θ is the angle formed by the vectors x, y starting at a same origin

(c) metric d(x, y) := ∥x− y∥ as defined by the norm. This denotes the distance between x and y.

Hence we study metric space. In particular, we study its topology, which is essentially ‘what its open sets look
like’.

Definition 2.4 (Metric Space). A metric space (X, d) is a set with a distance function

d : X ×X → R (x, y) 7→ d(x, y)

with the following properties

1. d(x, y) > 0 for any x ̸= y; d(x, x) = 0 for any x ∈ X.

2. d(x, y) = d(y, x) for any x, y ∈ X.

3. The triangle inequality
d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X

Example 2.7. There’s multiple ways to define distance on Rn.

1. d2(x, y) = ∥x− y∥ as before (Eulidean Distance).

2. dp(x, y) = ∥x− y∥p = ((x1 − y1)
p + · · ·+ (xn − yn)

p)
1
p .

3. d∞(x, y) := max
i=1,··· ,n

|xi − yi|.

Example 2.8. One can define a metric on a subset of a metric space (E, d) using the same metric. For example
on R2 we define d(x, y) := ∥x− y∥. Then on a subset

({0} × [−1, 1])
⊔

{(x, sin( 1
x
)) | x ̸= 0} ⊂ R2

we can inherit the same metric.

Example 2.9. For S2 ⊂ R3 where

S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

we can either define
d(x, y) := ∥x− y∥

as inherited from R3 or

dround(x, y) := shortest arc of a great circle connecting x and y

10



2.2.1 Openness

Now we discuss topology!

Definition 2.5 (Open Ball, Interior Point, Open). Let (X, d) be a metric space. Let E ⊂ X.

1. The open ball of radius r around p ∈ X is

Br(p) := {q ∈ X | d(p, q) < r}

Remark 2.2. Notice different metrics give rise to different-looking open balls. For example (R2, d2) gives
open disc in R2, while (R, | · |) gives open interval on the real line. If we choose (R2, d∞) where

d∞(x, y) := max{|x1 − y1|, |x2 − y2|}

then the open ball is open rectangle. If we choose (R2, d1) where

d1(x, y) := |x1 − y1|+ |x2 − y2|

then the open ball is open diamond.

2. p ∈ E is called an interior point of E if Br(p) ⊂ E for some r > 0.

3. E ⊂ X is open if all points of E are interior points.

Remark 2.3. Being open is a relative notion. The question open or not is what we ask of ‘subsets’ !

1. Consider an open interval on R. It is indeed open in (R, | · |). However it is not open in (R2, d2) when we
identify R with R× {0}.

2. If we just ask if some set is open, then this question is itself not well-posed. One always needs to think of the
underlying metric space. In the above example, one can interpret as either the interval in (X, d) = (R, | · |)
or in (R2, d2). This is essentially because the metrics in the two spaces are different, hence the definition
for open balls differ.

Proposition 2.4. Let (X, d) be a metric space. Br(p) open ball is open for any p ∈ X and any r > 0.

Proof. We want to show that any point q ∈ Br(p) is an interior point, i.e., for each q ∈ Br(p), we want to find
some rq > 0 radius s.t. Brq (q) ⊂ Br(p). Indeed we define

rq := r − d(p, q)

We claim that Brq (q) ⊂ Br(p). To show the claim, for any x ∈ Brq (q), by definition of open ball we have

d(x, q) < rq = r − d(p, q)

But then using definition of a metric we see

d(x, p) ≤ d(x, q) + d(q, p) < r

Thus x ∈ Br(p). But this works for any x ∈ Brq (q), hence Brq (q) ⊂ Br(p).

Remark 2.4. Following the above proof in Proposition 2.4, one has a recipe to prove if E ⊆ (X, d) is open.
The procedure is as follows

1. Take any q ∈ E

2. Construct a radius rq > 0. One can always draw a picture to inspire what rq might be.

3. Check that Brq (q) ⊆ E. How do we prove containment of sets? Take any point x ∈ Brq (q) and show that
x ∈ E.

And we’re done.

Let’s prove some results for openness.

Theorem 2.1 (‘Openness’ closed under arbitrary union and finite intersection). Given (X, d) metric space.
Let Eα ⊆ X be open subsets of (X, d) for every α. Then

1.
⋃

α Eα ⊆ X is open in (X, d). Notice this union may contain infinite, even uncountable terms.

2. Any finite intersection Eα1
∩ · · · ∩ Eαn

is open in (X, d). Notice here intersection has to be finite.

11



Proof. 1. We prove
⋃

α Eα ⊆ X is open. Take any q ∈
⋃

α Eα. What does it mean for q to belong to this
union? This means

q ∈ Eα0
for some α0

Now since Eα0
is an open subset, there exists rq > 0 s.t. Brq (q) ⊆ Eα0

. One needs to come up now a
radius for which the ball is contained in

⋃
α Eα. But this is trivial by taking the same rq since

Brq (q) ⊆ Eα0
⊆
⋃
α

Eα

Conclude using arbitrariness of q in
⋃

α Eα.

2. Take a point q ∈ Eα1
∩ · · · ∩ Eαn

. What does it mean to be in the intersection? This means

q ∈ Eαi
∀ i = 1, · · · , n

Now since each Eαi
is open, there exists a radius ri > 0 for i = 1, · · · , n s.t.

Bri(q) ⊆ Eαi
∀ i = 1, · · · , n

Here we’re applying the ‘openness’ n times. Now what is the magical radius that works to fit the ball in
Eα1 ∩ · · · ∩ Eαn? We take the minimum!

r := min{ri | i = 1, · · · , n}

This is the place where finiteness comes in handy! If we’re not looking at finitely many numbers then we
couldn’t take minimum. If there’s infinitely many, the infimum could be 0, which is a risk. Now

Br(q) ⊆ Bri(q) ⊆ Eαi
∀ i = 1, · · · , n

Hence
Br(q) ⊆ Eα1 ∩ · · · ∩ Eαn

Conclude using arbitrariness of q in Eα1
∩ · · · ∩ Eαn

.

Remark 2.5. Is ∅ ⊆ (X, d) open? This is true because there’s nothing to check (something related to logic).
Or one can check the definition of a topological space, where ∅ is always contained in the topology.

2.2.2 Closedness

Definition 2.6 (Limit Point; Isolated Point; Closed). Let (X, d) be metric space. Let E ⊆ X.

1. p ∈ X is a limit point of E if every open ball around p contains a point q ∈ E with q ̸= p. (Notice p need
not be in E). Or to use formal definition

p ∈ X is a limit point of E if ∀ r > 0, ∃ q ∈ Br(p) ∩ E, s.t. p ̸= q

2. If p ∈ E is not a limit point of E, then we call it an isolated point of E.

3. We say E ⊆ X is closed if every limit point of E belongs to E.

Example 2.10. Let (X, d) = (R, | · |). Consider E = Z ⊆ R. Then for any integer p ∈ E,

B 1
2
(p) ∩ E = {p}

Which means any point in E is not a limit point of E. Hence each point in E is an isolated point of E. In this
case Z ⊇ ∅ = {all limit points of Z} hence Z is closed in R.

Example 2.11. Let

E = { 1
n
| n > 0, n ∈ N} ⊆ R = (X, d)

This looks like a sequence converging to 0 (though we haven’t defined yet). We would like 0 alone to be the only
limit point of E. This is how the definition of limit point (contain another point q ̸= p) is helping us!

Now we remark on closedness.

Remark 2.6. To show a set E is not closed, one can argue using there exists p /∈ E s.t. p is a limit point of
E.

12



Remark 2.7. WARNING: Closedness is also relative. One can construct E ⊆ (X, d) ⊆ (Y, d) s.t. E is closed
in X but E is not closed in Y .

Remark 2.8. WARNING: a subset can be both open and closed in a given metric space (X, d), and can also
be neither open nor closed.

Example 2.12 (Example for Remark 2.8). In (R, | · |), intervals [0, 1) and (0, 1] are neither open nor closed.

Example 2.13. In (R, | · |), ∅ and R are both open and closed (which we call clopen). In fact for (R, | · |) they’re
the only clopen sets.

Remark 2.9. For any (X, d), X and ∅ are clopen. In fact one can construct (X, d) where there’re more clopen
subsets.

2.2.3 Properties of Open and Closed

One has powerful duality operation that relates an open and closed set, which is set complement.

Proposition 2.5 (Duality). Let (X, d) be a metric space. E ⊆ X is open iff Ec ⊆ X is closed, where

Ec ≡ X \ E := {x ∈ X | x /∈ E} is the complement of E in X

Proof. 1. ( =⇒ ) Given E open, we want to show Ec is closed. Take p ∈ X a limit point of Ec, we want to
show that p ∈ Ec. How do we do this? If p ∈ X is a limit point of Ec, then for any r > 0, there exists
q ∈ Br(p) ∩ Ec s.t. q ̸= p.

(a) If p ∈ E, then p is not an interior point of E, because Br(p) ̸⊆ E due to the existence of q. This is
contradiction since E is open by assumption.

(b) If p /∈ E then p ∈ Ec and we’re happy.

2. ( ⇐= ) Given Ec closed, we show E is open. Take any p ∈ E, we show that p is an interior point of E.
Since p /∈ Ec, and Ec is closed, then p is not a limit point of Ec. To violate the limit point definition,
tehre exists r > 0 s.t.

Br(p) ∩ Ec = {p} or ∅

But {p} is not possible since p /∈ Ec. Hence Br(p) ∩ Ec = ∅. But this means Br(p) ⊆ E.

We introduce a lemma on set operations.

Lemma 2.2. (⋃
α

Eα

)c

=
⋂
α

Ec
α(⋂

α

Eα

)c

=
⋃
α

Ec
α

Proof. We only prove the first one. Let x ∈ (
⋃

α Eα)
c
then x /∈

⋃
α Eα, hence

x /∈ Eα ∀ α

Thus x ∈ Ec
α for any α.

Corollary 2.3. Let (X, d) be metric space. Fα ⊆ X closed for any α. Then

1.
⋂

α Fα is closed in X.

2. Fα1
∪ · · · ∪ Fαn

is closed in X.

Proof. Define Eα = F c
α. Then using Proposition 2.5, Eα is open. Apply Lemma 2.2, then conclude using

Theorem 2.1. More precisely(⋂
α

Fα

)c

=
⋃
α

F c
α =

⋃
α

Eα open from Theorem 2.1

hence
⋂

α Fα is closed by Proposition 2.5.

Now we discuss subspace topology.
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Proposition 2.6. Let (Y, d) ⊆ (X, d) with the same metric. E is open in Y iff

E = Y ∩G for some G open in X

Proof. 1. ( =⇒ ) E open in Y , so for any p ∈ E, there is some rp > 0 s.t. BY
rp(p) ⊆ E where

BY
rp(p) := {y ∈ Y | d(y, p) ≤ rp}

The question is : What is G? The way is to take the X ball

BX
rp(p) := {x ∈ X | d(x, p) ≤ rp}

and we define
G :=

⋃
p∈E

BX
rp(p)

G is open using Theorem 2.1. Why is E = Y ∩G?

(a) If we take a point q ∈ E, then indeed q ∈ Y because E is a subset of Y . Also q ∈ G because
q ∈ BX

rq (q) ⊆ G. Hence q ∈ Y ∩G.

(b) Same backwards. If q ∈ Y ∩G, then q ∈ G, i.e., there exists p ∈ E s.t.

q ∈ BX
rp(p) ∩ Y = BY

rp(p) ⊆ E

2. ( ⇐= ) Assume E = Y ∩G for some G open in X. Then let p ∈ E, p ∈ Y and p ∈ G. Since G is open in
X, there exists rp > 0 s.t.

BX
rp(p) ⊆ G

Now we can interset both sides with Y and so

BX
rp(p) ∩ Y = BY

rp(p) ⊆ G ∩ Y = E

Thus there exists open ball (in Y ) around p contained in E.

We also look at an extreme example.

Example 2.14. Look at (X, d) with

d(x, y) :=

{
1 x ̸= y

0 x = y

Then all singletons {p} ⊂ X are open, then any subset A ⊆ X is open. But also any subset B ⊆ X is closed
because Bc is always open in X. Thus everything in this metric space is clopen.

We have some insightful property of limit point.

Proposition 2.7. Consider (X, d) where E ⊆ X. If p is a limit point of E, then every open ball around p
contains infintely-many elements of E.

Proof. Assume that there exists open ball Br(p) s.t.

Br(p) ∩ E = {x1, · · · , xn, p} is finite

Then look at
ri := d(p, xi)

We take a new radius
p < min{ri | i = 1, · · · , n}

Then look at
Bρ(p) ∩ E = {p} or ∅

Thus p is not a limit point of E.
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2.3 Compactness

In calculus, one might have heard that a compact set is closed and bounded. This is OK for Rn. The tragedy
is merely closed and bounded, in general, does not imply what we like to be compact.

Consider rectangle in R2. Look at a sequence of points in the rectangle. We want some limit of the sequence.
We divide up the square. Then there is some limit point if we keep dividing, up to certain choices of square.

Also, compactness itself is just beautiful :)

Definition 2.7 (Compactness). Let (X, d) be a metric space. K ⊆ X.

1. Let Gα ⊆ X be open subsets. We say that {Gα} is an open cover of K if

K ⊆
⋃
α

Gα

2. We say K is compact if every open cover {Gα} of K admits a finite subcover, i.e., there exists α1, · · · , αn

s.t.

K ⊆
n⋃

i=1

Gαi

We first look at example of non-compactness.

Example 2.15. It suffices to show there is some open cover that cannot have any finite subcover. Let

E = (−1, 1)

We show this is not compact. Take

Gn := (−1 +
1

n
, 1− 1

n
)

Then

E ⊆
∞⋃

n=1

Gn = (−1, 1)

Hence if we stop at finite union, we do not cover E. Thus it is not compact.

Remark 2.10. Compactness is an absolute notion, i.e., it does not depend on the ambient metric space (X, d).
Provisionally we call K compact in X and prove it is actually not the case.

Proposition 2.8 (Compact is Absolute). Let (Y, d) ⊆ (X, d) be metric space, and K ⊆ Y ⊆ X. Then K is
compact in Y iff K is compact in X.

Proof. We unravel the definition. The key is ‘every’ cover.

1. ( =⇒ ) We start by taking any X-open cover {Gα} of K. Then taking intersections we define

Eα := Gα ∩ Y ∀ α

Now Eα is Y -open for every α. Because

K ⊆
⋃
α

Gα

we have
K ⊆

⋃
α

Eα

Now we’ve produced a Y -open cover {Eα} of K. Using Y -compactness, there exists a subcover {Eαi
}ni=1

s.t.

K ⊆
n⋃

i=1

Eαi

But then Gαi
are bigger. Hence

K ⊆
n⋃

i=1

Gαi

and this is a X-finite subcover. Thus K is X-compact.
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2. ( ⇐= ) We assume K is X-compact. Let {Eα} be any Y -open cover of K. By Proposition 2.6, each

Eα = Gα ∩ Y

where Gα is X-open. Now note that Gα covers K, since Gα ⊇ Eα for any α. Now we encountered a
X-open cover of K. By X-compactness, there exists α1, · · · , αn s.t.

K ⊆
n⋃

i=1

Gαi

But since K ⊆ Y , one has

K ⊆
n⋃

i=1

Eαi

and this is Y -finite subcover. Thus K is Y -compact.

Remark 2.11 (Compact Metric Space). Equivalently, we could’ve started with a metric space (K, d), then say
(K, d) itself as metric space is compact if every open cover {Gα}

K =
⋃
α

Gα

admits a finite subcover {Gαi}ni=1

K =

n⋃
i=1

Gαi

Now these open cover are K-open.

2.3.1 Compactness and Closedness

We start by proving some simple proposition that relates compactness with closedness.

Proposition 2.9 (Compact implies Closed). Let (X, d) be metric space. If K ⊆ X is compact, then K is closed
in X.

Proof. Let p /∈ K. Then for every q ∈ K, let rq = 1
2d(p, q). Note that

Brq (q) ∩Brq (p) = ∅ (2)

But the balls {Brq (q)}q∈K is indeed an open cover of K. By compactness, there exists q1, · · · , qn s.t.

K ⊆
n⋃

i=1

Brqi
(qi)

We can now work with finitely-many balls! This is convenient since then we take

r := min{rqi | i = 1, · · · , n}

Then
Br(p) ∩K = ∅

using (2). Hence p is an interior point of Kc. Thus Kc is open. This means K is closed in X via Proposition
2.5.

Proposition 2.10 (Closed subsets of Compact sets are compact). If (K, d) is a compact metric space and
F ⊆ K is closed. Then F is also compact.

Proof. For any {Vα} open cover of F , one wish to extract a finite subcover {Vαi
}ni=1 of F . But how do we use

compactness of K? The trick is to observe
F ∪ F c = K

Since F is closed, F c is open, hence {Vα} ∪ {F c} is an open cover of K. By compactness of K there exists αi

for i = 1, · · · , n s.t.
K ⊆ Vα1

∪ · · · ∪ Vαn
∪ F c

But F ⊆ K by assumption, and notice F ∩ F c = ∅, so

F ⊆
n⋃

i=1

Vαi

is a finite open cover of F .

16



2.3.2 Finite Intersection Property

One has powerful proposition that says nested compact sets has non-empty intersection.

Proposition 2.11 (Finite Intersection Property). Let (X, d) be metric space. Let ∅ ̸= Kα ⊆ X be compact for
any α. If every finite intersection is nonempty, i.e.

Kα1
∩ · · · ∩Kαn

̸= ∅ ∀ α1, · · · , αn

Then ⋂
α

Kα ̸= ∅

Proof. This is quite clever argument. Assume for contradiction that⋂
α

Kα = ∅

Then indeed there exists some compact set in the collection, which we call K1 s.t.

K1 ∩

 ⋂
α, α ̸=1

Kα

 =
⋂
α

Kα = ∅

In other words, no points in K1 belong to all other Kα. Using Proposition 2.9 we know Kα are closed, hence
Kc

α are open, and notice

K1 ⊆

 ⋂
α, α̸=1

Kα

c

=
⋃

α, α̸=1

Kc
α

indeed forms an open cover. Using K1 is compact, there exists finitely many α1, · · · , αn s.t.

K1 ⊆ Kc
α1

∪ · · · ∪Kc
αn

=

(
n⋂

i=1

Kαi

)c

But now

K1 ∩

(
n⋂

i=1

Kαi

)
= ∅

This contradicts our assumption that finitely many intersections is always non-empty.

Corollary 2.4 (Nested Interval Theorem (Generalized)). If Kn is a nested collection of non-empty compact
metric spaces, i.e.,

Kn ⊇ Kn+1 ⊇ · · ·
for any n. Then ⋂

n

Kn ̸= ∅

Proof. We need to verify why one can apply Finite Intersection Property 2.11. But this is done by noticing

K1 ∩K2 ∩ · · · ∩Kn = Kn ̸= ∅ ∀ n

Case of R In particular we look at Finite Intersection Property on R.
Proposition 2.12 (Nested Interval Theorem). If {In} is a nested sequence of closed and non-empty intervals
of R, i.e., In ⊇ In+1 for any n, then ⋂

n

In ̸= ∅

Direct Proof without using Corollary 2.4. Consider In = [an, bn] with an ≤ bn for any n. Due to the nested
property, one has

an ≤ aℓ ≤ bℓ ≤ bn ∀ ℓ ≥ n

Since all {an} are bounded above by b1, x := sup{an} exists in R by the Least Upper Bound Property. Also,
since all bn are upper bounds for the set {an}, by definition of x as the supremum (least upper bound), one
obtain

x ≤ bn ∀ n

Hence
an ≤ x ≤ bn ∀ n =⇒ x ∈

⋂
n

In
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Case of Rk We look at Finite Intersection Property on Rk as generalization.

Definition 2.8. A k-cell is a subset of Rk of the type

I := {(x1, · · · , xk) ∈ Rk | ai ≤ xi ≤ bi, i = 1, · · · , k}

for given
ai ≤ bi i = 1, · · · , k

In other words

I = [a1, b1]× · · · × [ak, bk] =

n∏
k=1

[ai, bi]

Proposition 2.13 (Nested Interval Theorem (Rk)). If In is a nested sequence of non-empty k-cells, then⋂
n

In ̸= ∅

Proof. Write

In := [a
(n)
1 , b

(n)
1 ]× · · · × [a

(n)
k , b

(n)
k ]

Then applying Proposition 2.12 to each coordinate we obtain existence of some

x∗
i := sup{a(n)i } ∈ [a

(n)
i , b

(n)
i ] ∀ i = 1, · · · , k

Define and notice
x∗ := (x∗

1, · · · , x∗
k) ∈

⋂
n

In

To see Proposition 2.13 is indeed a special case of Corollary 2.4, we need to show that the k-cells are compact.

Lemma 2.3. Every k-cell is compact.

Proof. Take
I = [a1, b1]× · · · × [ak, bk] ⊂ Rk

and

δ ≡ ∥a− b∥ :=

√√√√ k∑
i=1

(ai − bi)2

Then for any x, y ∈ I, ∥x− y∥ < δ. Assume for contradiction that I is not compact, i.e., there exists an open
cover {Gα} of I s.t. not finite subcover exists. But given I, one can bisect it into 2k sub k-cells by defining

ci :=
ai + bi

2

and constructing the new generation of k-cells using [ai, ci], [ci, bi] and so on, so that

∥x− y∥ ≤ δ

2
in each sub k-cell

Now there exists at least one sub k-cell, which we denote I1 s.t. cannot be covered by finitely many {Gα}. One
do this procedure inductively to obtain a sequence k-cells {In} ⊆ Rk s.t.

1. I ⊇ I1 ⊇ I2 ⊇ · · ·

2. In cannot be covered by finitely many Gα for any n

3. For any x, y ∈ In, necessarily ∥x− y∥ ≤ 2−nδ.

Now using Proposition 2.13, there exists x∗ ∈
⋂

n In. Since

x∗ ∈
⋂
n

In ⊆ I ⊆
⋃
α

Gα

there exists some α s.t. x∗ ∈ Gα. Using Gα is open, there exists some enough radius r > 0 s.t.

Br(x
∗) ⊆ Gα

Now leveraging Theorem 1.2, one may choose N sufficiently large so that

2−Nδ < r =⇒ IN ⊆ Br(x
∗) ⊆ Gα

Now IN belongs to our sequence of k-cells but {Gα} is a finite subcover of IN . This is contradiction.
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2.3.3 Sequential Compactness

One may naturally ask: What about Finite Intersection Property (Nested Interval Property) in ∞-dimensional
spaces? In this case the k-cells are intervals around sequences, and non-empty intersection of nested intervals
is equivalent to saying: there exists some limit of this sequence in the compact metric space.

Theorem 2.2 (Compactness implies Sequential Compactness). Let (K, d) be a compact metric space, and
E ⊆ K be an infinite set (with infinite elements). Then E has a limit point in K (in other words, for any
sequence {xn} ⊆ E, there exists x ∈ K s.t. x is a limit point of {xn}.

Proof. Assume that every point in K is not a limit point of E, i.e., for any q ∈ K, there exists rq > 0 s.t.

Brq (q) ∩ E = {q} or ∅

Thus Brq (q) intersects E with at most one element for each q ∈ K. But {Brq (q)}q∈K is indeed open cover for
K, hence using K compact, there exists finite subcover

K ⊆
N⋃
i=1

Brqi
(qi)

But then intersecting with E yields

E ⊆
N⋃
i=1

Brqi
(qi) ∩ E ⊆ {qi | i = 1, · · · , N}

We deduce that E is subset of a finite set, contradiction to E being infinite set.

2.3.4 Heine-Borel

For compact sets E ⊆ Rk in finite dimensional spaces,we discuss its equivalence conditions.

Definition 2.9 (Bounded Set). Given metric space (X, d), a set E ⊆ X is bounded if there exists p ∈ X and
r > 0 s.t.

E ⊆ Br(p)

Theorem 2.3 (Heine-Borel). If E ⊆ Rk, the following are equivalent

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Proof. We show equivalence in circular.

1. (a) =⇒ (b). Using E is bounded, one can find a k-cell I ⊆ Rk s.t. E ⊆ I. Since I is compact by lemma
2.3, and since E is closed by assumption, using Proposition 2.10 we know that E is compact.

2. (b) =⇒ (c). This is precisely Theorem 2.2.

3. (c) =⇒ (a). By contradiction, assume E is either not closed or not bounded.

(i) If E is not bounded, then one may choose a sequence {xn} ⊆ E s.t. ∥xn∥ > n. Notice now {xn}
is an infinite subset of E, and we claim it has no limit point in E. If so, denote the limit point as
y ∈ Rk, then consider the ball B1(y). Since y is limit point of {xn}, using Proposition 2.7, for any
ball around y, it necessarily intersects infinitely-many elements of {xn}. But if xn ∈ B1(y), then

∥xn∥ ≤ ∥xn − y∥+ ∥y∥ ≤ 1 + ∥y∥

Now for n sufficiently large, there exists some n+ 1 that violates the above due to ∥xn+1∥ > n+ 1.
Thus E must be bounded.

(ii) If E is not closed, then there exists q /∈ E s.t. q is a limit point of E. Using definition of a limit
point, one can construct a sequence {xn} ⊆ E s.t.

d(xn, q) <
1

n
∀ n
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Notice now {xn} is an infinite subset of E, and we claim it has no limit point in E. Indeed, for any
y ∈ E (so that y ̸= q). Using triangle-inequality one has

∥xn − q∥+ ∥xn − y∥ ≥ ∥q − y∥
∥xn − y∥ ≥ ∥q − y∥ − ∥xn − q∥

> ∥q − y∥ − 1

n

By Theorem 1.2 there exists N ∈ N sufficiently large s.t.

∥xn − y∥ ≥ 1

2
∥y − q∥ ∀ n ≥ N

Thus y cannot be limit point of {xn}. But y ∈ E is arbitrary, so {xn} has no limit point in E.

Corollary 2.5. Every bounded infinite subset of Rk has a limit point.

Proof. Let E be a bounded infinite subset of Rk. Using E is bounded, one can fit it inside a k-cell I ⊆ Rk.
Using I is compact Lemma 2.3, one obtain from Theorem 2.3 that any infinite subset of I has a limit point in
I, in particular, E does.

2.4 Other topological concepts

We discuss another notion in topology known as connectedness. Before that we introduce certain notations

Definition 2.10 (Closure). Let (X, d) be a metric space. A ⊆ X. We denote

A := A ∪ {x ∈ X | x is a limit point of A}

as the closure of A in X.

Definition 2.11 (Connected). Let (X, d) be a metric space and E ⊆ X.

1. A ⊆ X and B ⊆ X are separated if both

A ∩B = ∅ and A ∩B = ∅

2. E ⊆ X is connected if it cannot be written as

E = A ∪B

with A and B non-empty, and separated.

Example 2.16. Connected subsets of R are intervals.

We also define ‘dense’. In analysis this is particular useful to simplify ‘proofing for a statement in X’ to
‘proofing for a statement in a dense subset’.

Definition 2.12 (Dense). Let (X, d) be metric space. E ⊆ X is dense in X if E = X, i.e., every point of X
is in E or is a limit point of E.

Example 2.17. Q is dense in R. Indeed, for any x ∈ R \Q, the ball

Br(x) = (x− r, x+ r)

always contains some rational inside by Density Property Theorem 1.3.

We define a ‘perfect set’.

Definition 2.13. E is perfect if E is closed and every point of E is a limit point of E.
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3 Limits and Convergence of Sequences (in metric space)

We study rigorously what we mean by a limit of a sequence. Instead of R, one can also work with definition
using metric space.

Definition 3.1 (Sequence). Given metric space (X, d). A sequence is a function

f : N → X n 7→ f(n) ≡ xn

3.1 Sequence Convergence

Definition 3.2 (Sequence Convergence in metric space). A sequence {pn} converges in (X, d) if there exists
p ∈ X (called the limit of the sequence) s.t. for any ε > 0, there exists a large enough N = N(ε) ∈ N s.t. for
any n ≥ N(ε),

d(pn, p) < ε

In this case we say
pn → p or lim

n→∞
pn = p

This is to say the terms pn for n ≥ N enters the ball Bε(p) and never leaves. The name of the game is to trap
the whole tail of the sequence inside the ball.

There is general procedure to prove convergence of a sequence.

1. First, one can guess (by observation) what the limit of {pn} should be. Call it p.

2. Let ε > 0 be arbitrary.

3. Construct N(ε) s.t. pn ∈ Bε(p) for any n ≥ N(ε).

Example 3.1. Consider the sequence

p0 = 1 pn+1 :=
2pn + 2

pn + 2

In (R, | · |), pn converges to
√
2, while in Q, pn does not converge.

One has several consequences of convergence.

Theorem 3.1 (Properties of Convergence). Let {pn} be a sequence in (X, d).

(a) pn → p iff every open set U that contains p contains all but finitely many terms of pn.

(b) If pn → p and pn → p′, then p = p′, i.e., limits are unqiue in metric spaces.

(c) If {pn} converges, then {pn} is bounded.

(d) If E ⊆ X and p is a limit point of E, then there is a sequence {pn} with pn ̸= p, pn ∈ E and pn → p.

Proof. (a) (i) ( =⇒ ) Let pn → p. Let U be an open set in X, with p ∈ U . By openness, there exists ε > 0
s.t. Bε(p) ⊆ U . Since pn → p, there exists N = N(ε) ∈ N s.t. for any n ≥ N , pn ∈ Bε(p) ⊆ U . Thus
U contains all of the pn except p1, · · · , pN(ε)−1 which are finitely many.

(ii) ( ⇐= ) Every open set U s.t. p ∈ U contains all but finitely many terms of the sequence. Let ε > 0,
since Bε(p) is open, it contains all but finitely many of the pn. Let

M := max{i | pi /∈ Bε(p)}

Then take N := M + 1, for any n ≥ N , one has

pn ∈ Bε(p)

And this means pn → p.

(b) Given ε > 0, there exists N(ε) s.t. d(pn, p) < ε for any n ≥ N(ε). Also there exists M(ε) s.t. d(pn, p
′) < ε

for any n ≥ M(ε). Hence for any
n ≥ max{M,N}

one has
d(p, p′) ≤ d(p, pn) + d(pn, p

′) ≤ 2ε

But ε > 0 is arbitrary, hence we send ε → 0. Thus

d(p′, p) = 0 ⇐⇒ p = p′
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(c) Let pn → p. Take ε = 1. Then B1(p) contains all but finitely many terms pn1 , · · · , pnk
. Take

r > max(1, d(p, pn1
), · · · , d(p, pnk

)) > 0

One can choose this r because there’s finitely many of the terms. It follows that pn ∈ Br(p) for all n.
This is to say, {pn} as a set is bounded.

(d) Since E ⊆ X and p is a limit point of E, for any n ∈ N, B 1
n
(p) contains points of E that are not equal to

p. Choose pn ̸= p, pn ∈ B 1
n
(p) ∩ E. Thus

d(pn, p) <
1

n

Indeed this implies convergence. To see this, for any ε > 0, choose N(ε) > 1
ε so that

d(pn, p) <
1

n
≤ 1

N(ε)
≤ ε

for any n ≥ N(ε).

3.1.1 Convergence in R or Rk

Now we work in R or C.

Proposition 3.1 (Rules of addition, scalar multiplication, multiplication, division). If {sn} and {tn} are
sequences of real numbers s.t.

sn → s ∈ R tn → t ∈ R
Then it follows that

1. lim
n→∞

sn + tn = s = t

2. lim
n→∞

csn = cs for any c ∈ R constant.

3. lim
n→∞

sntn = st

4. lim
n→∞

1
sn

= 1
s provided s ̸= 0.

Proof. 1. Let ε > 0. Since sn → s, there exists N1 s.t.

|sn − s| < ε

2

for any n ≥ N1. Since tn → t, there exists N2 s.t.

|tn − t| < ε

2

for any n ≥ N2. Thus

|sn − s+ tn − t| ≤ |sn − s|+ |tn − t| < ε ∀ n ≥ max(N1, N2)

|(sn + tn)− (s+ t)| < ε ∀ n ≥ max(N1, N2)

2. Let ε > 0, since sn → s, there exists N = N(ε) s.t.

|sn − s| < ε

|c|
∀ n ≥ N

Thus for any n ≥ N

|csn − cs| = |c||sn − s| < |c| ε
|c|

= ε

3. Look at

|sntn − st| = |(sn − s)(tn − t) + snt+ stn − st− st|
≤ |(sn − s)(tn − t)|+ t|sn − s|+ s|tn − t|

We claim that (sn − s)(tn − t) → 0. Let ε > 0, there exists N1 s.t. for any n ≥ N1

|sn − s| <
√
ε

and there exists N2 s.t. for any n ≥ N2

|tn − t| <
√
ε

Thus
|(sn − s)(tn − t)| < ε ∀ n ≥ max(N1, N2)
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4. Look at (WLOG let sn ̸= 0 for any n)

| 1
sn

− 1

s
| = |sn − s|

sns

We choose m s.t. |sn − s| < 1
2 |s| for any n ≥ m. In particular, for any n ≥ m

|sn| ≥
1

2
|s|

Now given ε > 0, since sn → s, there exists N ∈ N s.t.

|sn − s| < 1

2
|s|2ε ∀ n ≥ N

Now for any n ≥ max{N,m}

| 1
sn

− 1

s
| = |sn − s

sns
| < 2

|s|2
|sn − s|

<
2

|s|2
1

2
|s|2ε = ε

Proposition 3.2 (Convergence in Rk iff in coordinates). For sequence x⃗n ∈ Rk with

x⃗n = (α1,n, · · · , αk,n)

One has
x⃗n → x⃗ = (α1, · · · , αn) ⇐⇒ lim

n→∞
αj,n = αj ∀ j = 1, · · · , k

Notice the LHS is convergence in (Rk, ∥·∥) while the RHS is convergence in (R, | · |).

Proof. 1. ( =⇒ ) Assume x⃗n → x⃗ in Rk. Then for any ε > 0, there exists N s.t.

∥x⃗n − x⃗∥ < ε ∀ n ≥ N

Notice

∥x⃗n − x⃗∥ =

√√√√ k∑
j=1

|αj,n − αj |2

Hence
|αj,n − αj | < ε ∀ n ≥ N j = 1, · · · , k

Hence αj,n → αj for all j = 1, · · · , k.

2. ( ⇐= ) Assume αn,j → αj for j = 1, · · · , k. Let ε > 0, then there exists Nj s.t.

|αn,j − αj | <
ε√
k

Now let
N := max{Nj | j = 1, · · · , k} > 0

So for any n ≥ N ,

∥x⃗n − x⃗∥ =

√√√√ k∑
j=1

|αj,n − αj |2 < ε

In fact the argument works for other norms

∥v∥p =

(∑
i

|vi|p
) 1

p

∥v∥∞ = max
i

|vi|

These norms give rise to the same topology!
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3.2 Subsequence Convergence

Definition 3.3 (Subsequence). Let {pn} be a sequence in (X, d). If we have integers

n1 < n2 < · · · < nk < · · ·

Then {pnk
} is a subsequence of {pn}.

Example 3.2. Consider xk = (−1)k. For k even, xk = 1 while for k odd, xk = −1. The original sequence
does not converges, but the subsequences

x2k and x2k+1

converge.

Now we discuss the beauty of compactness! We have convergent subsequence :)

Theorem 3.2 (Sequential Compactness; Bolzano-Weierstrass). This is our well-known Bolzano-Weierstrass.

1. Assume (X, d) is compact. Then every sequence {pn} in X has a subsequence converging to a point in X.

2. Every bounded sequence {pn} ⊆ Rk contains a convergent subsequence.

Proof. 1. We distinguish two cases.

(a) For the first case, {xn} actually only contains finitely many distinct points of X. One of these points
of X occurs infinitely many times, i.e., there exists

n1 < n2 < n3 < · · · < nk < · · ·

s.t.
xn1

= · · · = xnk
= · · · = p

Then take
xnk

≡ p

as the constant sequence, which trivially converges to p.

(b) For the second case, {xn} contains infinitely many distinct points of X. By compactness of X
Theorem 2.2, {xn} has a limit point in X. Let’s be cautious. They cluster somewhere, but we need
to put them in the correct order so that convergence works. We choose

n1 s.t. d(p, xn1
) < 1

We choose

n2 s.t. d(p, xn2) <
1

2
, and n2 > n1

Why can I choose n2 > n1? Remember p is a limit point. By Proposition 2.7, every ball around the
limit points contains infinitely many elements of the set. So if there does not exist n2 > n1, there’s
only finitely many points around, contradiction. Now by induction, with

n1, · · · , nk−1 chosen

We want to choose nk > nk−1 s.t. d(p, pnk
) < 1

k . Hence we’ve constructed a subsequence pnk
s.t.

pnk
→ p

2. Every bounded sequence in Rk fits inside a k-cell I, which is compact. Now apply the first result.

We prove a lemma that will come in handy later.

Lemma 3.1. The set E∗ ⊆ X of subsequential limits of a sequence {pn} is closed in X.

Remark 3.1. Consider enumeration of Q = {qn}n∈N. The set of its subsequential limits is in fact uncountable.
However, one can show that it is closed.
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Proof. Let q be a limit point of E∗. We will create a subsequence of {pn} that converges to q. If we can do so,
then q ∈ E∗. Now q as limit point of E∗ is arbitrary, hence E∗ contains all its limits, hence is closed.

Now choose n1 s.t. pn1
̸= q (otherwise pn = q for any n, i.e., pn ≡ q and then E∗ = {q} so there’s nothing

to prove). We choose
δ := d(q, pn1

)

Now assume n1, · · · , nk−1 are chosen. Since q is a limit point of E∗, there exists x ∈ E∗ with

d(x, q) < 2−kδ

Since x ∈ E∗, there’s a subsequence of {pn} converging to x. Now we choose nk > nk−1 s.t.

d(pnk
, x) < 2−kδ

Thus

d(pnk
, q) ≤ d(pnk

, x) + d(x, q) ≤ 2−k+1δ

The trick is always working with half the distances. Notice here we have two sequences piling up with one
another. Now

pnk
→ q

i.e., pnk
is a subsequential limit of pn, but this is exactly what it means for q ∈ E∗.

3.3 Cauchy Sequence in Metric Space

Definition 3.4 (Cauchy Sequence). Let (X, d) be metric space. {pn} is a Cauchy sequence if for every ε > 0,
there exists N(ε) s.t. for any m, n ≥ N ,

d(pn, pm) < ε

Notice in the definition of Cauchy Sequence, there’s no limit!

Remark 3.2. If a sequence is convergent, indeed it is Cauchy, since for any ε > 0, there exists N = N(ε) > 0
s.t. for any n, m ≥ N

d(xn, x) <
ε

2
, d(xm, x) <

ε

2
=⇒ d(xn, xm) < ε

On the other hand, if a sequence is Cauchy, it may not be convergent. For example, a sequence {qn} ⊆ Q may
converge to some irrational number in R, but the limit does not lie in Q hence {qn} is not convergent in Q. But
{qn} is Cauchy.

Remark 3.3. One may think of Cauchy sequence more geometrically. For E ⊆ X, one may define its diameter

diam(E) := sup{d(x, y) | x, y ∈ E}

Notice E is bounded iff diam(E) < ∞.
Now take any {xn} ⊆ X, define the tail terms as

EN := {xN , xN+1, · · · } ⊆ {xn} ⊆ X

Lemma 3.2. {xn} is a Cauchy sequence iff

lim
N→∞

diamEN = 0

Proof. Let {xn} be Cauchy sequence. Then for any ε > 0, there exists N = N(ε) > 0 s.t. for any n, m ≥ N ,
d(xn, xm) < ε, hence fix n := N and let m vary

d(xN , xm) < ε ∀ m ≥ N ⇐⇒ sup{d(xN , xm) | m ≥ N} = diamEN ≤ ε

In fact we have the following definition.

Definition 3.5 (Complete Metric Space). A metric space (X, d) is complete if any Cauchy Sequence converges.

We discuss a useful tool for later purpose, which basically says a nested sequence of non-empty compact sets
whose diameter goes to zero necessarily has one point in the intersection.

Proposition 3.3. Let (X, d) be metric space. Let E ⊆ X and E denote closure of E. Then
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1. diamE = diamE.

2. If Kn ⊇ Kn+1 ⊇ · · · is a sequence of non-empty compact spaces and

lim
n→∞

diamKn = 0

Then
∞⋂

n=1

Kn contains exactly one point

Proof. 1. Since E ⊆ E, by definition diam(E) ≤ diam(E). On the other hand, for any ε > 0, and p, q ∈ E,
since they’re limit points of E, there exists p′ ̸= p, p′ ∈ E, and q′ ̸= q, q′ ∈ E s.t.

d(q, q′) < ε d(p, p′) < ε

Hence we obtain

d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, q) ≤ d(p′, q′) + 2ε

We want to take supremum. But be careful of the order in which we do that! First notice d(p′, q′) ≤ diamE,
hence in the first step we obtain

d(p, q) ≤ diamE + 2ε

Now the RHS is independent of points p, q ∈ E, so we can take supremum on the LHS to obtain

diam(E) ≤ diam(E) + 2ε

But now LHS is independent of ε. We send ε → 0 to obtain

diam(E) ≤ diam(E)

and this is the art of analysis :)

2. Let K =
⋂∞

n=1 Kn. By the Finite Intersection Property Proposition 2.11, one know that K ̸= ∅. Assume
that K has 2 or more points. Then necessarily diamK > 0 (due to definition of metric!) Since K ⊆ Kn

for any n, we know
diam(K) ≤ diam(Kn) ∀ n

Now sending n → ∞ yields
diam(K) = 0

a contradiction.

Now we’re ready to prove our big Theorem about how Cauchy Sequence and Convergent sequences are
related, and how compactness helps us!

Theorem 3.3 (Cauchy and Convergence). 1. In any metric space (X, d), a convergent sequence is Cauchy.

2. If X is compact, then Cauchy implies convergence.

3. If X = Rk, then Cauchy implies convergence.

Proof. The first item is already proved.

1. Let {pn} ⊆ X be a Cauchy sequence in X a compact space. Denote

EN := {xN , xN+1, · · · }

Using Lemma 3.2, we know
lim
n→∞

diamEn = 0

Now use Proposition 3.3 to En (compact because Proposition 2.10) one obtain

∞⋂
n=1

En = {p}

Our claim is pn → p. Why? Remember diamEN → 0. So for any ε > 0, there exists N0 s.t. for any
N ≥ N0

diamEN ≤ ε =⇒ d(pn, p) ≤ ε ∀ n ≥ N ≥ N0

Why can we pick p? Because we’re working with closure of EN ! And we know p ∈ EN for any N .
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2. If X = Rk, let {pn} ⊆ Rk be Cauchy. We claim {pn} is bounded. Indeed, using Lemma 3.2

lim
N→∞

diamEN = 0 =⇒ diamEN ≤ 1 ∀ N ≥ N0 for some N0

Thus
diam{pn} ≤ diam{p1, · · · , pN1

}+ diamEN < ∞

Now {pn} is closed and bounded in Rk. Why bounded? Use Proposition 3.3 item one

diam{pN} = diam{pn} < ∞

hence using Heine-Borel 2.3 {pn} is compact. Now we use the previous item.

Let’s summarize when we have completeness.

Corollary 3.1. 1. Rk is complete.

2. Compact sets are complete.

3. Closed subsets of complete spaces are complete.

3.4 Cauchy Sequence in R
Now we work with X = R.

Definition 3.6. A sequence {sn} ⊆ R is

1. monotonically increasing if sn ≤ sn+1 for any n

2. monotonically decreasing if sn ≥ sn+1 for any n

We have a big convergence Theorem in R!

Theorem 3.4 (Monotone Convergence Theorem). If {sn} ⊆ R is monotonically increasing or decreasing, and
bounded, then sn → s for some s ∈ R.

Proof. WLOG let’s assume {sn} is increasing. Since {sn} is bounded, denote

s := sup
n
{sn}

We want to show sn → s. For any ε > 0, s− ε is not an upper bound of {sn}. Hence there exists N s.t.

s− ε < sN ≤ s

But what do we know about the sequence {sn}? For any n ≥ N ,

s− ε < sn ≤ s ∀ n ≥ N

But this implies
|sn − s| < ε ∀ n ≥ N

Next we need to introduce certain notations describing going to infinity.

1. We denote
lim

n→∞
xn = ∞

if for any M ∈ R, there exists N ∈ N s.t. for any n ≥ N , xn ≥ M .

2. Similarly, we denote
lim
n→∞

xn = −∞

if for any M ∈ R, there exists N ∈ N s.t. for any n ≥ N , xn ≤ M .
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3.4.1 Limsup and Liminf

We introduce very important concepts! Limsup and Liminf. Given sequence {sn} ⊆ R

Definition 3.7. We define
lim sup
n→∞

sn := inf
n∈N

sup
j≥n

sj

and
lim inf
n→∞

sn := sup
n∈N

inf
j≥n

sj

The important thing about lim sup and lim inf is that, if we allow ±∞ to be consider, then for any sequence
{sn} ⊆ R, its lim sup

n→∞
sn and lim inf

n→∞
sn always exists.

Lemma 3.3. Given any {sn} ⊆ R, its lim sup
n→∞

sn and lim inf
n→∞

sn either exists in R, or is ±∞.

Proof. WLOG we prove for lim sup
n→∞

sn. Notice the sequence

an := sup
j≥n

sj

What properties does it have? If we enlarge n, then we have less choices to maximize sj compared to the
previous one, hence the sup is necessarily non-increasing. In other words

an = sup
j≥n

sj ≥ sup
j≥n+1

sj = an+1

Now our sequence {an} is decreasing!

1. If {an} is bounded, then there by Monotone Convergence Theorem 3.4, there exists s ∈ R s.t.

lim
n→∞

an = lim
n→∞

sup
j≥n

sj = s

But recall an is decreasing, so its limit is necessarily its infimum, so

lim
n→∞

an = lim
n→∞

sup
j≥n

sj = inf
n∈N

sup
j≥n

sj ≡ lim sup
n→∞

sn = s

Thus our Limsup exists.

2. If {an} is not bounded, then

lim
n→∞

an = lim
n→∞

sup
j≥n

sj = inf
n∈N

sup
j≥n

sj ≡ lim sup
n→∞

sn = −∞

Remark 3.4. Alternatively, for {sn} ⊆ R one can define

E := {all subsequential limits of sn, possibly including ±∞}

and define

lim sup
n→∞

sn = supE

lim inf
n→∞

sn = inf E

One can actually verify that they’re equivalent definitions.

Example 3.3. If sn → s, then E = {s}. Hence

lim sup
n→∞

sn = lim inf
n→∞

sn = s

Example 3.4. If sn = (−1)n, then E = {±1}. In this case

lim sup
n→∞

sn = 1

lim inf
n→∞

sn = −1

Example 3.5. If sn = (−1)n

1− 1
n

for any n > 1. Then E = {±1}. In this case

lim sup
n→∞

sn = 1

lim inf
n→∞

sn = −1
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4 Series

At first glance, one might think a series is an infinite a1 + a2 + · · · . That’s true, but not a good intuition.
We would love to create(or reinterpret) some new function f : R → R s.t. P

Q polynomial division, ex, sin(x)
etc, in the following form

ex =

∞∑
n=0

xn

n!

f(x) =
∑
n

cnx
n x ∈ R

f(z) =
∑
n

cnz
n z ∈ C

Now we rigorously introduce what series are.

Definition 4.1. {an} is a sequence of reals (or could be complex). Define its partial sum as

Sk :=

k∑
n=1

an

as sum of the first k terms. If the sequence Sk → S for some S ∈ R, we denote
∞∑

n=1

an := S

In other words

lim
k→∞

k∑
n=1

an = lim
k→∞

sk

In this case we say the series
∑

n an is convergent. If S does not exists in R, we say series
∑

n an is divergent.

Since we’re working in R, Cauchy characterizes Convergence.

Theorem 4.1 (Cauchy Criterion). By using definition of Cauchy Sequence, one directly obtain

1. A series
∑

n an is convergent iff for any ε > 0 there exists N ∈ N s.t. for any n > m ≥ N

|
n∑

k=m

ak| < ε

2. Alternatively we could say Sk converges iff for any ε > 0 there exists N ∈ N s.t. for any n > m ≥ N

|Sm − Sn| < ε

An immediate and simple corollary.

Corollary 4.1. If
∑

n an is convergent, then an → 0.

Proof. For ε > 0 there exists N ∈ N s.t. for any n > m ≥ N

|
n∑

k=m

ak| < ε =⇒ |an| < ε

But n ≥ N is arbitrary.

However, the reverse is false. Think about

an =
1

n
→ 0

Yet we’ll see that
∞∑

n=1

1

n
= ∞

hence it is divergent.

Theorem 4.2 (Monotone Convergence Criterion). A series of non-negative terms converges if it is bounded,
i.e., if an ≥ 0 for any n, and define Sn :=

∑n
k=1 ak, then if {Sn}n is bounded, one has∑

n

an < ∞

Proof. Note
Sn+1 = Sn + an+1 ≥ Sn ∀ n

Hence Sn is increasing. Using {Sn} bounded, one apply Theorem 3.4.
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4.1 Convergence Tests

Recall at this moment, we only know the series∑
n=1

xn =
1

1− x
0 ≤ x < 1

We want to use this to craft some convergence tests for series.

Comparison Test

Theorem 4.3 (Comparison Tests). We need powerful comparison tests.

1. If |an| ≤ cn for any n ≥ N0 with some N0 ∈ N fixed, and
∑

n cn converges, then

∞∑
n

an < ∞

2. If an ≥ dn ≥ 0 for any n ∈ N and
∑

n dn diverges, then∑
n

an = ∞

Proof. 1. For any ε > 0, there exists N ≥ N0 s.t. for any n > m ≥ N

n∑
k=m

ck < ε

using Cauchy Criterion Theorem 4.1. Thus

|
n∑

k=m

ak| ≤
n∑

k=m

|ak| ≤
n∑

k=m

ck < ε

This implies
∑

n an converges, again by Cauchy Criterion Theorem 4.1.

2. We use contrapositive. If
∑

n an converges, then so does
∑

n dn. Contradiction.

Example 4.1. Why does
∑

n=1
1
n diverge? We compare with

1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+ · · · = ∞

Geometric Series Test The second family is known as Geometric Series test. This is rather standard and
should be our model case.

Theorem 4.4 (Geometric Series Test). If 0 ≤ x < 1, then

∞∑
n=0

xn =
1

1− x

If x ≥ 1, then
∑∞

n=0 xn diverges.

Proof. Let

Sn :=

n∑
k=0

xk =
1− xn+1

1− x

So for 0 ≤ x < 1

lim
n→∞

Sn =
1

1− x
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Root and Ratio Tests The third family is Root and Ratio Tests. They’re extremely powerful. The idea is
as following: Given series

∑
n an

1. If |an|
1
n ∼ constant, then |an| ∼ (constant)

1
n and this turns

∑
n an into a geometric series.

2. If an+1

an
∼ constant, then an ∼ (constant)

1
n and this again turns

∑
n an into a geometric series.

Theorem 4.5 (Root Test). Given
∑

n an series, denote

α := lim
n→∞

|an|
1
n

1. If α < 1 the series converges.

2. If α > 1 the series diverges.

3. α = 1 is inconclusive.

Proof. 1. Since α < 1, there exists β ∈ (α, 1). Use definition of

α = lim sup
n→∞

|an|
1
n

there exists N ∈ N s.t. for any n ≥ N

|an|
1
n < β ⇐⇒ |an| < βn

Now use Geometric Series Test Theorem 4.4 so that

∞∑
n=0

βn < ∞

and then Comparison Test Theorem 4.3 so that

∞∑
n=0

an < ∞

2. If α > 1, use definition of α as Limsup, there exists a subsequence nk s.t.

|ank
|

1
nk → α > 1 k → ∞

Thus there exists N ∈ N s.t. for any nk ≥ N

|ank
|

1
nk ≥ 1 ⇐⇒ |ank

| ≥ 1 =⇒ |an| ̸→ 0

Using Corollary 4.1 one obtain
∑

n an is divergent.

Theorem 4.6 (Ratio Test). Consider series
∑

n an.

1.
∑

n an converges if

lim sup
n→∞

|an+1

an
| < 1

2.
∑

n an diverges if there exists N0 s.t. for any n ≥ N0

|an+1

an
| > 1

Proof. 1. Using definition of Limsup, there exists β and N ∈ N s.t. for any n ≥ N

|an+1

an
| < β < 1 =⇒ |aN+p| < β|aN+p−1| < · · · < βp|aN |

Now renaming n = N + p, so p = n−N one obtain

|an| < |aN |βn−N = |aN |β−Nβn

Since β < 1 and use Geometric Series Test Theorem 4.4

∞∑
n=0

|aN |β−Nβn < ∞ =⇒
∑
n

an < ∞
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2. If |an+1| ≥ |an| for any n ≥ N0 for some N0 fixed, then an ̸→ 0. Using Corollary 4.1 one obtain
∑

n an is
divergent.

Remark 4.1. We remark that usually Root test works better than Ratio Test. There are cases where Root
works but Ratio fails. Look at

1

2
+

1

3
+

1

22
+

1

32
+ · · ·

Then

lim sup
n→∞

|an|
1
n = lim

n→∞
(
1

2n
)

1
2n =

1√
2
< 1

Hence apply Theorem 4.5 we know the series converges. However

lim sup
n→∞

|an+1

an
| = lim

n→∞

1

2
(
3

2
)n = ∞

and hence is inconclusive.

4.2 Power Series

Now we encode the variable x into the series. Look at series∑
n

cnx
n

with cn coefficients, and x ∈ R or C as variable. We ask two questions

1. For which values of x does
∑

n cnx
n converge?

2. If
∑

n cnx
n converges for x ∈ I ⊆ R on an interval, if we denote

f(x) =
∑
n

cnx
n

Then how good is this function?

We make sense using Root Test. Notice

|cnxn| 1
n = |cn|

1
n |x|

Then
lim sup
n→∞

|cnxn| 1
n = |x| lim sup

n→∞
|cn|

1
n

We denote α := lim sup
n→∞

|cn|
1
n . Using Root Test 4.5

1.
∑

n cnx
n converges if

|x| · α < 1 ⇐⇒ |x| < 1

α
=: R

where R is known as the radius of convergence for the power series
∑

n cnx
n.

2.
∑

n cnx
n diverges if

|x| · α > 1 ⇐⇒ |x| > R

Now if R > 0, one can define the function

f : (−R,R) → R x 7→
∑
n

cnx
n

Example 4.2. Compute the Radius of convergence for the power series

∞∑
n=0

xn

n!

We use Ratio test so

|x
n+1/(n+ 1)!

xn/n!
| = | x

n+ 1
| → 0 n → ∞
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for any x ∈ R. Hence the radius of convergence R = ∞. Thus

f : R → R x 7→
∞∑

n=0

xn

n!

is a well-defined function (in the sense that at each point x ∈ R, f(x) ∈ R). In fact this is

f(x) = ex

Definition 4.2 (Analytic). A function defined by

f(x) :=

∞∑
n=0

cnx
n

on (−R,R) is called real analytic Cw on (−R,R). In R this is usually better than being infinitely differentiable.
In C, however, if f ′ exists then f is analytic.

4.3 Rearrangements

Some warnings about Series operation. They’re usually easy to add∑
n

(an + bn) =
∑
n

an +
∑
n

bn

What about multiplication?

(
∑
n

an)(
∑
n

bn)

Definition 4.3. A series
∑

n an converges absolutely if
∑

n |an| < ∞.

Lemma 4.1. If
∑

n an converges absolutely, then
∑

n an converges.

Let {kn} ⊆ N be a sequence of natural numbers where every positive integer appears once and only once.
Denote

a′n = akn

Then we say
∑

n a
′
n is an rearrangement of

∑
n an. Sequence of partial sums of

∑
n a

′
n and

∑
n an could contain

totally different numbers.
We ask: Under what conditions all rearrangements of a convergent series will converge and whether the

sums are necessarily the same.

Theorem 4.7. If
∑

n an converges absolutely, then every arrangements
∑

n a
′
n converges, and∑

n

a′n =
∑
n

an

Proposition 4.1. If
∑

n an converges but not absolutely, then for any α < β (including ±∞, there exists an
arrangement

∑
n a

′
n s.t.

lim sup
n→∞

S′
n = β

lim inf
n→∞

S′
n = α

where S′
n denotes partial sums of

∑
n a

′
n. In particular, one can rearrange

∑
n an and make it to have any sum

that you want.
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5 Continuity

Given two metric spaces (X, d) and (Y, d), we want to define what is means for a function

f : X → Y

to be continuous at a point x ∈ X. There’s in fact three equivalent definitions.

1. The original definition using ε− δ

2. Definition using limits of sequences.

3. Definition using only open sets. This is the most general one.

We begin by defining what
lim
x→p

f(x) = q

means.

Definition 5.1. Given two metric spaces (X, d) and (Y, d). Let E ⊆ X and x be a limit point of E. Define a
function

f : E → Y

We say that f(x) → q as x → p, or
lim
x→p

f(x) = q

if for every ε > 0, there exists δ = δ(p, ε) > 0 s.t. for any x with

0 < dX(x, p) < δ

one has
dY (f(x), q) < ε

Remark 5.1. In the above definition, p may not lie in E, hence f(p) may not be define. Even if f(p) is define,
we don’t really care about the value f(p). Continuity is about what f behaves arbitrarily near p, but not at p.

Proposition 5.1 (Sequential Characterisation). Given two metric spaces (X, d) and (Y, d). Let E ⊆ X and x
be a limit point of E. Define a function

f : E → Y

Then
lim
x→p

f(x) = q

iff
lim
n→∞

f(xn) = q

for every sequence {pn} ⊆ E s.t. pn ̸= p for any n and pn → p.

Proof. 1. =⇒ . Let pn → p and pn ̸= p for any n. Take any ε > 0. By definition of lim
x→p

f(x) = q, there

exists δ = δ(ε, p) > 0 s.t.
0 < dX(x, p) < δ =⇒ dY (f(x), q) < ε

Using pn → p, given δ > 0 as above, there exists N = N(δ) ∈ N s.t. for any n ≥ N

0 < dX(pn, p) < δ

Thus using
lim
x→p

f(x) = q

one get
dY (f(pn), q) < ε ∀ n ≥ N

Viewing {f(pn)}n∈N as a sequence, this is to say that

lim
n→∞

f(xn) = q
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2. ⇐= . We argue using contradiction. Assume not, i.e.,

f(x) ̸→ q x → p

Then there exists ε > 0 s.t. for any δ > 0, there exists a point xδ s.t. 0 < dX(xδ, p) < δ yet

dY (f(xδ), q) ≥ ε

But here δ is arbitrary, hence we’re allowed to pick. We choose

δn =
1

n

and denote xn := xδn . Then

0 < dX(xn, p) <
1

n
=⇒ xn → p

Note xn ̸= p for any n, so by our assumption, necessarily f(xn) → q. However for some ε > 0

dY (f(xn), q) ≥ ε

for any n excludes this possibility, and we have a contradiction.

Corollary 5.1 (Uniqueness). If
lim
x→p

f(x) = q

exists, then it is unique.

Corollary 5.2 (Operation Rules).

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x)

and similarly for f · g, f
g , ⟨f⃗ , g⃗⟩ etc.

5.1 Continuity and its Propositions

Now we define what continuity at a point means.

Definition 5.2 (Continuity at p). f is continuous at a point p ∈ E (not just a limit point) if for every ε > 0,
there exists δ > 0 s.t. for any

dX(x, p) < δ

one has
dY (f(x), f(p)) < ε

In other words, f is continuous at p iff
lim
x→p

f(x) = f(p)

Remark 5.2. One has two cases depending on the relationship between p and E.

1. If p ∈ E is isolated, then there exists N ∈ N large s.t. for any n ≥ N

f(p) = f(pn) =⇒ dY (f(p), f(pn)) = 0 < ε ∀ n ≥ N

2. If p ∈ E is limit point, then continuity means

pn → p =⇒ f(pn) → f(p)

Definition 5.3 (Continuous Function). We say f is continuous function on E if f is continuous at p for any
p ∈ E.

Proposition 5.2 (Composition). Let f : X → Y be continuous at x ∈ X and g : Y → Z be continuous at
f(x) ∈ Y . Then

g ◦ f : X → Z

is continuous at x ∈ X
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Proof using Sequences. Let xn → x, continuity of f at x yields f(xn) → f(x) while, continuity of g at f(x)
yields g(f(xn)) → g(f(x)).

Proof using Definition. For any ε > 0, since g is continuous at f(x), there exits δ1 > 0 s.t.

dY (y, f(x)) < δ =⇒ dZ(g(y), g(f(x))) < ε

But since f is continuous at x, there exists η > 0 s.t. for our given δ > 0,

dX(x, p) < η =⇒ dY (f(x), f(p)) < δ

But now there exists such η > 0 (depending on ε) s.t. for any

dX(x, p) < η =⇒ dY (f(x), f(p)) < δ =⇒ dZ(g(f(p)), g(f(x))) < ε

Hence g ◦ f is continuous at x ∈ X.

In fact, one has characterisation of continuity merely using the definition of open sets.

Proposition 5.3 (Characterisation of Continuity using Open sets). A function f : X → Y is continuous iff
f−1(V ) ⊆ X is open in X for every V ⊆ Y open in Y .

Proof. 1. =⇒ . Let V ⊆ Y be open. For any x ∈ f−1(V ), i.e., f(x) ∈ V , since V is open, there exists ε > 0
s.t. Bε(f(x)) ⊆ V . Now using continuity of f , there exists δ > 0 s.t.

f(Bδ(x)) ⊆ Bε(f(x)) ⊆ V =⇒ Bδ(x) ⊆ f−1(V )

hence f−1(V ) is open.

2. ⇐= . For any x ∈ X, for any ε > 0, the ball

Bε(f(x)) ⊆ Y

is open. Hence using our assumption,
f−1(Bε(f(x))) ⊆ X

is open. Thus, since x ∈ f−1(Bε(f(x))), x is an interior point, so there exists δ > 0 s.t.

Bδ(x) ⊆ f−1(Bε(f(x))) =⇒ f(Bδ(x)) ⊆ Bε(f(x))

Thus f is continuous at x.

Proposition 5.4 (Composition). Let f : X → Y and g : Y → Z be continuous functions. Then

g ◦ f : X → Z

is continuous.

Proof using Open sets. Let V ⊆ Z be open, using g is continuous, g−1(V ) ⊆ Y is open, using f is continuous,

f−1(g−1(V )) = (g ◦ f)−1(V ) ⊆ X

is open. Since V ⊆ Z open is arbitrary, one has g ◦ f continuous.

In fact one has characterisation using closed sets as well.

Corollary 5.3. f : X → Y is continuous iff f−1(C) ⊆ X is closed for any C ⊆ Y closed.

Let’s look at a collection of examples for continuous functions.

Example 5.1. 1. f(x) = c constant, f(x) = x, f(x) = xn polynomials.

2. ex, sin(x), cos(x).

3. Inner product
⟨·, ·⟩ : Rn × Rn → [0,∞)

Norm
∥·∥ : Rn → [0,∞)

and metric
d : X ×X → [0,∞)
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5.2 Continuity and Compactness

We first define what it means for a function to be bounded.

Definition 5.4. f : X → Rn is bounded if there exists M > 0 s.t.

|f(x)| ≤ M ∀ x ∈ X

Proposition 5.5 (Continuity preserves Compactness). Let (X, dX) be compact metric space and f : X → Y
be continuous. Then (f(X), dY ) is a compact metric space.

Proof. Let {Vα}α be an open cover of f(X). Then using continuity of f

{f−1(Vα)}α

is open cover of X. Since X is compact, there exists i = 1, · · · , N s.t.

X ⊆
N⋃
i=1

f−1(Vαi
)

But this means

f(X) ⊆
N⋃
i=1

Vαi

and thus we’ve extracted a finite subcover for f(X).

Corollary 5.4. If f : X → Rn is continuous and X is compact, then f(X) is closed and bounded.

Corollary 5.5 (Continuous Function over Compact set attains maximum and minimum). If f : X → R is
continuous and X is compact, then there exists p, q ∈ X s.t.

f(p) = sup
x∈X

f(x) < ∞ f(q) = inf
x∈X

f(x) > −∞

Proof. f(X) ⊆ R is bounded so by Least Upper Bound property, sup
x∈X

f(x) and inf
x∈X

f(x) exists in R. Since

they’re limit points of f(X), and using f(X) is closed, indeed, sup
x∈X

f(x) and inf
x∈X

f(x) belongs to f(X), i.e.,

there exists p, q ∈ X s.t.
f(p) = sup

x∈X
f(x) f(q) = inf

x∈X
f(x)

Theorem 5.1. Let f : X → Y be continuous and bijective. If X is compact, then

f−1 : Y → X f(x) 7→ x

is continuous.

Proof. First note f bijection yields
f−1(f(V )) = f(f−1(V )) = V

To show f−1 is continuous, for any V ⊆ X, we want to show

(f−1)−1(V ) = f(V ) ⊆ Y is open

where this uses the fact that f is bijective. Now V ⊆ X open implies V c closed in X. Since X is compact,
using Proposition 2.10, V c ⊆ X is compact. Now since f is continuous, by Proposition 5.5, f(V c) is compact.
But using Proposition 2.9 f(V c) is closed, hence

(f(V c))c = f(V )

is open, where we again used f is bijection.
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5.3 Uniform Continuity

Now we introduce uniform continuity, an important distinction with continuity.

Definition 5.5 (Uniformly Continuous). f : X → Y is uniformly continuous if for any ε > 0, there exists
δ = δ(ε) > 0 independent of x ∈ X s.t.

dX(p, q) < δ =⇒ dY (f(p), f(q)) < ε

Remark 5.3. The most important thing about uniform continuity is that our δ does not depend on x ∈ X, i.e.,
it should be a neighborhood that works uniformly for all points in X. The original definition that f is continuous
at a point x somehow allow δ = δ(ε, x) > 0. Even if this holds for any point x ∈ X, this continuity is a weaker
statement then f being uniformly continuous over X.

Consider the example

f(x) =
1

x
∀ x ∈ (0,∞)

Now for any ε > 0, and any x > 0, one can take

δ = δ(ε, x) > 0

s.t.

| 1
x
− 1

y
| = |x− y|

xy
≤ δ

x(x− δ)
< ε

where our choice of δ is hence

εx2 − δεx− δ > 0 =⇒ choosing δ =
1

2

εx2

1 + εx
suffices

Notice this δ depends both on ε and x. Indeed f over (0,∞) is continuous function, since certain δ(ε, x) > 0
exists for each x ∈ (0,∞) we pick.

However, for ε > 0, there does not exist δ = δ(ε) > 0 that is independent of x that works. In particular, in
our choice of δ(ε, x) as above, as one push x → 0, δ → 0. This is key difference between continuity and uniform
continuity.

Theorem 5.2 (Continuous Function over Compact set is Uniformly Continuous). Let f : X → Y be continuous
and X is compact. Then f is uniformly continuous.

Proof. For any ε > 0, since f : X → Y is continuous, for any p ∈ X, there exists δ(p) > 0 s.t.

dX(p, q) ≤ δ(p) =⇒ dY (f(p), f(q)) ≤
ε

2

Now define

J(p) := {q ∈ X | dX(p, q) <
1

2
δ(p)}

and indeed this is an open cover of X

X ⊆
⋃
p∈X

J(p)

Using X is compact, there exists pi for i = 1, · · · , N s.t.

X ⊆
N⋃
i=1

J(pi)

Define

δ :=
1

2
min{δ(pi) | i = 1, · · · , N} > 0

Then for any x, y ∈ X s.t. d(x, y) < δ, one has x ∈ J(pi) for some i = 1, · · · , N , thus

dX(pi, x) <
1

2
δ(pi)

Immediately one obtain

dY (f(x), f(pi)) ≤
ε

2

Also, using d(x, y) < δ, one obtain by triangle inequality

d(y, pi) ≤ d(y, x) + d(x, pi) ≤ δ +
1

2
δ(pi) ≤ δ(pi)
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Thus
dY (f(y), f(pi)) ≤

ε

2
Now we conclude using triangle inequality

dY (f(x), f(y)) ≤ dY (f(x), f(pi)) + dY (f(pi), f(y)) ≤ ε

5.4 Continuity and Connectedness

Proposition 5.6. Let f : X → Y be continuous and X be connected. Then f(X) is connected.

Proof Sketch. If A and B were separated subsets s.t.

A ∪B = f(X)

Then
f−1(A) ∪ f−1(B) = X

for f−1(A) and f−1(B) separated, hence X would be disconnected. Here continuity is used to understand how
taking closure compares with taking preimage.

Corollary 5.6 (Continuity preserves interval). For f : I → R continuous and I is an interval, f(I) is also an
interval, i.e., for any α ∈ (f(p), f(q)) for p, q ∈ I, there exists r ∈ I s.t.

f(r) = α

5.5 Discontinuities

We first define one-sided limits.

Definition 5.6 (Left/Right Limits). Let f : (a, b) → R and x0 ∈ (a, b). Then

f(x+
0 ) ≡ lim

x→x+
0

f(x)

f(x−
0 ) ≡ lim

x→x−
0

f(x)

are Right and Left limits.

If f is discontinuous at x0, necessarily
lim

x→x0

f(x) ̸= f(x0)

What could happen?

1. Type 1 (Simple Discontinuity). This happens when lim
x→x+

0

f(x) and lim
x→x−

0

f(x) both exists but are not

equal.

2. Type 2. One or both of the one-side limits do not exist. E.g.

f(x) =

{
sin( 1x ) x ̸= 0

0 x = 0

Remark 5.4. Monotone functions can only have jump discontinuities

Proof Sketch. WLOG assume f is monotonically increasing, i.e., a < b implies f(a) ≤ f(b). Then let x0 ∈ I be
a point of discontinuity for

f : I → R
Look at the set

Ax0
:= {f(x) | x < x0}

Then Ax0
is bounded from above by the value f(x0). Similarly

Bx0
:= {f(x) | x > x0}

is bounded from below by f(x0). Using Least Upper Bound property, both

α := supAx0 = lim
x→x−

0

f(x) β := inf Bx0 = lim
x→x+

0

f(x)

exist. Hence x0 is a jump discontinuity (type 1).
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Remark 5.5. A monotone function only has at most countably many jump-discontinuities.

Example 5.2. Consider a function
f : (a, b) ⊆ R → R

and a countable subset
E = {xi}∞i=1 ⊆ (a, b)

For each n, take positive number cn > 0 s.t.
∑

n cn < ∞. Now define

f(x) :=
∑

n s.t. xn < x

cn

Then f has a jump of size cn at x = xn, and f is monotonically increasing.
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6 Differentiability

Let
f : (a, b) ⊆ R → R

Definition 6.1 (Differentiable at x0). Fix x0 ∈ (a, b). We say f is differentiable at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists. If so, we denote

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

Definition 6.2 (Differentiable Function). If f is differentiable at every point x ∈ (a, b), we say f is differentiable
on (a, b). In this case we can define a new function

f ′ : (a, b) → R x 7→ f ′(x)

In general, however, the domain of f ′ could shrink.

6.1 Basic Properties

Proposition 6.1 (Expansion of Differentiability). f is differentiable at x = x0 iff there exists c ∈ R s.t.

f(x0 + h) = f(x0) + ch+ o(h)

where

lim
h→0

o(h)

h
= 0

In fact, c = f ′(x0).

Proof. 1. ( =⇒ ) Define
o(h) = f(x0 + h)− f(x0)− f ′(x0)h

Then indeed

lim
h→0

o(h)

h
= lim

h→0

f(x0 + h)− f(x0)

h
− f ′(x0) = 0

2. ( ⇐= ) Compute

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= c

In this case we say f(x0) is the function value at base point x0. f
′(x0)h is the linear (first order) expansion

of f at the point x0. o(h) is the error made by the linear approximation.
In fact, f ′(x0) is the best linear approximation of f at x = x0.

Remark 6.1. If ϕ : V → W where V and W are normed vector spaces, then we define ϕ to be differentiable at
a point x0 ∈ V if

ϕ(x0 + h) = ϕ(x0) +Ah+ o(h)

where
A : V → W

is a linear mapping and

lim
∥h∥V →0

∥o(h)∥W
∥h∥V

= 0

In this case we define
ϕ′(x0) := A

Proposition 6.2 (Differentiability implies Continuity). If f is differentiable at x0 ∈ (a, b), f is continuous at
x0.
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Proof. We compute

lim
x→x0

f(x) = lim
h→0

f(x0 + h) = lim
h→0

(f(x0) + f ′(x0)h+ o(h))

= f(x0)

which proves continuity.

Remark 6.2. The converse is not true. If f(x) = |x|, then f is continuous at x = 0, but f is not differentiable
at 0.

Proposition 6.3. If f and g are differentiable at x, then

(f ± g)′(x) = f ′(x)± g′(x)

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x)

(
f

g
)′(x) =

f ′(x)g(x)− f(x)g′(x)

g2(x)

Proof. 1. Compute

lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
= lim

h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h

2. Compute

(f · g)(x+ h) = (f(x) + f ′(x)h+ o(h)) · (g(x) + g′(x)h+ o(h))

= f(x)g(x) + (f ′(x)g(x) + f(x)g′(x)) · h+ o(h)

lim
h→0

(f · g)(x+ h)− (f · g)(x)
h

= f ′(x)g(x) + f(x)g′(x)

This is known as product rule.

3. It suffices to compute (assume g(x) ̸= 0)

(
1

g(x)
)′ = lim

h→0

1
g(x+h) −

1
g(x)

h
= lim

h→0

g(x)−g(x+h)
g(x+h)g(x)

h

= − g′(x)

g2(x)

Then use product rule. This is known as quotient rule.

Let’s see some examples.

Example 6.1. For f(x) = c

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= 0

For f(x) = x

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

x+ h− x

h
= 1

For f(x) = xn, by induction we assume

(xn)′ = nxn−1 n ∈ N

Then for n+ 1

(xn+1)′ = (x · xn)′ = x′xn + x(xn)′

= xn + xnxn−1 = (n+ 1)xn

For polynomials f(x) =
∑k

n=0 anx
n

f ′(x) =

k∑
n=1

nanx
n−1
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Remark 6.3. What is the derivative for f(x) =
∑∞

n=0 cnx
n defined on (−R,R)? Is it true that one can

exchange derivative and series summation? For power series, yes.

Proposition 6.4 (Chain Rule). Assume f is differentiable at x and g is differentiable at f(x), then

(g ◦ f)′(x) = g′(f(x))f ′(x)

Proof.

(g ◦ f)(x+ h) = g(f(x+ h)) = g(f(x) + f ′(x)h+ o(h))

= g(f(x)) + g′(f(x))(f ′(x)h+ o(h)) + o(f ′(x)h+ o(h))

lim
h→0

(g ◦ f)(x+ h)− g(f(x))

h
= lim

h→0
g′(f(x))(f ′(x) +

o(h)

h
) = g′(f(x))f ′(x)

Example 6.2. Consider

f(x) =

{
sin( 1x ) x ̸= 0

0 x = 0

then f is not continuous at x = 0 thus not differentiable at x = 0. But for

g(x) =

{
x sin( 1x ) x ̸= 0

0 x = 0

We verify

1. Note |x sin( 1x )| ≤ |x| Hence as |xn| → 0

|g(xn)| ≤ |xn| → 0 =⇒ g(xn) → 0

This works for any sequence xn going to 0, hence by sequential characterisation, g is continuous at x = 0.

2. For any x ̸= 0, g is indeed differentiable at x by chain rule

g′(x) = sin(
1

x
) + x cos(

1

x
) · (− 1

x2
)

But for x = 0

g(h)− g(0)

h
=

h sin( 1h )

h
= sin(

1

h
)

as h → 0 the RHS keeps oscillating, the limit does not exist. Hence g is not differentiable at 0.

Consider

h(x) =

{
x2 sin( 1x ) x ̸= 0

0 x = 0

Then indeed h is continuous at x = 0 and differentiable at any x ̸= 0. For x = 0

x2 sin( 1x )

x
= x sin(

1

x
) → 0 x → 0

h′(0) = lim
x→0

x2 sin( 1x )

x
= 0

Thus h is differentiable everywhere. In fact

h′(x) =

{
2x sin( 1x )− cos( 1x ) x ̸= 0

0 x = 0

and h′ is not continuous at x = 0.
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6.2 Mean Value Theorems

Definition 6.3 (local max). We say f has local maximum at x0 if there exists δ > 0 s.t.

f(x) ≤ f(x0) |x− x0| < δ

Similarly one may define local min.

Proposition 6.5. Let
f : [a, b] → R

Suppose f is differentiable and has a local maximum at c ∈ (a, b). Then f ′(c) = 0.

Proof. Assume c is a local maximum. Then

lim
x→c+

f(x)− f(c)

x− c
≤ 0

lim
x→c−

f(x)− f(c)

x− c
≥ 0

But f is differentiable at x = c hence

lim
x→c+

f(x)− f(c)

x− c
= lim

x→c−

f(x)− f(c)

x− c
= lim

x→c

f(x)− f(c)

x− c
= f ′(c)

Thus f ′(c) = 0.

Corollary 6.1 (Rolle’s Mean Value Theorem). Let f : [a, b] → R be differentiable over (a, b), continuous over
[a, b] and f(a) = f(b). Then there exists c ∈ (a, b) s.t.

f ′(c) = 0

Proof. Since [a, b] is compact, and f is continuous, we know from Corollary 5.5 f attains a global max and
global minimum. If both occur at endpoints, since f(a) = f(b), f is constant over (a, b), thus f ′ = 0 throughout
(a, b). If either maximum or minimum occurs in c ∈ (a, b), then at that point f ′(c) = 0.

Corollary 6.2 (Lagrange Mean Value Theorem). Let f : [a, b] → R be differentiable over (a, b) and continuous
over [a, b]. Then there exists c ∈ (a, b) s.t.

f ′(c) =
f(b)− f(a)

b− a

Proof. We define function

L(x) := f(a) +
f(b)− f(a)

b− a
(x− a)

Then one check

L(a) = f(a)

L(b) = f(b)

Then define
g(x) := f(x)− L(x)

one obtain

g(a) = f(a)− L(a) = 0

g(b) = f(b)− L(b) = 0

Thus apply Corollary 6.1 to g one obtain there exists c ∈ (a, b) s.t.

g′(c) = f ′(c)− L′(c) = 0

Notice

L′(c) =
f(b)− f(a)

b− a

Thus

f ′(c) =
f(b)− f(a)

b− a
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What’s good about MVT is that, one get first order derivative tests.

Proposition 6.6 (first order derivative test). f is differentiable over (a, b) and continuous over [a, b].

1. If f ′(x) ≥ 0 on (a, b) then f is monotonically increasing.

2. If f ′(x) ≤ 0 on (a, b) then f is monotonically decreasing.

3. If f ′(x) = 0 on (a, b), then f is constant.

Proof. For any a ≤ x1 < x2 ≤ b, apply Corollary 6.2 so that there exists c ∈ (x1, x2) s.t.

f(x2)− f(x1) = f ′(c)(x2 − x1)

Hence monotonicity of f translates to sign of f ′.

Proposition 6.7 (Derivatives cannot have jump discontinuities). If f ′(a) < λ < f ′(b), then there exists
c ∈ (a, b) s.t.

f ′(c) = λ

Proof. Let
g(x) = f(x)− λx

Then

g′(a) = f ′(a)− λ < 0

g′(b) = f ′(b)− λ > 0

Then neither a nor b is global minimum for g. Since [a, b] is compact and g is continuous over [a, b], the global
minimum for g over [a, b] however, must exist. Thus there exists c ∈ (a, b) s.t.

g′(c) = 0 =⇒ f ′(c) = λ

6.3 Taylor Series

Theorem 6.1 (Taylor’s Theorem). Assume f is n times differentiable over (a, b) ⊆ R. Let α ∈ (a, b). Write

Pn−1(x) =

n−1∑
k=0

f (k)(α)

k!
(x− α)k

Then for any β ∈ (a, b) s.t. α ̸= β, there exists some t in between α and β s.t.

f(β) = Pn−1(β) +
f (n)(t)

n!
(β − α)n (3)

Remark 6.4. The polynomial Pn−1(x) is the only polynomial s.t.

P
(k)
n−1(α) = f (k)(α) ∀ k = 0, · · · , n− 1

Proof of Theorem 6.1. Let

M =
f(β)− Pn−1(β)

(β − α)n

This is constant. WLOG assume β > α. Define

g(x) = f(x)− Pn−1(x)−M(x− α)n

Our task reduces to showing
n!M = f (n)(t)

for some t ∈ (α, β). We compute

g(α) = 0

g′(α) = 0

...

g(n−1)(α) = 0
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On the other hand, note

g(β) = f(β)− Pn−1(β)−
f(β)− Pn−1(β)

(β − α)n
(β − α)n = 0

Using Corollary 6.1 there exists x1 ∈ (α, β) s.t.

g′(x1) = 0

Using g′(α) = 0 and Corollary 6.1 there exists x2 ∈ (α, x1) s.t.

g(2)(x2) = 0

Keep iterating, there exists t = xn ∈ (α, xn−1) s.t.

g(n)(t) = 0

But what is g(n)?
0 = g(n)(t) = f (n)(t)− n!M

Thus
f(β)− Pn−1(β)

(β − α)n
= M =

f (n)(t)

n!

Remark 6.5. If f has derivatives of all orders, then f (k)(x) exists for any k ∈ N. We define

P (x) :=

∞∑
k=0

f (k(α)

k!
(x− α)k

as Taylor Series of f at α. In general f(x) ̸= P (x) even in the domain of radius of convergence. In fact such
f are called analytic.
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7 Riemann Integration

In Calculus one need
f : [a, b] → R

continuous, or piecewise continuous, to define derivatives. But in general, we only need f bounded and the
length of intervals of R to define integrals.

Definition 7.1 (Partition). Let [a, b] ⊆ R. A partition of [a, b] is a finite set x0, · · · , xn in [a, b] s.t.

1. x0 = a and xn = b

2. x0 ≤ x1 ≤ · · · ≤ xn. We denote

∆xi := xi − xi−1 ∀ i ∈ {1, · · · , n}

as the length of the ith interval.

Definition 7.2 (Riemann Integral). Suppose

f : [a, b] → R

be bounded. Given a partition P of [a, b] one can define

Mi := sup
xi−1≤x≤xi

f(x) ∀ i ∈ {1, · · · , N}

mi := inf
xi−1≤x≤xi

f(x) ∀ i ∈ {1, · · · , N}

Notice all Mi and mi exist because f is bounded over [a, b].

1. We define Upper and Lower Riemann Sum of f over [a, b] w.r.t. Partition P as

U(P, f) =

N∑
i=1

Mi∆xi

L(P, f) =

N∑
i=1

mi∆xi

2. We define Upper and Lower Riemann Integral of f over [a, b] as

ˆ b

a

f := inf
P partition of [a, b]

U(P, f)

ˆ b

a

f := sup
P partition of [a, b]

L(P, f)

3. If
´ b
a
f =
´ b
a
f , we define the Riemann Integral of f over [a, b] as

ˆ b

a

f =

ˆ b

a

f =

ˆ b

a

f

If so, we say f ∈ R[a, b] Riemann Integrable over [a, b].

Remark 7.1. Why is
´ b
a
f well-defined? Since f is bounded

L(P, f) =

N∑
i=1

mi∆xi ≤ sup
x∈[a,b]

f(x) · (b− a) < ∞

Thus the set
{L(P, f) | P partition of [a, b]}

has an upper bound. By least upper bound property

ˆ b

a

f = sup{L(P, f) | P partition of [a, b]}

exists.
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Example 7.1 (Non-example). Consider f : [a, b] → R s.t.

f(x) =

{
0 x ∈ Q
1 x /∈ Q

Now take any Partition P , in each subinterval, there is always a rational and an irrational, so

Mi = 1 mi = 0

and thus

U(P, f) = b− a

L(P, f) = 0

They never agree, so f /∈ R.

Definition 7.3 (Refinement). Given P ∗ and P partitions of [a, b]. P ∗ refines P if P ∗ ⊋ P .

Remark 7.2. Given P1, P2 partition of [a, b], then P1 ∪P2 is a common refinement, i.e., it refines both P1 and
P2.

Proposition 7.1. If P ∗ refines P , then

L(P, f) ≤ L(P ∗, f)

U(P, f) ≥ U(P ∗, f)

Proof. We first assume P ∗ = P ∪{x}, i.e., we add one point to P . Denote P = {xi}Ni=0 with corresponding mi.
Pick i s.t.

xi−1 < x < xi

Then we define
w1 := inf

[xi−1,x]
f(x) w2 := inf

[x,xi]
f(x)

One obtain (infimum over smaller set)

w1 ≥ mi

w2 ≥ mi

Thus

w1(x− xi−1) + w2(xi − x) ≥ mi(x− xi−1) +mi(xi − x)

= mi∆xi

L(P ∪ {x}, f) ≥ L(P, f)

Now we induct on adding k points to P ∗.

Remark 7.3. For P ∗ = P1 ∪ P2 one has

L(P2, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P1, f)

7.1 Criterion for Riemann Integrability

Proposition 7.2 (Integrability Criterion). f ∈ R[a, b] iff

for any ε > 0, there exists a partition Pε s.t. U(Pε, f)− L(Pε, f) < ε (4)

Proof. 1. ( ⇐= ) Since

L(P, ε) ≤
ˆ b

a

f ≤
ˆ b

a

f ≤ U(P, f)

for any partition P , then for any ε > 0, there exists Pε s.t.

ˆ b

a

f −
ˆ b

a

f ≤ U(Pε, f)− L(Pε, f) ≤ ε

But LHS is independent of ε. Take ε → 0 on RHS to conclude
´ b
a
f =
´ b
a
f .
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2. ( =⇒ ) Using definition of supremum and infimum, for any ε > 0, there exists P1 and P2 s.t.

U(P1, f)−
ˆ b

a

f <
ε

2ˆ b

a

f − L(P2, f) <
ε

2

Since f ∈ R[a, b],
´ b
a
f =
´ b
a
f , thus the above translates to

U(P1, f)− L(P2, f) = U(P1, f)−
ˆ b

a

f +

ˆ b

a

f − L(P2, f) < ε

Take Pε = P1 ∪ P2 to conclude.

Proposition 7.3. 1. If (4) holds for some ε > 0 and P , then (4) holds for any refinement P ∗ ⊋ P with the
same ε.

2. If (4) holds for
P = {x0, · · · , xn}

and si, ti are arbitrary points in [xi−1, xi], then

n∑
i=1

|f(si)− f(ti)|∆xi < ε (5)

3. If f ∈ R[a, b] and (5) holds, then

|
n∑

i=1

f(ti)∆xi −
ˆ b

a

f | < ε

Proof. 1. Indeed
U(P ∗, f)− L(P ∗, f) ≤ U(P, f)− L(P, f) < ε

2. Since both f(si), f(ti) are in [mi,Mi] one obtain

|f(si)− f(ti)| ≤ Mi −mi

Thus

n∑
i=1

|f(si)− f(ti)|∆xi ≤
n∑

i=1

(Mi −mi)∆xi = U(P, f)− L(P, f) < ε

3. Since ti ∈ [xi−1, xi] s.t. f(ti) ∈ [mi,Mi] one has

L(P, f) ≤
N∑
i=1

f(ti)∆xi ≤ U(P, f)

On the other hand, using f ∈ R[a, b]

L(P, f) ≤
ˆ b

a

f ≤ U(P, f)

one obtain

|
n∑

i=1

f(ti)∆xi −
ˆ b

a

f | ≤ U(P, f)− L(P, f) < ε
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7.1.1 Theorems for Riemann Integrability

Theorem 7.1 (Continuous implies Integrability). If f : [a, b] → R is continuous, then f ∈ R[a, b].

Proof. Since [a, b] is compact, f is continuous, we know f is uniformly continuous over [a, b] using Theorem 5.2.
Thus for any ε > 0 one can choose δ = δ(ε) > 0 s.t.

|x− y| < δ =⇒ |f(x)− f(y)| < ε

b− a

Now we choose a partition P s.t. ∆xi < δ for any i. One obtain

U(P, f)− L(P, f) =

N∑
i=1

(Mi −mi)∆xi ≤
N∑
i=1

ε

b− a
∆xi ≤ ε

Using Proposition 7.2 one obtain f ∈ R[a, b].

Proposition 7.4 (Monotone implies Integrability). If f is monotone on [a, b], then f ∈ R[a, b].

Proof. For any ε > 0, let P with ∆xi =
b−a
n where n is the equal length for n subintervals. WLOG assume f

is monotone increasing, then
mi = f(xi−1) Mi = f(xi)

and so

U(P, f)− L(P, f) =
b− a

n

n∑
i=1

(f(xi)− f(xi−1))

=
b− a

n
(f(b)− f(a))

Now one may choose n sufficiently large so that

b− a

n
(f(b)− f(a)) < ε

Using Proposition 7.2 one obtain f ∈ R[a, b].

Theorem 7.2 (Finite Discontinuity implies Integrability). If f : [a, b] → R bounded, has finitely many discon-
tinuities, then f ∈ R[a, b].

Proof. For any ε > 0, since f is bounded,

M = sup
x∈[a,b]

|f(x)| < ∞

Denote
E = {x ∈ [a, b] | f has a discontinuity at x}

which is finite. Now one can over E with disjoint [uj , vj ] s.t.

N∑
j=1

vj − uj < ε

for some N = N(ε), where we require each point in E ∩ (a, b) to lie within (uj , vj) for some j. Consider the set

K := [a, b] \
N⋃
j=1

(uj , vj)

Since K is closed and bounded, by Heine-Borel, K is compact. Notice by definition, f is continuous over K,
hence by Theorem 5.2 f is uniformly continuous over K. There exists δ = δ(ε) > 0 s.t. for any x, y ∈ K s.t.

|x− y| < δ =⇒ |f(x)− f(y)| < ε

How can we form a partition of [a, b]? We choose a partition P = {xi} s.t.

1. uj , vj ∈ P for any j = 1, · · · , N

2. no points within (uj , vj) occur in P
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3. If xi ∈ P is not any of the uj , then we require ∆xi < δ.

Now

U(P, f)− L(P, f) =
∑
i

(Mi −mi)∆xi =

N∑
j=1

( sup
[uj ,vj ]

f − inf
[uj ,vj ]

f)(vj − uj) +
∑

other subintervals

(Mi −mi)∆xi

≤ 2M

N∑
j=1

(vj − uj) + ε(b− a)

≤ 2Mε+ (b− a)ε

Using arbitrariness of ε, and then Proposition 7.2 to conclude f ∈ R[a, b].

Theorem 7.3 (Integrable iff Measure Zero Discontinuities). Let f : [a, b] → R be bounded. Then f ∈ R[a, b] iff
the set E of discontinuities of f has measure zero, i.e., for any ε > 0 one can choose intervals Ij s.t.

E ⊆
⋃
j∈N

Ij and
∑
j∈N

|Ij | < ε

Example 7.2. Consider

f(x) =

{
1
q x = p

q

0 x /∈ Q

Then f : [a, b] → R is continuous over irrationals. We compute
ˆ b

a

f = 0

Example 7.3. Consider the Cantor set C =
⋃

n In for a sequence of sets

In ⊇ C ∀ n

and |In| → 0. Here C is uncountable. Consider function f : [0, 1] → R that is discontinuous at every x ∈ C but
continuous at every x ∈ [0, 1] \ C. Then f ∈ R[0, 1] because C has zero measure.

Theorem 7.4. If f : [a, b] → R is integrable, m ≤ f(x) ≤ M , and

ϕ : [m,M ] → R

is continuous, then
h(x) = ϕ(f(x)) ∈ R[a, b]

7.2 Properties

Proposition 7.5 (Properties of Riemann Integral). Let [a, b] ⊆ R.

1. f1, f2 ∈ R[a, b] implies f1 + f2 ∈ R[a, b], cf1 ∈ R[a, b] and
ˆ b

a

(f1 + f2) =

ˆ b

a

f1 +

ˆ b

a

f2

ˆ b

a

cf1 = c

ˆ b

a

f1 ∀ c ∈ R

2. If f1(x) ≤ f2(x) then ˆ b

a

f1 ≤
ˆ b

a

f2

3. If f ∈ R[a, b] and c ∈ (a, b), then ˆ b

a

f =

ˆ c

a

f +

ˆ b

c

f

4. If f ∈ R[a, b] and |f(x)| ≤ M then

|
ˆ b

a

f | ≤ M(b− a)

5. If f, g ∈ R[a, b] then fg ∈ R[a, b].

6. If f ∈ R[a, b], then |f | ∈ R[a, b] and

|
ˆ b

a

f | ≤
ˆ b

a

|f |
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7.3 Fundamental Theorem of Calculus

Theorem 7.5 (FTC). Let f ∈ R[a, b] and set the function

F (x) :=

ˆ x

a

f(t)dt

We call this F the anti-derivative of f . Then

1. F is continuous over [a, b]

2. If f is continuous at some x0 ∈ [a, b], then F is differentiable at x0 and

F ′(x0) = f(x0)

This F is leveling up the smoothness of f .

Proof. 1. Since f ∈ R[a, b], we know that f is bounded. Thus

|f(x)| ≤ M ∀ x ∈ [a, b]

Now we consider the quantity

|F (x)− F (y)| = |
ˆ x

a

f(t)dt−
ˆ y

a

f(t)dt|

≤ |
ˆ y

x

f(t)dt|

≤
ˆ y

x

|f(t)|dt ≤ M |y − x|

Thus F is uniformly continuous over [a, b]. Why? Given ε > 0, one can now choose δ < ε
M s.t.

|x− y| ≤ δ =⇒ |F (x)− F (y)| ≤ M |x− y| ≤ ε

2. Now we assume that f is continuous at x0. Given ε > 0, we choose δ > 0 s.t.

|f(x)− f(x0)| < ε ∀ |x− x0| < δ

Now we look at

|F (x)− F (x0)

x− x0
− f(x0)| = | 1

x− x0

ˆ x

x0

(f(t)− f(x0))dt|

≤ 1

|x− x0|

ˆ x

x0

|f(t)− f(x0)|dt

≤ 1

|x− x0|
ε|x− x0| = ε ∀ |x− x0| < δ

Hence we’ve shown that

F ′(x0) = lim
x→x0

F (x)− F (x0)

x− x0
= f(x0)

Theorem 7.6 (FTC II). If f ∈ R and there exists F s.t.

F ′ = f

Then ˆ b

a

f(x)dx = F (b)− F (a)

Proof. Let ε > 0. Choose Pε s.t.
U(P, f)− L(P, f) < ε

using f ∈ R. By the Mean Value Theorem Corollary 6.2, there exists ti ∈ (xi−1, xi) s.t.

F (xi)− F (xi−1) = f(ti)∆xi
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Now using the Riemann sum for
´ b
a
f one obtain

n∑
i=1

f(ti)∆xi =

n∑
i=1

F (xi−1)− F (xi) = F (b)− F (a)

Thus one obtain

|
ˆ b

a

f −
n∑

i=1

f(ti)∆xi| = |
ˆ b

a

f − (F (b)− F (a))| ≤ ε

But since this holds for any ε > 0 one has

F (b)− F (a) =

ˆ b

a

f(t)dt

Corollary 7.1 (Integration By Parts). Suppose F ′ = f ∈ R and G′ = g ∈ R. Then

ˆ b

a

Fg = F (b)G(b)− F (a)G(a)−
ˆ b

a

fG

Also written as ˆ b

a

FG′ = F (b)G(b)− F (a)G(a)−
ˆ b

a

F ′G

Proof. Apply FTC Theorem 7.6 to
H(x) = F (x)G(x)

and recall
H ′(x) = f(x)G(x) + F (x)g(x)

Corollary 7.2 (Change of Variables Formula). Let

φ : [A,B] → [a, b]

be differentiable and strictly increasing. And let f : [a, b] → R be integrable. Then f ◦ φ ∈ R[A,B] and

ˆ b

a

f(x)dx =

ˆ B

A

f(φ(y))φ′(y)dy

Remark 7.4. This is saying one is looking at the real line R differently. If φ is nice as above, then one is
relabeling. For Q a partition of [A,B], one has a one-to-one correspondence (via φ) with a partition P of [a, b].

Proof. Let ε > 0. Choose Pε a partition of [a, b], P = {xi}ni=0 s.t.

U(P, f)− L(P, f) < ε

Define the corresponding partition
Q = {yi = φ−1(xi)}ni=0

For the original partition one has

n∑
i=1

(Mi −mi)∆xi < ε

We want to compute the Riemann sum on the other side. Consider

mi = inf
[xi−1,xi]

f(x) = inf
[yi−1,yi]

f(φ(y))

Mi = sup
[xi−1,xi]

f(x) = sup
[yi−1,yi]

f(φ(y))

Look at the Riemann sum

n∑
i=1

Mi∆xi =

n∑
i=1

Mi(xi − xi−1) =

n∑
i=1

Mi(φ(yi)− φ(yi−1))

=

n∑
i=1

Miφ
′(ti)∆yi ti ∈ (yi−1, yi)
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The LHS is Riemann sum for
´ b
a
f(x)dx while the RHS is Riemann sum for

´ B
A

f ◦ φ · φ′. Hence

|U(f ◦ φ,Q)− L(f ◦ φ,Q)| < ε

Remark 7.5. One has several generalization.

1. One can generalize to Rn as integration of differential forms. Stokes Theorem is stated as

ˆ
M

df =

ˆ
∂M

f

2. One can generalize to spaces not in Rn.

3. One can generalize to Lebesgue Integral. The idea is to assign a length to subsets of R even for non-
intervals. Lebesgue want

(a) ℓ([a, b]) := b− a

(b) For intervals In disjoint countably many, one want∑
n

ℓ(In) = ℓ(
⋃
n

In)

It follows from here that ℓ({a}) = 0 and ℓ(Q) = 0.

Consider the function

f(x) =

{
1 Q
0 R \Q

Then
´
f = 0 under the Lebesgue sense. Notice that Riemann integral doesn’t work for this function.
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A Assignments

In this section I discuss some problems in the Assignments which I believe to be helpful.

A.1 Assignment 1

Problem A.1 ([Rud76] Exercise 1.5). Let A be an nonempty set of real numbers which is bounded from below.
Let −A be the set of all numbers −x where x ∈ A. Prove that

inf(A) = − sup(−A)

Solution A.1. Proof. 1. We first prove
− inf(A) ≥ sup(−A)

For any x ∈ A, since inf(A) is a lower bound of A, one has

x ≥ inf(A) ⇐⇒ −x ≤ − inf(A)

But this holds for any −x ∈ −A, hence − inf(A) is an upper bound of the set −A. Now by definition of
sup as the least upper bound, one has

sup(−A) ≤ − inf(A)

2. We then prove
inf(A) ≥ − sup(−A)

For any x ∈ A, since sup(−A) is an upper bound of −A, one has

−x ≤ sup(−A) ⇐⇒ x ≥ − sup(−A) ∀ x ∈ A

But now − sup(−A) is an lower bound for A. Thus by definition of inf as the greatest lower bound, one
has

inf(A) ≥ − sup(−A)

Problem A.2 ([Rud76] Exercise 1.8). Prove that no order can be defined in a complex field C that turns it into
an order field.

Solution A.2. Proof. Assume there is a (total) order < on C. Then by definition of order one has to be able
to compare any pair of elements in C. Thus for 0 and i, either one of the following holds

i > 0 or i = 0 or i < 0

1. In the first case i > 0, assume (C, <) is an order field, then

i2 = i · i = −1 > 0

But using assumption (C, <) is an order field again yields

i · (−1) = −i > 0

Now one add i on both sides and using C is a field to see

i+ (−i) = 0 > i

which gives the contrary to i > 0.

2. In the second case i = 0 then
i2 = −1 = 0

Adding 1 on both sides yields
0 = 1

which says the additive identity is equal to the multiplicative identity, and this leads to a contradiction
to C as a field.
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3. In the third case i < 0, i.e., −i > 0 then
(−i)2 = −1 > 0

using assumption (C, <) is an order field again yields

−i · (−1) = i > 0

and gives a contrary to i < 0.

Problem A.3 ([Rud76] Exercise 2.2). A complex number z ∈ C is algebraic if there exist integers a0, · · · , an
(not all zero) s.t.

anz
n + an−1z

n−1 + an−2z
n−2 + · · · a0 = 0 (6)

Prove that the set of all algebraic numbers is countable.

Solution A.3. Proof. We first describe the set of algebraic numbers

A = {algebraic numbers} := {z ∈ C | ∃ n ∈ N, a0, · · · , an ∈ Z not all zero s.t. (6) holds}

=

∞⋃
n=1

{z ∈ C | ∃ a0, · · · , an ∈ Z with an ̸= 0 the highest order non-zero coefficient s.t. (6) holds}

In this case we write

A =

∞⋃
n=1

An

where

An := {z ∈ C | ∃ a0, · · · , an ∈ Z with an ̸= 0 the highest order non-zero coefficient s.t. (6) holds}

In view of [Rud76] Theorem 2.12, it suffices to prove An is countable for each n. But note

An =

∞⋃
|a0|,|a1|,··· ,|an−1|=0,|an|=1

{z ∈ C | (6) holds}

=

∞⋃
|a0|,|a1|,··· ,|an−1|=0,|an|=1

Aa0,a1,··· ,an

where
Aa0,a1,··· ,an

:= {z ∈ C | z is root of the polynomial anz
n + · · · a0 = 0}

By Fundamental Theorem of Algebra, any polynomial of order n has at most n roots in C, hence Aa0,a1,··· ,an

has at most n elements. Thus An as countable union of finite sets is countable.
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A.2 Assignment 2

Problem A.4 ([Rud76] Exercise 2.5). Construct a bounded set of real numbers with exactly three limit points.

Solution A.4. Take three distinct points in R, then construct a limiting sequence that approaches each point.
For example, denote

E0 := {0, 1, 2}
and

E1 := {a+
1

n
| a ∈ E, n ∈ N, n ≥ 2}

Then E1 is bounded because we can fit it in a large enough ball. E0 is the set of limit points of E1. Why? For
example choose a = 0, then for any (−ε, ε) neighborhood around 0, there exists N = N(ε) ∈ N s.t.

(− 1

N
,
1

N
) ⊆ (−ε, ε)

so for any n ≥ N , 0 ̸= 1
n ∈ (−ε, ε). Since ε > 0 is arbitrary, 0 is a limit point of E1. Same for 1 and 2.

Problem A.5 ([Rud76] Exercise 2.7). Let A1, · · · be subsets of a metric space.

1. If Bn =
⋃n

t=1 At, then

Bn =

n⋃
t=1

At ∀ n ∈ N

2. If B =
⋃∞

t=1 At, then

B ⊇
∞⋃
t=1

At

Show that the inclusion can be proper.

Solution A.5. Proof. 1. (a) First prove

Bn ⊆
n⋃

t=1

At

Since Bn =
⋃n

t=1 At ⊆
⋃n

t=1 At, it suffices to prove for the set of limit points of Bn. Take any q
limit point of

⋃n
t=1 At, then for any ε > 0, there exists p ∈

⋃n
t=1 At s.t. d(p, q) < ε. By definition

of
⋃n

t=1 At, there exists t0 ∈ {1, · · · , n} s.t. p ∈ At0 . Can we now conclude q ∈ At0? No! Because
the choice of t0 depends on p = p(ε) ∈ Bn, which further depends on ε, and as one shrink ε, there
is no guarantee that t0 won’t jump to another t ∈ {1, · · · , n} \ {t0}. To prove this inclusion, one
wish to remove the dependence of t0 on ε, and at this step we’re stuck! Let’s alternatively argue by
contradiction. Assume

q /∈
n⋃

t=1

At

Then for any t ∈ {1, · · · , n}, q is not a limit point of At, i.e., there exists εt > 0 s.t.

Bεt(q) ∩At = ∅ or {q}

Thus define
ε := min{εt | t = 1, · · · , n} > 0

Note ε > 0 makes use of finiteness! Otherwise taking inf could lead to ε = 0. We observe that

Bε(q) ∩At = ∅ or {q} ∀ t =⇒ Bε(q) ∩

(
n⋃

t=1

At

)
= ∅ or {q}

But this is to say q is not limit point of Bn =
⋃n

t=1 At, a contradiction to our assumption.

(b) Now we prove

Bn ⊇
n⋃

t=1

At

For any q ∈
⋃n

t=1 At, there exists t0 ∈ {1, · · · , n} s.t. q ∈ At0 , hence for any ε > 0, there exists
p ∈ At0 , q ̸= p, s.t. d(p, q) < ε. But

p ∈ At0 ⊆
n⋃

t=1

At = Bn

Here we’re good, as t0 is fixed before ε > 0. By definition of limit point, this is to say q ∈ Bn.
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2. (a) We first prove the inclusion. The reasoning is exactly the same, since q ∈
⋃∞

t=1 At yields there exists
t0 ∈ N∗ s.t. q ∈ At0 , hence for any ε > 0, there exists p ∈ At0 , q ̸= p s.t. d(p, q) < ε, but

p ∈ At0 ⊆
∞⋃
t=1

At = B

This is to say q ∈ B.

(b) For the reverse, we provide a counter-example. Consider

An := (−1 +
1

n
, 1− 1

n
) ∀ n ∈ N∗

Then

An = [−1 +
1

n
, 1− 1

n
] ∀ n ∈ N∗

Thus
∞⋃

n=1

An = (−1, 1)

because the two endpoints ±1 are never reached. Now on the other hand

B =

∞⋃
n=1

An = (−1, 1)

B = [−1, 1] ⊋
∞⋃

n=1

An

Problem A.6 ([Rud76] Exercise 2.8). Is every point of every open set E ⊆ R2 a limit point of E? What about
closed sets?

Solution A.6. 1. Yes, every point q = (x1, x2) ∈ E ⊆ R2 open is a limit point of E. Since E is open,
(x1, x2) is an interior point, thus there exists r0 > 0 s.t.

Br0((x1, x2)) ⊆ E ⇐⇒ ∀ (y1, y2) s.t.
√

(x1 − y1)2 + (x2 − y2)2 < r0 belongs to E

Is there such (y1, y2)? Indeed, take

(y1, y2) := (x1 +
r0
2
, x2 +

r0
2
)

Then √
(x1 − y1)2 + (x2 − y2)2 =

√
(
r0
2
)2 + (

r0
2
)2 < r0

But this works for any r ≤ r0 arbitrary. For r > r0, we simply take its intersection with Br0((x1, x2)) and
construct (y1, y2) as above. In either case (x1, x2) is a limit point of E.

2. No, not every point of a closed set is a limit point. (Notice closed sets are defined to include all its limit
points, but not all its points are its limit points!). Consider the singleton set

{(0, 0)} ⊆ R2

Then {(0, 0)} is closed as it does not have any limit point. In particular (0, 0) is not a limit point of
{(0, 0)}.

Problem A.7 ([Rud76] Exercise 2.9). Let Eo denote the set of interior points of E. Prove that

(a) Eo is open.

(b) E is open iff Eo = E.

(c) If G ⊆ E and G is open, then G ⊆ Eo.

(d) (Eo)c = Ec.

(e) Do E and E always have the same interior?
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(f) Do E and Eo always have the same closure?

Solution A.7. Proof. (a) By definition E is open if all its points are interior points of E,i.e. E ⊆ Eo. To
show Eo is open, one need to show Eo ⊆ (Eo)o. This is done by showing

(Eo)o = Eo

For ⊆ direction, for any x ∈ (Eo)o, there exists r > 0 s.t. Br(x) ⊆ Eo, thus indeed x ∈ Eo. For ⊇
direction, for any x ∈ Eo, there exists r > 0 s.t. Br(x) ⊆ E. We claim that in fact,

Br(x) ⊆ Eo

so that x ∈ (Eo)o follows. Now for any y ∈ Br(x), d(x, y) < r, so take the ball

Br−d(x,y)(y) ⊆ Br(x) ⊆ E

we find a ball centered at y with radius r − d(x, y) > 0 that locates in E, i.e., y ∈ Eo. But y ∈ Br(x) is
arbitrary, hence Br(x) ⊆ Eo.

(b) (i) ( =⇒ ) If E is open, the set E ⊆ Eo. It suffices to prove Eo ⊆ E. But for any x ∈ Eo, there exists
r > 0 s.t. Br(x) ⊆ E, in particular, x ∈ E.

(ii) ( ⇐= ) If E = Eo, indeed E ⊆ Eo, i.e., E is open.

(c) If G is open, for any x ∈ G, there exists r > 0 s.t. Br(x) ⊆ G ⊆ E, hence x ∈ Eo. Since x is arbitrary,
G ⊆ Eo.

(d) (i) For ⊆ direction, for any x /∈ Eo, for any r > 0, there exists y /∈ E ⇐⇒ y ∈ Ec s.t. d(x, y) < r.
If there exists r > 0 s.t. y = x, then indeed x ∈ Ec ⊆ Ec. If y ̸= x for any r > 0, then x ∈ Ec by
definition of a limit point.

(ii) For ⊇ direction, for any x ∈ Ec, i.e., for any r > 0, there exists y ̸= x, y ∈ Ec s.t. d(y, x) < r, but
this is to say Br(x) ̸⊆ E. Thus x /∈ Eo ⇐⇒ x ∈ (Eo)c.

(e) No. Let E = Q, then E = R. Unfortunately Eo = ∅ but (E)o = R.

(f) No. Again let E = Q, then Eo = ∅, so E = R but Eo = ∅.

Problem A.8 ([Rud76] Exercise 2.10). Let X be an infinite set. For p, q ∈ X define

d(p, q) :=

{
1 p ̸= q

0 p = q

Prove that this is a metric. Which subsets of this metric space are closed, which are open, and which are
compact?

Solution A.8. That d is a metric follows directly by verifying the three defining properties of a metric.

1. Let x ∈ X. Then for any r < 1,

Br(x) := {y ∈ X | d(x, y) < r} = {x} ⊆ {x}

Hence indeed a radius, say r = 1
2 exists s.t. B 1

2
(x) ⊆ {x}. Thus each singleton {x} ⊆ X is open. Using

Theorem 2.1, openness is invariant under arbitrary unions. Since any subset Y ⊆ X can be written as
union of singletons, i.e.,

Y =
⋃
y∈Y

{y}

All sets in X are open under this metric d. But then using Duality Proposition 2.5, the complements of
all sets are closed. But they’re the same collection of sets. Hence each set is both open and closed.

2. Only finite subsets of X are compact. For infinite sets, each the covering to be the collection of all elements
in the set, then this does not have any finite subcover, hence it is not compact. For any finite set, the
worst open cover one can take is in fact the collection of all its elements, which is finite.

Problem A.9 ([Rud76] Exercise 2.12). Let

K := {0} ∪ { 1
n
| n ∈ N∗} ⊆ R

Prove K is compact directly from the definition.
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Solution A.9. Proof. For any {Gα} open cover of K

K = {0} ∪ { 1
n
| n ≥ 1, n ∈ N} ⊆

⋃
α

Gα

Since the union covers 0, there exists Gα0
s.t.

0 ∈ Gα0

Now using Gα0
is open, there exists δ > 0 s.t.

(−δ, δ) ⊆ Gα0

Now there exists N = N(δ) ∈ N by Theorem 1.2 s.t.

1

N
< δ

and so for any n ≥ N ,
1

n
∈ (0,

1

N
) ⊆ (−δ, δ) ⊆ Gα0

Hence we can cover the part close to 0 using merely Gα0

{0} ∪ { 1
n
| n ≥ N} ⊆ Gα0

Now for 1 ≤ i ≤ N − 1, take each open set which we label Gαi s.t.

1

i
∈ Gαi ∀ 1 ≤ i ≤ N − 1

Thus we’ve constructed a finite subcover

K = {0} ∪ { 1
n
| n ≥ N} ∪ { 1

n
| 1 ≤ n ≤ N − 1} ⊆ Gα0

∪
N−1⋃
i=1

Gαi

Problem A.10 ([Rud76] Exercise 2.16). Regard Q the set of rational numbers as metric space with metric

d(p, q) := |p− q|

Let
E := {p ∈ Q | 2 < p2 < 3}

Show that E is closed and bounded in Q, but not compact. Is E open in Q ?

Solution A.10. Proof. 1. That E is bounded follows by fitting E inside a large enough ball. To prove E is
closed in Q, we prove Q \ E is open in Q. For any p ∈ Q \ E, we know either

p2 ≤ 2 or p2 ≥ 3

Since there is no p ∈ Q s.t. p2 = 2 or p2 = 3, p ∈ Q \ E is equivalent to

p2 < 2 or p2 > 3

Now fix p2 < 2, and construct r > 0 s.t. (we cheat a bit by using irrationals)

(p+ r)2 < 2

r2 + 2rp+ p2 − 2 < 0

r ∈ (
−2p−

√
4p2 − 4p2 + 8

2
,
−2p+

√
4p2 − 4p2 + 8

2
) = (−p−

√
2,−p+

√
2)

(p− r)2 < 2

r ∈ (p−
√
2, p+

√
2)

Notice

p+
√
2 > −p−

√
2 ⇐⇒ p > −

√
2

p−
√
2 < −p−

√
2 ⇐⇒ p < 0

−p+
√
2 < p+

√
2 ⇐⇒ p > 0

−p+
√
2 > p−

√
2 ⇐⇒ p <

√
2
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Hence

(−p−
√
2,−p+

√
2) ∩ (p−

√
2, p+

√
2) =


(p−

√
2,−p+

√
2) if p > 0 and p2 < 2

(−p−
√
2, p+

√
2) if p < 0 and p2 < 2

(−
√
2,
√
2) if p = 0

For each p classified as above, pick r ∈ Q that lies within the interval (−p−
√
2,−p+

√
2)∩(p−

√
2, p+

√
2)

to ensure
(p− r, p+ r) ⊆ Q \ E

Similarly for p2 > 3. This shows that Q \ E is open in Q, hence E is closed in Q.

2. For the same reason as above, E is open in Q. For any p ∈ E, we want to construct r > 0 s.t. (p−r, p+r) ⊆
E, i.e. (WLOG we do for p > 0)

(p− r)2 > 2

r2 − 2pr + p2 − 2 > 0

r ∈ (−∞,
2p−

√
4p2 − 4p2 + 8

2
) ∪ (

2p+
√
4p2 − 4p2 + 8

2
,∞) = (−∞, p−

√
2) ∪ (p+

√
2,∞) =: A1

(p+ r)2 < 3

r2 + 2pr + p2 − 3 < 0

r ∈ (
−2p−

√
4p2 − 4p2 + 12

2
,
−2p+

√
4p2 − 4p2 + 12

2
) = (−p−

√
3,−p+

√
3) =: A2

Then

A1 ∩A2 =


(−p−

√
3,−p+

√
3) if p2 > 2, p2 < 3 and p >

√
3+

√
2

2

(−p−
√
3, p−

√
2) if p2 > 2, p2 < 3 and p <

√
3+

√
2

2

(− 3
√
3+

√
2

2 ,
√
3−

√
2

2 ) if p =
√
3+

√
2

2

Pick r ∈ Q ∩A1 ∩A2 for each classification of p. Do the same for p < 0 yields E is open in Q.

3. We show E is not compact. Indeed, consider open cover

En := {p ∈ Q | 2 + 1

n
< p2 < 3− 1

n
}

Then each En is open (same as above) and an open cover of E

E =

∞⋃
n=1

En

But not finite subcover exists for this covering. Hence E is not compact.

Problem A.11 ([Rud76] Exercise 2.22). A metric space is called separable if it contains a countable dense
subset. Show that Rk is countable.

Solution A.11. Proof. Notice we identify (Rk, d2) with Euclidean metric. We claim that Qk is the countable
dense subset of Rk. Qk is countable follows from Proposition 2.1. To see Qk is dense in Rk, for any

x = (x1, · · · , xk) ∈ Rk

and for any ri > 0 with i = 1, · · · , k, by Density Property Theorem 1.3, there exists

yi ∈ (xi − ri, xi + ri) ∩Q ∀ i = 1, · · · , k

Thus for any r > 0, one can construct (r1, · · · , rk) and y = (y1, · · · , yk) ∈ Qk s.t.

d2(x, y) =

√√√√ k∑
i=1

(xi − yi)2 ≤

√√√√ k∑
i=1

r2i ≤ r

where the last inequality is due our choice of (r1, · · · , rk). For example we can pick

ri :=
r√
k

∀ i = 1, · · · , k

Thus any point in Rk is a limit point of Qk, and since Qk ⊆ Rk, one has Qk = Rk.

61



Problem A.12 ([Rud76] Exercise 2.23). A collection {Vα} of open subset of X is a base for X if

for every x ∈ X and every open set G ⊆ X s.t. x ∈ G, we have x ∈ Vα ⊆ G for some α

i.e. every open set in X is a union of subcollections of Vα. Prove that every separable metric space has a
countable base.

Solution A.12. Proof. Since X is separable, it has a countable dense subset Y . Consider the collection of sets

A := {Bq(y) | y ∈ Y, q ∈ Q}

Then A is countable as indexed by Q × Y . We claim that A is a base for X. Now for any x ∈ X and G ⊆ X
open s.t. x ∈ G, there exists r > 0 s.t. x ∈ Br(x) ⊆ G.

1. If x ∈ Y then one can take q = r ∈ Q small enough s.t. x ∈ Br(x) = Bq(y).

2. If x /∈ Y , then using Y is dense subset in X, for r > 0 as above, there exists y ∈ Y s.t.

d(x, y) <
r

2

Thus by Density Theorem 1.3, there exists q ∈ Q and d(x, y) < q < r
2 so that

d(x, y) < q =⇒ x ∈ Bq(y) ⊆ Br(x)

Hence A is a base for X.

Problem A.13 ([Rud76] Exercise 2.25). Prove that every compact metric space K has a countable base, and
that K is therefore separable.

Solution A.13. Proof. 1. We first prove K has a countable base. For any n ∈ N, one has open covering of
K

K =
⋃
x∈K

B 1
n
(x)

Now using K is compact there exists finitely-many N = N(n) subcover {B 1
n
(xnj

)}Nj=1 s.t.

K =

N(n)⋃
j=1

B 1
n
(xnj

)

Now the collection
A := {B 1

n
(xnj

) ⊆ K | n ∈ N, j = 1, · · · , N(n)}
is countable. To see A is indeed a base, for any x ∈ K and every open set G ⊆ K s.t. x ∈ G, there exists
r > 0 s.t. Br(x) ⊆ G ⊆ K. For n sufficiently large s.t.

1

n
<

r

2

there exists N = N(n) and nj for j ∈ {1, · · · , N(n)} s.t.

x ∈ B 1
n
(xnj ) ⇐⇒ d(x, xnj ) <

1

n

Now for any y ∈ B 1
n
(xnj

)

d(y, x) ≤ d(y, xnj
) + d(xnj

, x) ≤ 1

n
+

1

n
< r =⇒ y ∈ Br(x)

Thus
x ∈ B 1

n
(xnj ) ⊆ Br(x) ⊆ G

So A is a countable base for K.

2. Then we argue K is separable. Define

B := {xnj ∈ K | n ∈ N, j = 1, · · · , N(n)}

This is indeed countable. To see B is dense, we make use that A is a base for K. For any x ∈ K, and for
any r > 0, there exists n ∈ N and xnj

s.t.

d(x, xnj ) <
1

n
,

1

n
< r

so that
x ∈ Br(xnj )

Hence B is dense subset of K.

62



Problem A.14 ([Rud76] Exercise 2.29; [Fol99] Proposition 0.21). Prove that every open set in R is the union
of an at most countable collection of disjoint segments.

Solution A.14. Proof. 1. For any U ⊆ R open, for any x ∈ U , define the collection of all open intervals in
U that contains x as

Jx := {I open interval ⊆ U | x ∈ I}

Define the maximal interval as the union of all such open intervals around x.

Jx :=
⋃

I∈Jx

I

This is indeed an open interval, and in fact the largest element in Jx.

2. For any x, y ∈ U , either
Jx = Jy or Jx ∩ Jy = ∅

Otherwise Jx ∪ Jy is a bigger open interval around both x and y, which contradicts maximality. Thus the
collection

J := {Jx | x ∈ U}

is a collection of disjoint open intervals. Moreover

U =
⋃
J∈J

J

3. It suffices to prove J is at most countable. We define a clever map as follows.

f : J → Q J 7→ f(J) := some rational number in J

Since f(J) ∈ J for any J ∈ J , and all intervals J in J are disjoint, the map f is injective. Thus f is a
bijection from J onto f(J ), and since

J ∼ f(J ) ⊆ Q

by Proposition 2.2, J is at most countable.

63



A.3 Assignment 4

Problem A.15 ([Rud76] Exercise 5.2). f ′(x) > 0 in (a, b). Prove f is strictly increasing in (a, b). Denote g
as inverse of f . Prove that g is differentiable and

g′(f(x)) =
1

f ′(x)
∀ a < x < b

Solution A.15. Proof. 1. For any x ∈ (a, b), there exists εx > 0 s.t.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
≥ εx > 0

Hence there exists δx s.t. for |h| < δx one has

f(x+ h)− f(x) ≥ hεx > 0

hence f is strictly increasing over (x, x + δx). Since x ∈ (a, b) is arbitrary, f is strictly increasing over
(a, b).

2. We denote f(x+ k) = f(x) + h. Using continuity of f at x, note as h → 0, k → 0. Thus

g(f(x) + h)− g(f(x))

h
=

g(f(x+ k))− g(f(x))

f(x+ k)− f(x)
=

x+ k − x

f(x+ k)− f(x)
=

k

f(x+ k)− f(x)

g′(f(x)) = lim
h→0

g(f(x) + h)− g(f(x))

h
= lim

k→0

k

f(x+ k)− f(x)
=

1

f ′(x)

Since f ′(x) > 0, g is differentiable over the range of f .

Problem A.16 ([Rud76] Exercise 5.3). Let g be real function on R with bounded derivative (|g′(x)| ≤ M). For
any ε > 0 define

f(x) = x+ εg(x)

Show that f is one-to-one for ε small.

Solution A.16. Proof. Notice

f ′(x) = 1 + εg′(x) ≥ 1− ε|g′(x)| ≥ 1− εM > 0

if we choose ε small so that ε < 1
M . Now using Problem A.15, the inverse of f is well-defined over the range of

f , and is differentiable. Using well-definedness of the inverse, and note f maps R to R, we know its inverse is
one-to-one from R to R as well.

Problem A.17 ([Rud76] Exercise 5.4). If real constant C0, · · · , Cn satisfies

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn

n+ 1
= 0

Then the equation
C0 + C1x+ · · ·+ Cn−1x

n−1 + Cnx
n = 0

has at least one root between 0 and 1.

Solution A.17. Proof. We construct the polynomial

p(x) = C0x+
C1

2
x2 + · · ·+ Cn−1

n
xn +

Cn

n+ 1
xn+1

Immediately observe p(0) = 0. Using assumption we also know p(1) = 0. Now using Rolle’s Mean Value
Theorem Corollary 6.1 we know there exists c ∈ (0, 1) s.t.

p′(c) = 0

But what is p′(c)? It is
C0 + C1c+ · · ·+ Cn−1c

n−1 + Cnc
n = 0

Hence x = c is a root between 0 and 1.

64



Problem A.18 ([Rud76] Exercise 5.5). f is defined and differentiable for every x > 0 and f ′(x) → 0 as x → ∞.
Let g(x) = f(x+ 1)− f(x). Then

g(x) → 0 x → ∞

Solution A.18. Proof. Notice

|g′(x)| = |f ′(x+ 1)− f ′(x)| ≤ |f ′(x+ 1)|+ |f ′(x)| → 0 x → ∞

Thus every sequential limit yn → ∞ necessarily has g′(yn) → 0. We consider any sequence xn → ∞. Then
using Lagrange Mean Value Theorem Corollary 6.2 there exists yn ∈ (xn, xn + 1) s.t.

g(xn) = f(xn + 1)− f(xn) = f ′(yn)

Since f ′(yn) → 0 as n → ∞, necessarily g(xn) → 0. But xn is any sequence, hence by sequential characterisation
Proposition 5.1 one has g(x) → 0 as x → ∞.

Problem A.19 ([Rud76] Exercise 5.6). Assume f continuous for x ≥ 0, f ′(x) exists for x > 0, f(0) = 0 and
f ′ is monotonically increasing. Then

g(x) =
f(x)

x
x > 0

is monotonically increasing

Solution A.19. Proof. We compute

g′(x) =
f ′(x)x− f(x)

x2

It suffices to show
f ′(x)x− f(x) ≥ 0 ∀ x > 0

But by Lagrange Mean Value Theorem Corollary 6.2, for any x > 0, there exists cx ∈ (0, x) s.t.

f(x)− f(0) = f(x) = f ′(cx)x ≤ f ′(x)x

Problem A.20 ([Rud76] Exercise 5.9). Let f be continuous real function over R. Assume f ′(x) exists for all
x ̸= 0 and that f ′(x) → 3 as x → 0. Does it follow that f ′(0) exists?

Solution A.20. Yes. What is f ′(0) by definition? It is

f ′(0) = lim
h→0

f(h)− f(0)

h

Now for any h, by Mean Value Theorem Corollary 6.2 there exists ch ∈ (0, h) s.t.

f(h)− f(0)

h
= f ′(ch)

But notice f ′(x) → 3 as x → 0 hence
lim
h→0

f ′(ch) = 3

Thus one has

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0
f ′(ch) = 3

Problem A.21 ([Rud76] Exercise 5.12). If f(x) = |x|3. Compute f ′(x), f ′′(x) for all x ∈ R, and show f (3)(0)
does not exist.

Solution A.21. For any x > 0

f ′(x) = 3x2

f ′′(x) = 6x

f (3)(x) = 6

For any x < 0

f ′(x) = −3x2

f ′′(x) = −6x

f (3)(x) = −6
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Now we use Problem A.20 upon observing

f ′(x), f ′′(x) → 0 x → 0

and indeed f , f ′ are continuous reals over R. Thus

f ′(0) = f ′′(0) = 0

But f (3)(x) as x → 0 as a jump discontinuity, hence f (3)(0) does not exist.

Problem A.22 ([Rud76] Exercise 5.15). Let a ∈ R, f be twice differentiable real-valued function over (a,∞),
and define

M0 := sup
(a,∞)

|f(x)| M1 := sup
(a,∞)

|f ′(x)| M2 := sup
(a,∞)

|f ′′(x)|

Show that
M2

1 ≤ 4M0M2

Solution A.22. Proof. It suffices to prove for both M0 and M2 finite, and that

|f ′(x)| ≤ 2
√
M0M2 ∀ x ∈ (a,∞)

Also note if M0 = 0 then everything boils down to 0. On the other hand if M2 = 0 then f ′ is constant, say
f ′(x) = c for any x ∈ (a,∞). Then necessarily f(x) = cx+ d for some d ∈ R. But by our assumption M0 < ∞,
then necessarily c = 0, and again everything boils down to 0.

Hence it suffices to prove for both 0 < M0, M2 < ∞.
For any x > a, apply Taylor’s Theorem (3) to (x, x+ 2h) so that there exists ξ ∈ (x, x+ 2h) s.t.

f(x+ 2h) = f(x) + f ′(x)(2h) +
f ′′(ξ)

2
4h2

Thus

f ′(x) =
f(x+ 2h)− f(x)

2h
− hf ′′(ξ)

≤ 1

2h
2M0 + hM2 =

M0

h
+ hM2

Notice h is free for us to choose. We pick

h =

√
M0

M2

so that
M0

h
+ hM2 = 2

√
M0M2

and our result follows.
Now to see M2

1 = 4M0M2 can actually happen, consider the example for a = −1

f(x) =

{
2x2 − 1 −1 < x < 0
x2−1
x2+1 0 ≤ x

and compute that M0 = 1, M1 = 4, M2 = 4.

Problem A.23 ([Rud76] Exercise 5.17). Suppose f is real, three-times differentiable function on [−1, 1] s.t.

f(−1) = 0 f(0) = 0 f(1) = 1 f ′(0) = 0

Show that there exists some x ∈ (−1, 1) s.t.
f (3)(x) ≥ 3

Solution A.23. Proof. We apply Taylor (3) to (0, 1) and (−1, 0) at 0 respectively so that there exists s ∈ (0, 1)
and t ∈ (−1, 0) s.t.

f(1) = f(0) + f ′(0) +
f ′′(0)

2
+

f (3)(s)

6

f(−1) = f(0)− f ′(0) +
f ′′(0)

2
− f (3)(t)

6
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so that

1 = 0 + 0 +
f ′′(0)

2
+

f (3)(s)

6

0 = 0 + 0 +
f ′′(0)

2
− f (3)(t)

6

1 =
1

6
(f (3)(s) + f (3)(t))

6 = f (3)(s) + f (3)(t)

Hence either s or t satisfies f (3) ≥ 3 otherwise the equation fails.

Problem A.24 ([Rud76] Exercise 5.22). Let f be real-valued function on (−∞,∞). x is a fixed point of f if
f(x) = x.

1. If f is differentiable and f ′(t) ̸= 1 for every t then f has at most one fixed point.

2. The function
f(t) = t+ (1 + et)−1

has no fixed point.

3. If there is a constant A < 1 s.t.
|f ′(t)| ≤ A ∀ t ∈ R

Show that a fixed point x of f exists, and that

lim
n→∞

xn = x

where x1 is arbitrary real number and

xn+1 = f(xn) ∀ n ≥ 1

Solution A.24. Proof. 1. Suppose f has two fixed points x < y. Then by Lagrange Mean Value Theorem
Corollary 6.2 there exists a ∈ (x, y) s.t.

f ′(a) =
f(y)− f(x)

y − x
=

y − x

y − x
= 1

But we know f ′(t) ̸= 1 for any t by assumption. Hence this is a contradiction.

2. If there exists t a fixed point for f , then

f(t) = t+ (1 + et)−1 = t =⇒ (1 + et)−1 = 0

But the function (1 + et)−1 never achieves 0 for any t ∈ R.

3. The point is, how can we define the fixed point? Since |f ′(t)| ≤ A for any t ∈ R, we know f is uniformly
continuous. This is because for any ε > 0, one can safely pick δ = ε

A which is independent of points x ∈ R
s.t.

|x− y| < δ =⇒ |f(x)− f(y)| = |f ′(t)||x− y| ≤ Aδ ≤ ε where t ∈ (x, y) exists by Lagrange MVT

Then we notice that {xn} in fact defines a Cauchy Sequence.

(a) We first show
|xn+1 − xn| ≤ An−1|x2 − x1|

At the base case n = 1 this holds trivially. Now assume for n, i.e.

|xn+1 − xn| ≤ An−1|x2 − x1|

We prove that

|xn+2 − xn+1| = |f(xn+1)− f(xn)| ≤ |f ′(t)||xn+1 − xn| for some t between xn and xn+1

≤ A|xn+1 − xn| ≤ AAn−1|x2 − x1| = An|x2 − x1|
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(b) Then for any n > m > N , we compute

|xn − xm| = |xn − xn−1|+ · · ·+ |xm+1 − xm|
≤ An−2|x2 − x1|+ · · ·+Am−1|x2 − x1|
= |x2 − x1|Am−1(An−m−1 + · · ·+ 1)

≤ |x2 − x1|Am−1 1

1−A
using geometric series and A < 1

≤ |x2 − x1|AN 1

1−A
using A < 1

Now the bound only depends on N . Hence for any ε > 0, there exists N ∈ N sufficiently large s.t.
for any n > m > N

|xn − xm| ≤ |x2 − x1|AN 1

1−A
≤ ε

And this means {xn} is a Cauchy Sequence.

Now what is good about a Cauchy Sequence? In R, which is complete, all Cauchy sequence converges.
Hence there exists x ∈ R s.t.

x = lim
n→∞

xn ∈ R

It suffices to prove that x is a fixed point. Indeed, using continuity of f

f(x) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x

68



A.4 Assignment 5

Problem A.25 ([Rud76] Exercise 6.1). Let α increase on [a, b]. At some a ≤ x0 ≤ b, α is continuous at x0,
f(x0) = 1 and

f(x) = 0 ∀ x ̸= x0

Show that f ∈ R(α) and ˆ
fdα = 0

Solution A.25. Proof. For any ε > 0, there exists δ = δ(ε) > 0 s.t.

|x0 − x| ≤ δ =⇒ |α(x)− α(x0)| <
ε

2

Now one may choose partition P = {xi}ni=0 of [a, b] s.t.

∆xi = xi − xi−1 ≤ δ ∀ i = 1, · · · , N

There necessarily exists some i0 s.t.

xi0−1 ≤ x0 ≤ xi0 i0 ∈ {1, · · · , n}

and thus

n∑
i=1

Mi(α(xi)− α(xi−1)) = 0 + 1 · (α(xi0)− α(xi0−1))

= α(xi0)− α(x0) + α(x0)− α(xi0−1) ≤ ε

Because
|xi0 − x0| ≤ δ |xi0−1 − x0| ≤ δ

Hence

U(P, f)− L(P, f) =

n∑
i=1

Mi(α(xi)− α(xi−1)) ≤ ε

and conclude using Proposition 7.2. Now indeed

0 ≤
ˆ

fdα ≤ U(P, f) ≤ ε

Let ε → 0.

Problem A.26 ([Rud76] Exercise 6.2). Suppose f ≥ 0, f continuous on [a, b] and

ˆ b

a

f(x)dx = 0

Then
f(x) = 0 ∀ x ∈ [a, b]

Solution A.26. Proof. Suppose there exists x ∈ [a, b] s.t. f(x) > 0. Then using continuity of f , there exists
δ = δ(x) > 0 s.t.

f(y) ≥ f(x)

2
> 0 ∀ y ∈ (x− δ, x+ δ) ∩ [a, b]

WLOG assume x ∈ (a, b) and hence a < x − δ < x + δ < b. We consider a partition on (x − δ, x + δ), call it
P = {xi}ni=0. Then ˆ x+δ

x−δ

fdx ≥ L(P, f) =

n∑
i=1

mi∆xi ≥
f(x)

2
2δ = δf(x) > 0

But using f ≥ 0 necessarily ˆ b

a

f ≥
ˆ x+δ

x−δ

fdx > 0

contradicting
´ b
a
f = 0.
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Problem A.27 ([Rud76] Exercise 6.4). If

f(x) =

{
0 x ∈ R \Q
1 x ∈ Q

(7)

Then f /∈ R[a, b] for any a < b.

Solution A.27. Proof. For any partition P = {xi}ni=0 we pick for [a, b], we examine what are Mi and mi.
Notice for any [xi−1, xi], by density property of rationals 1.3, there exists qi ∈ (xi−1, xi) hence

Mi = 1 ∀ i

Also there exists an irrational ri ∈ (xi−1, xi) hence

mi = 0 ∀ i

Thus

U(P, f) =

n∑
i=1

Mi∆xi =

n∑
i=1

1∆xi = b− a

L(P, f) =

n∑
i=1

mi∆xi =

n∑
i=1

0 ·∆xi = 0

for any arbitrary partition we pick. Thus the criterion Proposition 7.2 fails, hence f /∈ R[a, b] for any a < b.

Problem A.28 ([Rud76] Exercise 6.5). Suppose f is real-valued and bounded function on [a, b], and suppose
f2 ∈ R[a, b]. Does f ∈ R[a, b]? What about f3 ∈ R[a, b]?

Solution A.28. Consider the example (7), then

f2 = 1 over R

And hence for any [a, b], f2 ∈ R[a, b]. But as we’ve just shown in Problem A.27 f /∈ R[a, b].
But if we assume f3 ∈ R[a, b], then notice the function

ϕ(u) := u
1
3 ∀ u ∈ f3([a, b])

is continuous function. Thus using Theorem 7.4

ϕ(f3(x)) = (f3)
1
3 (x) = f(x) ∈ R[a, b]

Problem A.29 ([Rud76] Exercise 6.7). Suppose f is a real-valued function over (0, 1] and that f ∈ R[c, 1] for
every c > 0. We define ˆ 1

0

f(x)dx := lim
c→0

ˆ 1

c

f(x)dx

if the limit exists and is finite. Then

1. If f ∈ R[0, 1] show that this definition agrees with the original one.

2. Construct f s.t. the above limit exists, but
´ 1
0
|f | fail to exist.

Solution A.29. 1. Since f ∈ R[0, 1], we know that in the original definition

ˆ 1

0

f(x)dx = sup
P partition of [0, 1]

L(P, f) = inf
P partition of [0, 1]

U(P, f)

We want to show that for any ε > 0, there exists c0 = c0(ε) > 0 small so that for any 0 < c < c0 one has

|
ˆ 1

0

f(x)dx−
ˆ 1

c

f(x)dx| < ε

But what is
´ 1
c
f(x)dx? Again this is

ˆ 1

c

f(x)dx = sup
P partition of [c, 1]

L(P, f) = inf
P partition of [c, 1]

U(P, f)
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First of all, since f ∈ R[0, 1], necessarily f is bounded over [0, 1], i.e.

M := sup
x∈[0,1]

|f(x)| < ∞

We fix c0 = ε
2M and consider any c < c0. Now we take any partition P = {xi}ni=1 that includes the point

c, say xk = c > 0, and s.t.

N∑
i=1

Mi∆xi −
ε

4
≤
ˆ 1

0

f(x)dx ≤
N∑
i=1

mi∆xi +
ε

4

N∑
i=k

Mi∆xi −
ε

4
≤
ˆ 1

c

f(x)dx ≤
N∑
i=k

mi∆xi +
ε

4

Now we compute

|
ˆ 1

0

f(x)dx−
ˆ 1

c

f(x)dx| = |
ˆ 1

0

f(x)dx−
N∑
i=1

Mi∆xi +

N∑
i=1

Mi∆xi −
N∑
i=k

Mi∆xi +

N∑
i=k

Mi∆xi −
ˆ 1

c

f(x)dx|

≤ |
ˆ 1

0

f(x)dx−
N∑
i=1

Mi∆xi|+ |
k∑

i=1

Mi∆xi|+ |
N∑
i=k

Mi∆xi −
ˆ 1

c

f(x)dx|

≤ ε

4
+M

ε

2M
+

ε

4
= ε

But the partition can be chosen for any c < ε
2M . Thus we’ve shown the equivalence.

2. One shall expect f to oscillate crazily near 0. Define

f(x) = (−1)n(n+ 1) ∀ x ∈ (
1

n+ 1
,
1

n
] ∀ n ∈ N∗

Now ˆ 1

0

f =

∞∑
n=1

ˆ 1
n

1
n+1

(−1)n(n+ 1) =

∞∑
n=1

(−1)n
n+ 1

n(n+ 1)
=

∞∑
n−1

(−1)n
1

n

By Alternating Series Test this converges. On the other hand

ˆ 1

1
N+1

|f | =
N∑

n=1

ˆ 1
n

1
n+1

(n+ 1) =

N∑
n=1

1

n
→ ∞ N → ∞

Thus
´ 1
0
|f | does not exist.

Problem A.30 ([Rud76] Exercise 6.8). Suppose f ∈ R[a, b] for any a < b. Define

ˆ ∞

a

f(x)dx := lim
b→∞

ˆ b

a

f(x)dx

if the limit exists. In this case we say the integral converges.
Assume that f(x) ≥ 0 and f decreases monotonically on [1,∞). Prove thatˆ ∞

1

f(x)dx converges

iff
∞∑

n=1

f(n) converges

Solution A.30. Proof. 1. Assume
´∞
1

f(x) < ∞, then since f ≥ 0

Sk :=

k∑
n=1

f(n) ≤
ˆ k

1

f(x) ≤
ˆ ∞

1

f(x) < ∞ ∀ k ∈ N

Hence the partial sums {Sk} is a bounded sequence. Notice {Sk} is an increasing sequence, hence by
Monotone Convergence Theorem 3.4, there exists S ∈ R s.t.

Sk =

k∑
n=1

f(n) → S

Thus
∑∞

n=1 f(n) converges.
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2. On the other hand assume
∑∞

n=1 f(n) converges. Suppose for contradiction that

ˆ ∞

1

f(x) = ∞

Then using that f is monotonically decreasing

f(n) = sup
x∈[n,n+1]

f(x) ∀ n ∈ N∗

Then the upper Riemann sum necessarily blows up, i.e.

Sk =

k∑
n=1

f(n) ≥
k∑

n=1

sup
x∈[n,n+1]

f(x) · (n+ 1− n) ≥
ˆ k

1

f(x)dx → ∞ k → ∞

Thus
k∑

n=1

f(n) → ∞

contradicting our assumption.

Problem A.31 ([Rud76] Exercise 6.12). Let f ∈ R[a, b] and ε > 0. Prove that there exists a continuous
function g over [a, b] s.t.

∥g − f∥2 :=

(ˆ b

a

|g(x)− f(x)|2dx

) 1
2

< ε

Solution A.31. Proof. For P = {xi}ni=0 partition to be chosen, define a function

g(t) :=
xi − t

∆xi
f(xi−1) +

t− xi−1

∆xi
f(xi) ∀ xi−1 ≤ t ≤ xi

as linear function in t, g is piecewise continuous over each interval [xi−1, xi], and since at the endpoints

g(xi) = f(xi) ∀ i ∈ {0, · · · , n}

This g is indeed a continuous function. Notice

ˆ b

a

|g − f |2 =

n∑
i=1

ˆ xi

xi−1

|xi − t

∆xi
f(xi−1) +

t− xi−1

∆xi
f(xi)− f(t)|2dt

=

n∑
i=1

ˆ xi

xi−1

|xi − t

∆xi
f(xi−1) +

t− xi−1

∆xi
f(xi)−

xi − t+ t− xi−1

∆xi
f(t)|2dt

=

n∑
i=1

ˆ xi

xi−1

|xi − t

∆xi
(f(xi−1)− f(t)) +

t− xi−1

∆xi
(f(xi)− f(t))|2dt

≤ 2

n∑
i=1

ˆ xi

xi−1

(
|f(xi−1)− f(t)|2 + |f(xi)− f(t)|2

)
dt

≤ 4

n∑
i=1

|Mi −mi|2∆xi ≤ 8M

n∑
i=1

|Mi −mi|∆xi < ε2

where we defined
M := sup

x∈[a,b]

|f(x)| < ∞

and picked partition s.t.
n∑

i=1

|Mi −mi|∆xi = U(P, f)− L(P, f) ≤ ε2

8M

Problem A.32 ([Rud76] Exercise 6.15). Let f be real-valued, continuously differentiable function over [a, b]
s.t. f(a) = f(b) = 0 and ˆ b

a

f2(x) = 1
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Then

ˆ b

a

xf(x)f ′(x) = −1

2ˆ b

a

(f ′(x))2 ·
ˆ b

a

x2f2(x) >
1

4

Solution A.32. Proof. Side remark: This is well-known as the Uncertainly principle from QuantumMechanics.
By Integration by Parts, one can

1 =

ˆ b

a

f2(x) =

ˆ b

a

(x)′f2(x)dx

= bf2(b)− af2(a)−
ˆ b

a

x(f2)′(x)dx

= 0−
ˆ b

a

x(f2)′(x)dx

= −2

ˆ b

a

xf · f ′(x)dx

−1

2
=

ˆ b

a

xf · f ′(x)dx

Now by Cauchy-Schwarz one obtain

1

4
=

(ˆ b

a

xf · f ′(x)dx

)2

≤
ˆ b

a

(f ′(x))2 ·
ˆ b

a

x2f2(x)

Notice the equality can be excluded. If it is equal, necessarily (up to some constant )

ˆ b

a

(f ′(x))2 = K

ˆ b

a

x2f2(x)

and thus

K(

ˆ b

a

x2f2(x))2 =
1

4
=⇒

ˆ b

a

x2f2(x) =
1

2
√
K

But now

1 = 2

ˆ b

a

√
Kx2f2(x)

=

ˆ b

a

f2(x)dx

Hence
2
√
Kx2 − 1 = 0 over non-measure zero portion in [a, b]

since otherwise
´ b
a
f2 = 1 fails. But

2
√
Kx2 − 1 = 0

at most two points, which is of measure zero.
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